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Chapter 1

Introduction

This document describes the software package QPME (Queueing Petri net Mod-
eling Environment), a performance modeling and analysis tool based on the
Queueing Petri Net (QPN) modeling formalism. QPN models are more sophis-
ticated than conventional queueing networks and stochastic Petri nets and have
greater expressive power [1, 3, 13]. This provides a number of important bene-
fits since it makes it possible to model systems at a higher degree of accuracy.
QPME is made of two components: QPE (QPN Editor) and SimQPN (Sim-
ulator for QPNs). QPE provides a user-friendly graphical tool for modeling
using QPNs based on the Eclipse/GEF framework. SimQPN provides an effi-
cient discrete-event simulation engine for QPNs that makes it possible to analyze
models of realistically-sized systems. QPME runs on a wide range of platforms
including Windows, Linux and Solaris. QPME is developed and maintained by
Samuel Kounev and Christofer Dutz.

A detailed description of the modeling approach implemented in QPME can
be found in [11, 12, 13]. Being based on QPNs, it provides the following advan-
tages:

� QPN models combine the modeling power and expressiveness of queueing
networks and generalized stochastic Petri nets.

� QPN models allow the integration of hardware and software aspects of
system behavior and lend themselves very well to modeling distributed
systems.

� The knowledge of the structure and behavior of QPNs can be exploited
for fast and efficient analysis using simulation. This makes it possible to
analyze models of large and complex systems ensuring that the approach
scales to realistic systems.

� Many efficient qualitative analysis techniques from Petri net theory can
be extended to QPNs and used to combine qualitative and quantitative
system analysis.

1



2 Ch. 1. Introduction

� Last but not least, QPN models have an intuitive graphical representation
that facilitates model development.

This document presents QPME discussing its features and usage. The aim is
to help the user to work with the tool without understanding its internal design
and architecture. More information on the implementation details of QPME,
including detailed specification of the analysis techniques implemented, can be
found in [9, 14]. For an overview of QPME, refer to [15].

1.1 System Requirements

QPE runs on all platforms supported by Eclipse including Windows, Linux,
Solaris, HP-UX, IBM AIX and Apple Mac OS. The only thing required is a
Java Runtime Environment (JRE) 5.0. It is recommended that QPE is run on
Windows since this is the platform it has been tested on.

SimQPN can be run either as Eclipse plugin in QPE or as a standalone Java
application. Thus, even though QPE is limited to Eclipse-supported platforms,
SimQPN can be run on any platform on which Java SE 5.0 is available. This
makes it possible to design a model on one platform (e.g. Windows) using QPE
and then analyze it on another platform (e.g. Solaris) using SimQPN.



Chapter 2

Primer on
Queueing Petri Nets

2.1 Basic Queueing Petri Nets

Queueing Petri nets can be seen as a combination of a number of different
extensions to conventional Petri nets (PNs) along several different dimensions.
In this section, we include some basic definitions and briefly discuss how queueing
Petri nets have evolved. A more detailed treatment of the subject can be found
in [2, 3, 11, 12]. An ordinary Petri net is a bipartite directed graph composed
of places, drawn as circles, and transitions, drawn as bars. A formal definition
follows [3]:

Definition 2.1 An ordinary Petri Net (PN) is a 5-tuple
PN = (P, T, I−, I+,M0) where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. I−, I+ : P × T → N0 are called backward and forward incidence functions,
respectively,

4. M0 : P → N0 is called initial marking.

The incidence functions I− and I+ specify the interconnections between
places and transitions. If I−(p, t) > 0, an arc leads from place p to transi-
tion t and place p is called an input place of the transition. If I+(p, t) > 0, an
arc leads from transition t to place p and place p is called an output place of the
transition. The incidence functions assign natural numbers to arcs, which we
call weights of the arcs. When each input place of transition t contains at least
as many tokens as the weight of the arc connecting it to t, the transition is said

3



4 Ch. 2. Primer on Queueing Petri Nets

to be enabled. An enabled transition may fire, in which case it destroys tokens
from its input places and creates tokens in its output places. The amounts of
tokens destroyed and created are specified by the arc weights. The initial ar-
rangement of tokens in the net (called marking) is given by the function M0,
which specifies how many tokens are contained in each place.

Different extensions to ordinary PNs have been developed in order to increase
the modeling convenience and/or the modeling power. Colored PNs (CPNs) in-
troduced by K. Jensen [10] are one such extension. The latter allow a type (color)
to be attached to a token. A color function C assigns a set of colors to each
place, specifying the types of tokens that can reside in the place. In addition to
introducing token colors, CPNs also allow transitions to fire in different modes
(transition colors). The color function C assigns a set of modes to each transition
and incidence functions are defined on a per mode basis. A formal definition of
a CPN follows [3]:

Definition 2.2 A Colored PN (CPN) is a 6-tuple CPN = (P, T,C, I−, I+,M0)
where:

1. P = {p1, p2, ..., pn} is a finite and non-empty set of places,

2. T = {t1, t2, ..., tm} is a finite and non-empty set of transitions, P ∩ T = ∅,

3. C is a color function that assigns a finite and non-empty set of colors to
each place and a finite and non-empty set of modes to each transition.

4. I− and I+ are the backward and forward incidence functions defined on
P × T , such that I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS ], ∀(p, t) ∈ P × T 1

5. M0 is a function defined on P describing the initial marking such that
M0(p) ∈ C(p)MS.

Other extensions to ordinary PNs allow temporal (timing) aspects to be inte-
grated into the net description [3]. In particular, Stochastic PNs (SPNs) attach
an exponentially distributed firing delay to each transition, which specifies the
time the transition waits after being enabled before it fires. Generalized Stochas-
tic PNs (GSPNs) allow two types of transitions to be used: immediate and
timed. Once enabled, immediate transitions fire in zero time. If several im-
mediate transitions are enabled at the same time, the next transition to fire is
chosen based on firing weights (probabilities) assigned to the transitions. Timed
transitions fire after a random exponentially distributed firing delay as in the
case of SPNs. The firing of immediate transitions always has priority over that
of timed transitions. A formal definition of a GSPN follows [3]:

Definition 2.3 A Generalized SPN (GSPN) is a 4-tuple
GSPN = (PN, T1, T2,W ) where:

1The subscript MS denotes multisets. C(p)MS denotes the set of all finite multisets of
C(p).
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1. PN = (P, T, I−, I+,M0) is the underlying ordinary PN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array whose entry wi ∈ R+ is a rate of a negative
exponential distribution specifying the firing delay, if ti ∈ T1 or is a firing
weight specifying the relative firing frequency, if ti ∈ T2.

