
C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y J U LY 2 0 1 6 53

RESEARCH FEATURE

A Model-Based Approach
to Designing Self-
Aware IT Systems
and Infrastructures
Samuel Kounev, Nikolaus Huber, and Fabian Brosig,
University of Würzburg

Xiaoyun Zhu, Futurewei Technologies

Modern IT system archi-
tectures are becom-

ing increasingly distributed, have
loosely coupled services, and are often
deployed on virtualized infrastruc-
tures that abstract physical layers to
improve system efficiency. The ben-
efits of distributed architectures and
virtualized infrastructures come at
the cost of higher system complexity
and dynamics; the inherent semantic
gap between application- level metrics
and resource allocations at the phys-
ical and virtual layers significantly
increases the complexity of managing
end-to-end application performance.

To tackle this challenge, tech-
niques for online performance prediction are needed
that enable the continuous prediction of three per-
formance aspects: application workload changes, the
effects of these changes on system performance, and the
expected impact of possible adaptation actions. Online
performance prediction can be the basis for designing
systems that proactively adapt to changing operating
conditions, thus enabling self-aware performance and
resource management.1 (See the “Self-Aware Computing
Systems” sidebar for more information.)

We have developed a model-based approach to design-
ing self-aware IT systems along with the Descartes Mod-
eling Language (DML),3 an architecture-level language
that is central to online performance prediction and pro-
active model-based system adaptation. We have applied
our model-based design approach in several case stud-
ies with realistic environments and in cooperation
with industrial partners.4,5 In an evaluation against a
trigger- based approach (which relies on custom metrics
and specified thresholds to execute predefined reconfig-
uration actions), our approach maintained acceptable

Results of a five-year research project

and several industrial collaborations have

produced tools that model the individual

effects and complex dynamic interactions

between an IT system’s application workload

and resource contention at multiple levels in

the execution environment. An evaluation

shows significant resource efficiency

gains without sacrificing the performance

specified in service-level agreements.

RESEARCH FEATURE

54 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

resource efficiency and avoided 60
percent of service- level agreement
(SLA) violations.

DESCARTES
MODELING LANGUAGE
Figure 1 is a high-level structural dia-
gram of DML (http://descartes.tools
/dml), which consists of five meta-
models (from the bottom up): resource
landscape, application architecture,
usage profile, adaptation points, and
adaptation process.

Resource landscape metamodel
The resource landscape metamodel de-
scribes the structure and properties of
both the physical and logical resources
that make up the IT system infra-
structure. A common pattern in mod-
ern IT infrastructures is the nested

containment of system entities: for ex-
ample, data centers contain racks, racks
contain servers, servers typically con-
tain a set of virtual machines (VMs), a
VM contains an OS, an OS can contain a
middleware layer, and so on. DML pro-
vides constructs to model this hierar-
chy of nested resources as well as their
internal configuration.

In Figure 2, the core elements of
the resource landscape metamodel are
described as a Unified Modeling Lan-
guage (UML) class diagram.

A CompositeInfrastructure entity
can be nested inside another Composite
Infrastructure entity, which might be
used to model the nesting of datacen-
ter resources (for example, datacenters
contain server racks consisting of server
and storage nodes). The central ele-
ment of each CompositeInfrastructure

entity is the abstract entity Container,
which has a containment relation to
the RuntimeEnvironment entity. The lat-
ter is also a Container entity that can
contain additional RuntimeEnvironment
entities. Thereby, it is possible to model
the container nesting (OS, virtualiza-
tion platform, and middleware). To fur-
ther specify the resource- configuration
properties of a Container entity,
 Container refers to a Configuration
Specification. Finally, the metamodel
provides the ContainerTemplate entity
to ease the modeling of containers with
similar configurations.

Application
architecture metamodel
We modeled the system’s application
architecture after the principles of
component-based software systems.