Combining definitions 2.2 and 2.3, leads to Colored GSPNs (CGSPNs) [3]:

Definition 2.4 A Colored GSPN (CGSPN) is a 4-tuple
CGSPN = (CPN, T1, T2,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying CPN,

2. T1 ⊆ T is the set of timed transitions, T1 6= ∅,

3. T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

4. W = (w1, ..., w|T |) is an array with wi ∈ [C(ti) 7−→ R+] such that
∀c ∈ C(ti) : wi(c) ∈ R+ is a rate of a negative exponential distribution spec-
ifying the firing delay due to color c, if ti ∈ T1 or is a firing weight speci-
fying the relative firing frequency due to c, if ti ∈ T2.

While CGSPNs have proven to be a very powerful modeling formalism, they
do not provide any means for direct representation of queueing disciplines. The
attempts to eliminate this disadvantage have led to the emergence of Queue-
ing PNs (QPNs). The main idea behind the QPN modeling paradigm was to
add queueing and timing aspects to the places of CGSPNs. This is done by
allowing queues (service stations) to be integrated into places of CGSPNs. A
place of a CGSPN that has an integrated queue is called a queueing place and
consists of two components, the queue and a depository for tokens which have
completed their service at the queue. This is depicted in Figure 2.1.

48(8( ' (3 2 6 , 7 2 5 <

Figure 2.1: A queueing place and its shorthand notation.
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The behavior of the net is as follows: tokens, when fired into a queueing
place by any of its input transitions, are inserted into the queue according to the
queue’s scheduling strategy. Tokens in the queue are not available for output
transitions of the place. After completion of its service, a token is immediately
moved to the depository, where it becomes available for output transitions of the
place. This type of queueing place is called timed queueing place. In addition to
timed queueing places, QPNs also introduce immediate queueing places, which
allow pure scheduling aspects to be described. Tokens in immediate queueing
places can be viewed as being served immediately. Scheduling in such places
has priority over scheduling/service in timed queueing places and firing of timed
transitions. The rest of the net behaves like a normal CGSPN. A formal defini-
tion of a QPN follows:

Definition 2.5 A Queueing PN (QPN) is an 8-tuple
QPN = (P, T,C, I−, I+,M0, Q,W ) where:

1. CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN

2. Q = (Q̃1, Q̃2, (q1, ..., q|P |)) where

� Q̃1 ⊆ P is the set of timed queueing places,

� Q̃2 ⊆ P is the set of immediate queueing places, Q̃1 ∩ Q̃2 = ∅ and

� qi denotes the description of a queue2 taking all colors of C(pi) into
consideration, if pi is a queueing place or equals the keyword ‘null’,
if pi is an ordinary place.

3. W = (W̃1, W̃2, (w1, ..., w|T |)) where

� W̃1 ⊆ T is the set of timed transitions,

� W̃2 ⊆ T is the set of immediate transitions, W̃1 ∩ W̃2 = ∅,
W̃1 ∪ W̃2 = T and

� wi ∈ [C(ti) 7−→ R+] such that ∀c ∈ C(ti) : wi(c) ∈ R+ is interpreted
as a rate of a negative exponential distribution specifying the firing
delay due to color c, if ti ∈ W̃1 or a firing weight specifying the relative
firing frequency due to color c, if ti ∈ W̃2.

Example 2.1 (QPN) Figure 2.2 shows an example of a QPN model of a cen-
tral server system with memory constraints based on [3]. Place p2 represents
several terminals, where users start jobs (modeled with tokens of color ‘o’) af-
ter a certain thinking time. These jobs request service at the CPU (repre-
sented by a G/C/1/PS queue, where C stands for Coxian distribution) and two

2In the most general definition of QPNs, queues are defined in a very generic way allowing
the specification of arbitrarily complex scheduling strategies taking into account the state of
both the queue and the depository of the queueing place [2]. For the purposes of this paper,
it is enough to use conventional queues as defined in queueing network theory.
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Figure 2.2: A QPN model of a central server with memory constraints (reprinted
from [3]).

disk subsystems (represented by G/C/1/FCFS queues). To enter the system
each job has to allocate a certain amount of memory. The amount of memory
needed by each job is assumed to be the same, which is represented by a token
of color ‘m’ on place p1. According to Definition 2.5, we have the following:
QPN = (P, T,C, I−, I+,M0, Q,W ) where

� CPN = (P, T,C, I−, I+,M0) is the underlying Colored PN as depicted in
Figure 2.2,

� Q = (Q̃1, Q̃2,
(null,G/C/∞/IS,G/C/1/PS, null,G/C/1/FCFS,G/C/1/FCFS)),
Q̃1 = {p2, p3, p5, p6}, Q̃2 = ∅,

� W = (W̃1, W̃2, (w1, ..., w|T |)), where W̃1 = ∅, W̃2 = T and
∀c ∈ C(ti) : wi(c) := 1, so that all transition firings are equally likely.

In [1] it is shown that QPNs have greater expressive power than QNs, ex-
tended QNs and SPNs. In addition to hardware contention and scheduling
strategies, using QPNs one can easily model simultaneous resource possession,
synchronization, blocking and software contention. This enables the integration
of hardware and software aspects of system behavior into the same model [5].
While the above could also be achieved by using Layered QNs (LQNs) (or
stochastic rendezvous networks), the latter are defined at a higher-level of ab-
straction and are usually less detailed and accurate. Another benefit of QPNs
is that, since they are based on Petri nets, one can exploit a number of efficient
techniques from Petri net theory to verify some important qualitative properties
of QPNs, such as ergodicity, boundedness, liveness or existence of home states.
The latter not only help to gain insight into the behavior of QPNs, but are also
essential preconditions for a successful quantitative analysis [2].
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2.2 Hierarchical Queueing Petri Nets

A major hurdle to the practical application of QPNs is the so-called largeness
problem or state-space explosion problem: as one increases the number of queues
and tokens in a QPN, the size of the model’s state space grows exponentially
and quickly exceeds the capacity of today’s computers. This imposes a limit on
the size and complexity of the models that are analytically tractable. An at-
tempt to alleviate this problem was the introduction of Hierarchically-Combined
QPNs (HQPNs) [4]. The main idea is to allow hierarchical model specifica-
tion and then exploit the hierarchical structure for efficient numerical analysis.
This type of analysis is termed structured analysis and it allows models to be
solved that are about an order of magnitude larger than those analyzable with
conventional techniques.

$FWXDO
3 R S XODWL R Q

, Q S XW 2 XWS XW

8 V H U � V S H FL I L H G � S DU W� R I
WK H � V XE Q H W

* U DS K L FDO� Q R WDWL R Q � I R U
V XE Q H W� S ODFH

Figure 2.3: A subnet place and its shorthand notation.

HQPNs are a natural generalization of the original QPN formalism. In
HQPNs a queueing place may contain a whole QPN instead of a single queue.
Such a place is called a subnet place and is depicted in Figure 2.3. A subnet
place might contain an ordinary QPN or again a HQPN allowing multiple levels
of nesting. For simplicity, we restrict ourselves to two-level hierarchies. We use
the term High-Level QPN (HLQPN) to refer to the upper level of the HQPN and
the term Low-Level QPN (LLQPN) to refer to a subnet of the HLQPN. Every
subnet of a HQPN has a dedicated input and output place, which are ordinary
places of a CPN. Tokens being inserted into a subnet place after a transition
firing are added to the input place of the corresponding HQPN subnet. The
semantics of the output place of a subnet place is similar to the semantics of
the depository of a queueing place: tokens in the output place are available for
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output transitions of the subnet place. Tokens contained in all other places of
the HQPN subnet are not available for output transitions of the subnet place.
Every HQPN subnet also contains actual− population place used to keep track
of the total number of tokens fired into the subnet place.
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Chapter 3

Building
QPN Models with QPE

3.1 Overview

QPE (Queueing Petri net Editor), the first major component of QPME, provides
a graphical tool for modeling using QPNs. It offers a user-friendly interface en-
abling the user to quickly and easily construct QPN models. QPE is based on
GEF (Graphical Editing Framework) [19] - an Eclipse sub-project. GEF is an
open source framework dedicated to providing a rich, consistent graphical edit-
ing environment for applications on the Eclipse platform. As a GEF application,
QPE is written in pure Java and runs on all operating systems officially sup-
ported by the Eclipse platform. This includes Windows, Linux, Solaris, HP-UX,
IBM AIX and Apple Mac OS among others, making QPE widely accessible.

Internally, being a GEF application, QPE is based on the model-view-controller
architecture. The model in our case is the QPN being defined, the views pro-
vide graphical representations of the QPN, and finally the controller connects
the model with the views, managing the interactions among them. QPN models
created with QPE can be stored on disk as XML documents. QPE uses its own
XML schema based on PNML [6] with some changes and extensions to support
the additional constructs available in QPN models.

A characterizing feature of QPE is that it allows token colors to be defined
globally for the whole QPN instead of on a per-place basis. This feature was
motivated by the fact that in QPNs typically the same token color (type) is used
in multiple places. Instead of having to define the color multiple times, the user
can define it one time and then reference it in all places where it is used. This
saves time, makes the model definition more compact, and last but not least, it
makes the modeling process less error-prone since references to the same token
color are specified explicitly.

Further details on the implementation of QPE can be found in [9].

11
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3.2 QPE User Interface

3.2.1 QPE Main Window

Figure 3.1 shows the QPE main window, which is comprised of four views: Main
Editor View, Outline View, Properties View and Console View. In the following, we
take a brief look at each of these views. After that, we show how QPN models
are constructed in QPE.

Figure 3.1: QPE Main Window

Main Editor View

The Main Editor View is made up of Net Editor, Color Editor and Palette. The
Net Editor displays the graphical representation of the currently edited QPN. It
provides multiple document interface using tabs, so that multiple QPN models
can be edited at the same time. The Color Editor is used to define the global list
of token colors available for use in the places of the QPN. Finally, the Palette
displays the set of QPN elements that are used to build QPN models.
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Outline View

The Outline View provides a summary of the content of the currently active Net
Editor. It lists the elements of the QPN model displayed in the latter and makes
it easy to find an element based on its name. When an element is selected in the
Outline View, it is automatically selected in the Net Editor as well, and the canvas
is scrolled to its position so that the user can see it. This feature is especially
useful in large QPN models.

Properties View

The Properties View enables the user to edit the properties of the currently
selected element in the Net Editor. The content of this view depends on the type
of the selected element.

Console View

The Console View is used to display output from QPE extensions and plug-
ins such as SimQPN. For example, SimQPN uses the Console View to display
progress updates during a simulation run as well as the results from the simula-
tion output data analysis.

3.2.2 Constructing QPN Models

The first thing that has to be done when constructing a QPN model is to define
the global list of colors that will be available for use in the places of the QPN. As
already mentioned, colors are defined using the Color Editor in the Main Editor
View. The Color Editor, shown in Figure 3.2, is opened by selecting the Colors
tab at the bottom of the Main Editor View.