SELF-AWARE COMPUTING SYSTEMS

The consensus at the 2015 Dagstuhl Seminar
15041 (www.dagstuhl.de/15041) was that

self-aware computing systems have two main
properties. They

 » learn models, capturing knowledge about
themselves and their environment (such
as their structure, design, state, possible
actions, and runtime behavior) on an
on going basis; and

 » reason using the models (to predict, analyze,
consider, or plan), which enables them to act
based on their knowledge and reasoning (for
example, to explore, explain, report, suggest,
self-adapt, or impact their environment)

and do so in accordance with high-level goals,
which can change.1

A major application domain for self-aware com-
puting is the runtime management of modern IT sys-
tems.1 In this context, an IT system is considered self-
aware if it possesses three properties or can acquire
them at runtime—ideally to an increasing degree:

 » Self-reflective—is aware of its software
architecture and execution environment, the
hardware infrastructure on which it runs, and

its operational goals, such as performance
requirements.

 » Self-predictive—can predict the effects of
dynamic changes, such as changing service
workloads, and of possible adaptation actions,
such as adding or removing resources.

 » Self-adaptive—proactively adapts as the
environment evolves to ensure that it always
meets its operational goals.

For the most part, existing research and indus-
trial approaches do not address these properties.
Most state-of-the-art industrial approaches for per-
formance and resource management, like Amazon
EC2 or Microsoft Windows Azure, are rule-based or
heuristics- driven and have custom triggers. How-
ever, application-level metrics, such as response
times, normally exhibit a nonlinear relationship to
system load and typically depend on the behavior of
multiple virtual machines (VMs) across several appli-
cation tiers. Therefore, it is hard to determine general
thresholds for firing triggers to enforce service-level
agreements at the application level, which violates
the self-predictive and self-adaptive properties.

Most research approaches to performance and
resource management are based primarily on coarse-
grained performance models that typically abstract

 J U LY 2 0 1 6 55

A software component is a unit of com-
position with explicitly defined inter-
faces. To describe the performance
behavior of a service offered by a com-
ponent, the application architecture
metamodel supports multiple (possi-
bly coexisting) behavior abstractions
at different granularity levels—from
black box to fine-grained behavioral
descriptions. The novelty of the support
for multiple abstraction levels is that
the model is usable in different online
performance prediction scenarios with
different goals and constraints, from a
quick analysis of performance bounds
to a detailed system simulation.

Deployment and usage
profile metamodels
The deployment metamodel captures
the link between the resource landscape

and the application architecture. It asso-
ciates software components with their
allocated containers in the resource
landscape. The usage-profile metamodel
captures workload type (open or closed)
along with a probabilistic description
of workload intensity (such as request-
arrival rates), user behavior, and which
services are called and in what order.

Adaptation points and
process metamodels
The adaptation points metamodel
describes the elements of the resource
landscape and the application architec-
ture that can be reconfigured at runtime.
On the basis of this model, the adapta-
tion process metamodel enables design-
ers to describe the way the system adapts
to environmental changes. This meta-
model has three main parts: actions,

tactics, and strategies. Figure 3 shows
the main DML metamodel elements for
each part.

Actions. Actions capture an adapta-
tion operation’s execution at the model
level. Examples include increasing or
decreasing a VM’s processing resources,
cloning or removing a VM, and migrat-
ing a software component.

Tactics. Tactics allow the description
of more complex adaptations. A set of
actions is composed to an Adaptation-
Plan through the use of control-flow ele-
ments, such as branches and loops. For
example, a tactic to add resources might
be: “if possible, increase a VM’s process-
ing resources; otherwise, start another
VM.” Once the tactic is applied in the
model, online prediction techniques

systems and applications at a high level.2−4 As such,
they cannot exhibit the self-reflective property
because they do not explicitly model the software
architecture and execution environment and there-
fore cannot distinguish performance-relevant
behavior at the virtualization level versus at the
level of applications hosted inside the running VMs.
Their self-prediction capabilities are limited, which
makes them ill suited for complex scenarios, such
as predicting how application-workload changes
propagate through the system architecture to the
physical resource layer or the effect on different
services’ response times of migrating a VM in one
application tier to a different host type.