The Color Editor consists of a table showing the currently defined colors and
two buttons at the bottom of the table for adding and deleting colors. The
delete button is only enabled when a color is selected. Each color has three
attributes - Name, Real Color and Description. These attributes can be edited by
clicking inside the table. The Name attribute provides a unique identifier of each
color that can be used as a reference to the latter inside the places of the QPN.
The Real Color is used to make it easier to visually distinguish between different
colors when referencing them. The Description attribute defines the semantics
of the entity modeled using the respective token color.

Once needed colors have been defined, the user can start putting together the
QPN model. In order to do this the user has to switch back to the Net Editor tab
of the Main Editor View. QPN models are built using the set of QPN elements
available in the Palette. In order to add an element to the model the user has
to select it in the Palette and then click inside the canvas of the Net Editor.
The following QPN elements are currently available in the Palette: Ordinary
Place, Queueing Place, Subnet Place, Immediate Transition, Timed Transition and
Connection. The Connection element is used to create connections between places
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Figure 3.2: QPE Color Editor

and transitions. A connection is created by selecting the Connection element and
then dragging the mouse pointer from the input element to the output element.

The attributes of a QPN element (place or transition) can be edited by
selecting the element and using the Properties View. Depending on the type of
element selected, different attributes are configurable.

Attributes of Ordinary Places

� Name: Name of the ordinary place.

� Departure Discipline: NORMAL or FIFO (First-In-First-Out). The for-
mer implies that tokens become available for output transitions immedi-
ately upon arrival just like in conventional QPN models. The latter implies
that tokens become available for output transitions in the order of their
arrival, i.e. a token can leave the place/depository only after all tokens
that have arrived before it have left, hence the term FIFO. Departure dis-
ciplines are an extension to the QPN modeling formalism introduced in
QPME. For more details refer to [11, 12].

� Colors: Token colors allowed in this place. For each token color the fol-
lowing parameters can be configured:
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– Name: Name of the color as defined in the Color Editor.

– Initial: Initial number of tokens of the respective color in the place
(in the initial marking of the QPN).

– Max: Maximum number of tokens of the respective color allowed in
the place.

Attributes of Queueing Places

Name: Same as for ordinary place.

Departure Discipline: Same as for ordinary place.

Scheduling Strategy: The scheduling strategy (or queueing discipline) deter-
mines the order in which tokens are served in the queue. The following
values are currently allowed:

� FCFS: First-Come-First-Served.

� PS: Processor-Sharing.

� IS: Infinite-Server.

� PRIO: Priority scheduling.

� RANDOM: Random scheduling.

Number of Servers: Number of servers in the queueing station (queue) of the
place.

Colors: Token colors allowed in this place. For each token color the following
parameters can be configured:

� Name: Same as for ordinary place.

� Initial: Same as for ordinary place.

� Max: Same as for ordinary place.

� Ranking:

� Priority: Used for Priority scheduling.

� Distribution: Distribution of the token service time.

� p1: 1st parameter of the distribution.

� p2: 2nd parameter of the distribution (if applicable).

� p3: 3rd parameter of the distribution (if applicable).

� Input File: Input file for empirical distribution.

Figure 3.1 shows a list of the currently supported distribution functions and
their respective input parameters.

Empirical distributions are supported in the following way. The user is ex-
pected to provide a probability distribution function (PDF), specified as an
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Table 3.1: Supported distributions and their input parameters.

Distribution p1 p2 p3
Beta alpha beta na
BreitWigner mean gamma cut
BreitWignerMeanSquare mean gamma cut
ChiSquare freedom na na
Gamma alpha lambda na
Hyperbolic alpha beta na
Exponential lambda na na
ExponentialPower tau na na
Logarithmic p na na
Normal mean stddev na
StudentT freedom na na
Uniform min max na
VonMises freedom na na
Empirical na na na
Deterministic c na na

array of positive real numbers (histogram). The array is read from an external
text file whose name and location are initialized using the Input File parameter.
Successive values in the text file must be delimited using semicolon ’;’ charac-
ters. A cumulative distribution function (CDF) is constructed from the PDF
and inverted using a binary search for the nearest bin boundary and a linear
interpolation within the bin (resulting in a constant density within each bin).

Attributes of Subnet Places

� Name: Name of the subnet place.

� Departure Discipline: NORMAL or FIFO (First-In-First-Out). The for-
mer implies that tokens become available for output transitions immedi-
ately upon arrival just like in conventional QPN models. The latter implies
that tokens become available for output transitions in the order of their
arrival, i.e. a token can leave the place/depository only after all tokens
that have arrived before it have left, hence the term FIFO. Departure dis-
ciplines are an extension to the QPN modeling formalism introduced in
QPME. For more details refer to [11, 12].

� Colors: Token colors allowed in this place. For each token color the fol-
lowing parameters can be configured:

– Name: Name of the color as defined in the Color Editor.
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– Initial: Initial number of tokens of the respective color in the place
(in the initial marking of the QPN).

– Max: Maximum number of tokens of the respective color allowed in
the place.

Attributes of Immediate Transitions

� Name: Name of the immediate transition.

� Priority: Firing priority.

� Firing Weight: Relative firing frequency of transition.

� Modes: Modes in which the transition can fire. For each mode the follow-
ing parameters can be configured:

– Name: Name of the mode.

– Real Color: Used to make it easier to visually distinguish between
different modes when defining the incidence functions.

– Firing Weight: Relative firing frequency of the mode.

Attributes of Timed Transitions

� Name: Name of the timed transition.

� Priority: Firing priority.

� Modes: Modes in which the transition can fire. For each mode the follow-
ing parameters can be configured:

– Name: Name of the mode.

– Real Color: Used to make it easier to visually distinguish between
different modes when defining the incidence functions.

– Mean Firing Delay: Firing delay of the mode.

Defining Transition Incidence Functions

Transition incidence functions in QPE are defined using the Incidence Function
Editor shown in Figure 3.3.

The Incidence Function Editor can be opened by double-clicking a transition or
right-clicking it and using the context menu, or alternatively using the Properties
view. Once opened the Incidence Function Editor displays the transition input
places on the left, the transition modes in the middle and the transition output
places on the right1. Each place (input or output) is displayed as a rectangle

1Note: Due to an Eclipse/GEF bug, currently when opening the Incidence Function Editor
nothing is displayed inside its window. To make Eclipse display the expected elements, the
user should click inside the window and drag the mouse pointer.
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Figure 3.3: QPE Incidence Function Editor

containing a separate circle for each token color allowed in the place. Using the
Connection tool in the Palette, the user can create connections from token colors
of input places to modes or from modes to token colors of output places. If a
connection is created between a token color of a place and a mode, this means
that when the transition fires in this mode, tokens of the respective color are
removed from the place. Similarly, if a connection is created between a mode
and a token color of an output place, this means that when the transition fires
in this mode, tokens of the respective color are deposited in the place. Each
connection can be assigned a weight by clicking on it and using the Properties
view. The weight, displayed as label next to the connection line, is interpreted
as the number of tokens removed/deposited in the place when the transition fires
in the respective mode.

Behavior of Copy & Paste in QPE

The implementation of the standard Copy and Paste operations might seem
obvious in most editors, however, things are a little more complicated in the
case of QPE. This is because elements in QPNs are interdependent and copying
an element from one location to another might not make sense without adjusting
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the element or copying its associated elements along with it. There is a difference
in how this is handled when an element is pasted inside the same document or
when it is pasted into another document.

If an element is copied and pasted into the same document, a replica of the
element is inserted next to source element with a little offset so that the user can
distinguish between the two. Any connections of the copied element are repli-
cated as well. If multiple elements are copied, any connections between them
are replicated as connections between the replicas of the copied elements. If con-
nections between a copied element and a non-copied element exist, a connection
between the replica of the copied element and the non-copied element is created.
When transitions are copied, the newly created replicas have identical incidence
functions as the source transitions.

The behavior of Copy and Paste is slightly different when copying elements
from one document to another. When a place is copied, it might be that its
referenced colors are not defined in the target document. Therefore, any color
definitions referenced by a copied element, have to be created in the target doc-
ument. To avoid name conflicts, the names of copied colors are prefixed with
the name of the source document. Another difference is in the way connections
are treated. Connections between copied elements and non-copied elements are
not copied in the target document, since this does not make sense in this case.
Therefore, a transition might lose some connections when copied and its inci-
dence function has to be adjusted accordingly.
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Chapter 4

Model Analysis using
SimQPN

4.1 Overview

QPME provides a discrete-event simulator, SimQPN, that can be used to analyze
QPN models built in QPE. SimQPN is extremely light-weight and has been im-
plemented in Java to provide maximum portability and platform-independence.
It can be run either as Eclipse plugin in QPE or as a standalone Java application.
Thus, even though QPE is limited to Eclipse-supported platforms, SimQPN can
be run on any platform for which Java Runtime Environment (JRE) 1.1 or higher
is available. This makes it possible to design a model on one platform (e.g. Win-
dows) using QPE and then analyze it on another platform (e.g. Solaris) using
SimQPN.

SimQPN simulates QPNs using a sequential algorithm based on the event-
scheduling approach for simulation modeling. Being specialized for QPNs, it
simulates QPN models directly and has been designed to exploit the knowledge
of the structure and behavior of QPNs to improve the efficiency of the simulation.
Therefore, SimQPN provides much better performance than a general purpose
simulator would provide, both in terms of the speed of simulation and the quality
of output data provided.

In this chapter, we present SimQPN from the user’s perspective. For infor-
mation on SimQPN’ internal implementation details as well as precise specifi-
cation of the analysis techniques it supports refer to [9, 14]. It should be noted
that SimQPN currently supports most, but not all of the QPN features that
can be configured in QPE. The reason for not limiting QPE to only those fea-
tures supported by SimQPN is that QPE should also be usable as a standalone
QPN editor and as such the QPN features it offers should not be limited to any
particular analysis tool.
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4.1.1 Supported QPN Features

SimQPN currently supports the following scheduling strategies for queues inside
queueing places:

� First-Come-First-Served (FCFS)

� Processor-Sharing (PS)

� Infinite Server (IS)

The following service time distributions are supported (input parameters of
distributions are shown in brackets):

� Beta (alpha, beta)

� BreitWigner (mean, gamma, cut)

� BreitWignerMeanSquare (mean, gamma, cut)

� ChiSquare (freedom)

� Gamma (alpha, lambda)

� Hyperbolic (alpha, beta)

� Exponential (lambda)

� ExponentialPower (tau)

� Logarithmic (p)

� Normal (mean, stddev)

� StudentT (freedom)

� Uniform (min, max)

� VonMises (freedom)

� Empirical

Empirical distributions are supported in the following way. The user is ex-
pected to provide a probability distribution function (PDF), specified as an array
of positive real numbers (histogram). A cumulative distribution function (CDF)
is constructed from the PDF and inverted using a binary search for the nearest
bin boundary and a linear interpolation within the bin (resulting in a constant
density within each bin). The next version of SimQPN will also include support
for deterministic distributions.

Timed transitions are currently not supported, however, in most cases a
timed transition can be approximated by a serial network consisting of an im-
mediate transition, a queueing place and a second immediate transition.
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A novel feature of SimQPN is the introduction of the so-called departure
disciplines. The latter are defined for ordinary places or depositories and deter-
mine the order in which arriving tokens become available for output transitions.
Two departure disciplines are currently supported, Normal (used by default) and
First-In-First-Out (FIFO). The former implies that tokens become available for
output transitions immediately upon arrival just like in conventional QPN mod-
els. The latter implies that tokens become available for output transitions in
the order of their arrival, i.e. a token can leave the place/depository only after
all tokens that have arrived before it have left, hence the term FIFO. For an
example of how this feature can be exploited and the benefits it provides we
refer the reader to [11, 12].