In autonomic computing, software models play
an important role in managing complexity and sup-
porting adaptation decisions.5,6 However, existing
model-based approaches usually focus only on
adaptation at the application level, excluding the
system’s operational environment.7−9 Adaptation
decisions typically depend on rule-based policies
and heuristics without the ability to predict the
effects of any adaptation actions on end-to-end
system performance, which is essential to inform-
ing the adaptation process.

References
1. S. Kounev et al., “Model-Driven Algorithms and Architec-

tures for Self-Aware Computing Systems,” Dagstuhl Reports,

vol. 5, no. 1, 2015; http://drops.dagstuhl.de/opus

/volltexte/2015/5038.

2. A. Gandhi et al., “Autoscale: Dynamic, Robust Capacity Man-

agement for Multitier Data Centers,” ACM Trans. Computing

Systems, vol. 30, no. 4, 2012, pp. 14:1–14:26.

3. G. Jung et al., “Mistral: Dynamically Managing Power, Perfor-

mance, and Adaptation Cost in Cloud Infrastructures,” Proc.

IEEE 30th Int’l Conf. Distributed Computing Systems (ICDCS

10), 2010, pp. 62–73.

4. Q. Zhang, L. Cherkasova, and E. Smirni, “A Regression-Based

Analytic Model for Dynamic Resource Provisioning of Multitier

Applications,” Proc. 4th IEEE Int’l Conf. Autonomic Computing

(ICAC 07), 2007; http://dx.doi.org/10.1109/ICAC.2007.1.

5. B.H.C. Cheng et al., “Software Engineering for Self-Adaptive

Systems: A Research Roadmap,” Software Eng. for Self-

Adaptive Systems, B.H.C. Cheng et al., eds., LNCS 5525,

Springer, 2009; doi: 10.1007/978-3-642-02161-9_1.

6. M. Salehie and L. Tahvildari, “Self-Adaptive Software:

Landscape and Research Challenges,” ACM Trans.

Autonomous and Adaptive Systems, vol. 4, no. 2, 2009,

pp. 14:1–14:42.

7. P. Oreizy et al., “An Architecture-Based Approach to

Self-Adaptive Software,” IEEE Intelligent Systems, vol. 14,

no. 3, 1999, pp. 54–62.

8. D. Garlan, B. Schmerl, and S.-W. Cheng, “Software

Architecture- Based Self-Adaptation,” Autonomic Computing

and Networking, Springer, 2009, pp. 31–55.

9. B. Morin et al., “Models@Run.time to Support Dynamic Adap-

tation,” Computer, vol. 42, no. 10, 2009, pp. 44–51.

56 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

evaluate its potential impact. If apply-
ing the tactic is likely to help achieve
the stated adaptation goal, it is main-
tained as part of the adaptation plan.
Otherwise, it is rolled back and another
tactic is applied.

Strategies. Strategies capture the adap-
tation process’s logical aspects by defin-
ing objectives and conveying ideas for
satisfying them. A strategy can be a
simple one-tactic plan or a complex,
multilayered plan that uses multiple
tactics to accomplish an objective. The
tactic applied depends on the system
state and the tactic’s predicted impact
on system performance. Because the
tactical sequence is not predefined,
the system can flexibly react with dif-
ferent tactics (defensive or aggressive)
in unforeseen situations. A defensive
strategy might be, “add as few resources
as possible stepwise until response time
violations are resolved.” An aggressive
strategy might be, “add a large amount
of resources in one step so that response
time violations are eliminated, ignor-
ing resource inefficiencies.”