4.1.2 Simulation Output Data Analysis

Modes of Data Collection

SimQPN offers the ability to configure what data exactly to collect during the
simulation and what statistics to provide at the end of the run. This can be
specified for each place (ordinary or queueing) of the QPN. The user can choose
one of four modes of data collection. The higher the mode, the more information
is collected and the more statistics are provided. Since collecting data costs CPU
time, the more data is collected, the slower the simulation would run. Therefore,
by configuring data collection modes, the user can make sure that no time is
wasted collecting unnecessary data and, in this way, speed up the simulation.

Mode 1 This mode considers only token throughput data, i.e. for each queue,
place or depository the token arrival and departure rates are estimated for each
color.

Mode 2 This mode adds token population and utilization data, i.e. for each
queue, place and depository the following data is provided on a per-color basis:

� Minimum/maximum number of tokens.

� Average number of tokens.

� Mean color utilization, i.e. the fraction of time that there is a token of the
respective color inside the queue/place/depository.

For queues, in addition to the above, the overall queue utilization is reported
(i.e. the fraction of time that there is a token of any color inside the queue).

Mode 3 This mode adds residence time data, i.e. for each queue, place and
depository the following additional data is provided on a per-color basis:

� Minimum/maximum observed token residence time.
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� Mean and standard deviation of observed token residence times.

� Estimated steady state mean token residence time.

� Confidence interval (c.i.) for the steady state mean token residence time
at a user-specified significance level.

Mode 4 provides all of the above and additionally dumps observed token
residence times to files.

Steady State Analysis

SimQPN supports two methods for estimation of the steady state mean residence
times of tokens inside the queues, places and depositories of the QPN. These are
the well-known method of independent replications (in its variant referred to as
replication/deletion approach) and the classical method of non-overlapping batch
means. Both of them can be used to provide point and interval estimates of
the steady state mean token residence time. The method of Welch is used for
determining the length of the initial transient (warm-up period). For users that
would like to use different methods for steady state analysis (for example ASAP
[17, 18]), SimQPN can be configured to output observed token residence times
to files (mode 4), which can then be used as input to external analysis tools (for
example [8]).

Simulation experiments with SimQPN usually comprise two stages: stage 1
during which the length of the initial transient is determined, and stage 2 dur-
ing which the steady-state behavior of the system is simulated and analyzed.
SimQPN utilizes the Colt open source library for high performance scientific
and technical computing in Java, developed at CERN [7]. In SimQPN, Colt is
primarily used for random number generation and, in particular, its implemen-
tation of the Mersenne Twister random number generator is employed [16].

4.2 Working with SimQPN

4.2.1 Run Configuration Wizard

SimQPN can be launched by choosing SimQPN from the Tools menu in QPE.
This opens the Run Configuration Wizard. The latter consists of three dialog
windows:

1. Select Run Configuration

2. Simulation Run Configuration

3. Configuration Parameters for the chosen Analysis Method
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Before a QPN model can be simulated, a configuration must be created which
encapsulates all input parameters required for the simulation. The Select Run
Configuration dialog window (Figure 4.1) can be used to create new configurations
or delete existing ones. All parameters belonging to a configuration are stored
as meta-attributes in the model’s XML file.

Figure 4.1: Select Run Configuration Dialog Window

When creating a new configuration, the user is first asked to select the analy-
sis method that will be used for analysis of the output data from the simulation.
Three analysis methods are currently supported:

1. Batch Means: Steady-state analysis using the method of non-overlapping
batch means.

2. Replication/Deletion: Steady-state analysis using the method of indepen-
dent replications in its variant referred to as replication/deletion approach.

3. Method of Welch: Analysis of the length of the initial transient (warm-up
period) using the method of Welch.

Steady-state analysis is applied to the observed token residence times at
places, queues and depositories of the QPN.
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General Run Configuration Parameters

After a configuration has been created it can be used by selecting it and clicking
on the Next button in the Select Run Configuration dialog window. This opens
the Simulation Run Configuration dialog window (Figure 4.2), which allows the
user to configure the following general simulation parameters:

Figure 4.2: Simulation Run Configuration Dialog Window

Warm up period: Length of the warm up period (initial transient) of the simu-
lation run in model time.

Max total run length: Maximum total length (including warm up period) of the
simulation run in model time.

Simulation stopping criterion: Criterion for determining when the simulation
run should be stopped. Three values are allowed:

� Fixed sample size

� Sequential / Absolute precision

� Sequential / Relative precision

Fixed sample size means that the simulation is run until the max total
run length has been reached. Sequential / Absolute precision or Sequential
/ Relative precision means that the length of the simulation is increased



4.2. Working with SimQPN 27

sequentially from one checkpoint to the next, until enough data has been
collected to provide estimates of residence times with a given user-specified
precision. The precision is defined as an upper bound on the confidence in-
terval half length. It can be specified either as an absolute value (Sequential
/ Absolute precision) or as a percentage relative to the mean residence
time (Sequential / Relative precision). Note that if the Replication/Deletion
method or the Method of Welch has been chosen, the stopping criterion
is automatically set to fixed sample size because the sequential stopping
criteria are not applicable to these methods.

Time between stop checks: Specifies how often (in model time) the simulator
checks if the conditions of the stopping criterion have been fulfilled to
determine if the simulation run should be stopped.

Time before initial heart beat: Time at which the first simulator progress up-
date (heart beat) is done (in model time).

Seconds between heart beats: Specifies how often simulator progress updates
(heart beats) are done.

Verbosity level: Specifies how much details the simulator should output during
the simulation. Verbosity level is an integer from 0 to 3.

Output directory: Directory in which simulator output files should be stored,
including results from analysis of the simulation output data.

After the user has finished configuring the parameters in the Simulation Run
Configuration dialog window and clicks on the Next button, the next dialog win-
dow depends on the chosen analysis method. In the following, each of them is
discussed in turn.

Configuration Parameters for Batch Means Method

Figure 4.3 shows the dialog window for the batch means method. The following
parameters must be configured for every ordinary place, queue or depository:

statsLevel: Specifies the mode of data collection - from 1 to 4 (see Section 4.1.2.
If set to 0, no data is collected for the respective place and no statistics
are provided at the end of the run.

signLev: Specifies the significance level of the confidence intervals to be provided
for the average token residence times.

reqAbsPrc: If Sequential / Absolute precision stopping criterion has been cho-
sen, this field specifies the absolute precision required. Simulation is not
stopped before enough data has been collected to provide confidence in-
tervals for token residence times at the respective place with half widths
not exceeding reqAbsPrc.
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Figure 4.3: Configuration Parameters for Batch Means Method

reqRelPrc: If Sequential / Relative precision stopping criterion has been chosen,
this field specifies the relative precision required. Simulation is not stopped
before enough data has been collected to provide confidence intervals for
token residence times at the respective place with half widths not exceeding
(reqRelPrc ∗ 100%) percent of the corresponding mean values.

batchSize: Specifies the batch size used.

minBatches: Minimum number of batches required for steady state statistics.
If set to 0, no steady state analysis is performed for the respective token
color.

numBMeansCorlTested: If set greater than 0, the first numBMeansCorlTested
batch means observed from the beginning of the steady state period are
tested for autocorrelation to determine if the batch size is sufficient. If the
test fails, the batch size is increased repeatedly until the test is passed. If
set to 0, no autocorrelation test is performed.

The above parameters are specified on a per-color basis for every place of the
QPN. For queueing places the parameters are set separately for the queue and
depository of the place. Note that the parameters signLev, reqAbsPrc, reqRelPrc,
batchSize, minBatches and numBMeansCorlTested are only enabled for places
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where statsLevel is set to be greater than or equal to 3. Otherwise, no steady
state analysis is performed and these parameters do not make sense.

Configuration Parameters for Replication/Deletion Method

Figure 4.4: Configuration Parameters for Replication/Deletion Method

Figure 4.4 shows the dialog window for replication/deletion method. The
following parameters must be configured for every ordinary place, queue or de-
pository:

statsLevel: Specifies the mode of data collection - from 1 to 4 (see Section 4.1.2.
If set to 0, no data is collected for the respective place and no statistics
are provided at the end of the run.

sighLevAvgST: Specifies the significance level of the confidence intervals to be
provided for the average token residence times.

Note that the parameter sighLevAvgST is only enabled for places where stat-
sLevel is set to be greater than or equal to 3. Otherwise, no statistics are gathered
for token residence times. The number of replications performed is specified in
the Select Run Configuration dialog window (Figure 4.1).
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Figure 4.5: Configuration Parameters for Method of Welch

Configuration Parameters for Method of Welch

Figure 4.5 shows the dialog window for the method of Welch. The following
parameters must be configured for every ordinary place, queue or depository:

statsLevel: Specifies the mode of data collection - from 1 to 4 (see Section 4.1.2).
If set to 0, no data is collected for the respective place and it is excluded
from the analysis.

minObsrv: Minimum number of observations required.

maxObsrv: Maximum number of observations considered. If set to 0, no data is
collected for the respective token color and it is excluded from the analysis.

Note that the parameters minObsrv and maxObsrv are only enabled for places
where statsLevel is set to be greater than or equal to 3. Otherwise, no statistics
are gathered for token residence times. The number of replications performed is
specified in the Select Run Configuration dialog window (Figure 4.1).

For every token color, SimQPN computes the moving averages of observed
token residence times for four different window sizes and stores them in text files
in the output directory. Output files are named as follows:
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WelchMovAvgST-<TYPE><NAME>-col<COLOR>-win<SIZE>.txt

where <TYPE> is place, queue or depository; <NAME> is the name of the
respective place, queue or depository; and <SIZE> is the window size. The
window sizes considered are m/4, m/16, m/32 and m/64, where m is the actual
number of observations.

4.2.2 SimQPN Command-Line Interface

As mentioned earlier, SimQPN can also be run as a standalone Java application
outside of QPE. This is done using a shell script, SimQPN.bat on Windows or
SimQPN.sh on Unix/Linux platforms.

On Windows, the script is started as follows:

SimQPN.bat [-l] [-r "config"] qpe-file

where the command line parameters are interpreted as explained below:

-l tells SimQPN to list the simulator configurations defined in the QPE file.

qpe-file is the QPE file containing the model to be analyzed.

-r tells SimQPN to run the specified simulator configuration.

config is the simulator configuration to be run.

On Unix/Linux platforms exactly the same syntax is used with the only
difference that the name of the script is SimQPN.sh.

4.3 Presentation of Simulation Results

When run inside QPE, SimQPN prints all results from the simulation output
data analysis in the Console. In addition, the results are stored in text files in
the output directory.

For each ordinary place, queue or depository different amount of information
is provided depending on the chosen data collection mode (statsLevel). In this
section, the presentation format of results from the different analysis methods is
discussed.

4.3.1 Results from Batch Means Method

The excerpt below shows the format of results from the method of batch means
for one queueing place (queue and depository) and one color.

REPORT for Queue : DBS-CPU----------------------------------------
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Overall Queue Util=0.7571974116566562

------------------ Color=0 --------------------
arrivCnt=161471 deptCnt=161468
arrivThrPut=0.014308253925074151 deptThrPut=0.014307988089340334
meanTkPop=3.124693954462401 colUtil=0.7571974116566562
-----
meanST=218.3834439454382 stDevST=322.57718936648314

Steady State Statistics:
numBatchesST=201 batchSizeST=800 stDevStdStateMeanST=45.6472946669
90% c.i. = 218.61956343536986 +/- 5.320603897320468

REPORT for Depository : DBS-CPU-----------------------------------

------------------ Color=0 --------------------
arrivCnt=161468 deptCnt=161467
arrivThrPut=0.014307988089340334 deptThrPut=0.01430789947742906
meanTkPop=0.0 colUtil=0.0
-----
meanST=0.0 stDevST=0.0

Steady State Statistics:
numBatchesST=807 batchSizeST=200 stDevStdStateMeanST=0.0
90% c.i. = 0.0 +/- 0.0

The various quantities in the results report are defined as follows:

Overall Queue Util: The probability that there is a token of any color in the
queue.

arrivCnt: Total number of tokens of the respective color that arrived in the
queue/depository during the run.

deptCnt: Total number of tokens of the respective color that departed from the
queue/depository during the run.

arrivThrPut: Rate at which tokens of the respective color arrive at the queue/de-
pository.

deptThrPut: Rate at which tokens of the respective color depart from the
queue/depository.

meanTkPop: Mean number of tokens of the respective color in the queue/de-
pository.
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colUtil: The probability that there is a token of the respective color in the
queue/depository.

meanST: Mean token residence (sojourn) time, i.e. time that tokens of the
respective color spend in the queue/depository.

stDevST: Standard deviation of the token residence time.

numBatchesST: Number of batches of observations collected.

batchSizeST: Batch size used.

stDevStdStateMeanST: Standard deviation of the steady state residence time.

90% c.i.: 90% confidence interval for the steady state mean residence time.

4.3.2 Results from Replication/Deletion Method

The excerpt below shows the format of results from the replication/deletion
method for one queueing place (queue and depository) and one color.

REPORT for Queue : DBS-CPU----------------------------------------

numReplicationsUsed = 100 numTooShortRepls = 0
minRunLen=5000000.047045088 maxRunLen=5000175.44340017
avgRunLen=5000020.540000993 stDevRunLen=25.94565026505922
avgWallClockTime=1.18217999999 stDevWallClockTime=0.030668768043

meanQueueUtil=0.7574721018056024 stDevQueueUtil=0.0046913938556502

------------------ Color=0 --------------------
meanArrivThrPut[c]=0.0142910684137 meanDeptThrPut[c]=0.01429092841
stDevArrivThrPut[c]=6.38614705E-5 stDevDeptThrPut[c]=6.3797896E-5
minAvgTkPop[c]=2.876744782905197 maxAvgTkPop[c]=3.4270894141218826
meanAvgTkPop[c]=3.118214443226206 meanColUtil[c]=0.757472101805624
stDevAvgTkPop[c]=0.10659712560 stDevColUtil[c]=0.00469139385565026
-----
meanAvgST[c]=218.18885562939914 stDevAvgST[c]=7.15056639668919

90% c.i. = 218.18885562939914 +/- 1.1872797998046334

REPORT for Depository : DBS-CPU-----------------------------------

numReplicationsUsed = 100 numTooShortRepls = 0
minRunLen=5000000.047045088 maxRunLen=5000175.44340017
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avgRunLen=5000020.540000993 stDevRunLen=25.94565026505922
avgWallClockTime=1.1821799999999 stDevWallClockTime=0.030668768043

------------------ Color=0 --------------------
meanArrivThrPut[c]=0.0142909284 meanDeptThrPut[c]=0.01429093507
stDevArrivThrPut[c]=6.379789E-5 stDevDeptThrPut[c]=6.376607356E-5
minAvgTkPop[c]=0.0 maxAvgTkPop[c]=0.0
meanAvgTkPop[c]=0.0 meanColUtil[c]=0.0
stDevAvgTkPop[c]=0.0 stDevColUtil[c]=0.0
-----
meanAvgST[c]=0.0 stDevAvgST[c]=0.0

90% c.i. = 0.0 +/- 0.0

The various quantities in the results report are defined as follows:

numReplicationsUsed: Total number of run replications used for steady state
analysis.

numTooShortRepls: This variable is currently not used, so it can be ignored.

minRunLen: The minimum length of a run replication (in model time).

maxRunLen: The maximum length of a run replication (in model time).

avgRunLen: The average length of a run replication (in model time).

stDevRunLen: The standard deviation of the run replication length (in model
time).

avgWallClockTime: The average duration of a run replication (in wall clock
time).

stDevWallClockTime: The standard deviation of the run replication duration
(in wall clock time).

meanQueueUtil: The mean queue utilization - probability that there is a token
of any color in the queue.

stDevQueueUtil: Standard deviation of the queue utilization measured from
the run replications.

meanArrivThrPut: Mean rate at which tokens of the respective color arrive at
the queue/depository (arrival rate).

meanDeptThrPut: Mean rate at which tokens of the respective color depart
from the queue/depository (departure rate).

stDevArrivThrPut: Standard deviation of the token arrival rate.
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stDevDeptThrPut: Standard deviation of the token departure rate.

minAvgTkPop: Minimum average token population measured from the run
replications.

maxAvgTkPop: Maximum average token population measured from the run
replications.

meanAvgTkPop: Mean average token population measured from the run repli-
cations.

meanColUtil: Mean probability that there is a token of the respective color in
the queue/depository.

stDevAvgTkPop: Standard deviation of the average token population.

stDevColUtil: Standard deviation of the probability that there is a token of the
respective color in the queue/depository.

meanAvgST: Mean of the average residence times measured form the run repli-
cations.

stDevAvgST: Standard deviation of the residence times measured form the run
replications.

90% c.i.: 90% confidence interval of the mean residence time.
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Chapter 5

Troubleshooting

5.1 Known Issues

5.1.1 Simulation of Hierarchical QPNs

SimQPN currently does not support the simulation of hierarchical QPNs. This
feature will be added in the next version of the tool.

5.1.2 Incidence Function Editor

Due to an Eclipse/GEF bug, currently when opening the Incidence Function Edi-
tor nothing is displayed inside its window. To make Eclipse display the expected
elements, the user should click inside the window and drag the mouse pointer.

5.2 Fixed bugs

5.3 Report a bug

Bugs can be reported by sending an email to Samuel Kounev at skounev@acm.org.
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