SAMPLE DML METAMODEL
A sample DML model instance illus-
trates these metamodels. Figure 4,
which depicts the resource landscape
model instance, shows the resource hier-
archy as well as resource-configuration
templates and adaptation points. A full
DML implementation of this instance is
available from the DML website (http://
descartes.tools/dml). The root element
is DataCenterA, which represents the
local datacenter in the computer science
department at the Karlruhe Institute
of Technology (KIT). DataCenterA con-
tains CompositeInfrastructure, which
relates to ServerCluster1, the DML label
for a computing cluster, and a separate
database server (DatabaseServer), which
relates to a separate computing infra-
structure (CompositeInfrastructure).
The cluster consists of five computa-
tional nodes (ComputeNodes) connected
by a 1-Gbit Ethernet LAN. Each node
runs the XenServer 5.5 as a hypervisor,
and two VMs run on top of each Xen-
Server. The database server also con-
nects to the cluster through four 1-Gbit
Ethernet connections.

The templates to specify the resource
configuration for various container
types are stored in the Container

TypeA_Specs repository. The repository
reduces modeling overhead by refer-
ring to templates instead of model-
ing each container’s details. For exam-
ple, ComputeNodeTemplate specifies the
hardware-resource configuration of
the computational nodes in the clus-
ter. Each node has two ActiveResource
Specification specifications, one for
each of its CPUs. Each CPU, in turn, has
four cores with 2.66 GHz and uses the
PROCESSOR_ SHARING scheduling policy.
XenServer5.5Template is a template for
the runtime environment (Runtime
Environment) of class HYPERVISOR. Finally,
VMTemplate specifies the configuration of
the VMs hosted by the XenServer.

The model instance in Figure 4
also describes the system’s adapta-
tion points: the number of a VM’s CPUs
(NrOfVcpus), the number of VM instances
(VmInstances), and the VM’s location
(VmHost). Corresponding to these vari-
able elements, the model instance con-
tains three adaptation points—one
ModelVariableConfigurationRange and
two ModelEntity ConfigurationRange—
the boundaries of which can be speci-
fied using the Object Constraint Lan-
guage (OCL; www.omg.org/spec/OCL).
Figure 5 shows the code for the two
ModelEntity ConfigurationRange points.

BUILDING MODELS IN DML
We have built a series of DML models
to enable online performance predic-
tion and model-based self-adaptation,
which is based on a modified control
loop. We also developed an adaptation
framework that takes a DML instance
as input and interprets the adapta-
tion process, applying the modeled

B
A C

Adaptation process

Adaptation points

Resource landscape

Deployment

<<Container>>
Node 1 <<Container>>

Node 2

<<Container>>
Node 3

 Degrees of freedom

Application architecture

ActionsTacticsStrategies

Usage
pro�le

<<InternalAction>>
ResourceDemandX

P13

P13

P13

P7

P7

P7

P1

s1

s1

s1 s2

s2

s2

s3

s3

s3

P1

P1

FIGURE 1. High-level structural overview of the Descartes Modeling Language (DML).
DML’s modular structure reflects the major aspects relevant for modeling IT system perfor-
mance and resource management, such as available resources, application architecture,
points at which the system can adapt at runtime, and how adaptation will occur.

 J U LY 2 0 1 6 57

changes on the application architec-
ture, resource landscape, and deploy-
ment models. Finally, we have con-
structed an open source tool chain
(http://descartes.tools) to support the
design of systems with self-aware

performance and resource manage-
ment capabilities. The tools include
editors and solvers for DML models, a
workload classification and forecast-
ing tool, and a library for resource-
demand estimation.

Online performance prediction
Online predictions include both the
effects of workload changes on system
performance and the expected impact
of adaptation tactics. The impact of a
workload change or an applied tactic

1..*

0..1belongsTo

consistsOf

template 0..1con�gSpec

ofContainer 0..1

*

*

containedIn

1

contains

0..*

parent

0..1

compositeInfrastructures

0..*

1

parent

computeNodes0..*

parent1

storageNodes

networkInfrastructure0..1

DistributedDataCenter ContainerTemplate

Container

RuntimeEnvironment

ComputeNodeStorageNode

DataCenter

CompositeInfrastructure

NetworkInfrastructure

Con�gurationSpeci�cation

FIGURE 2. Core of resource landscape metamodel. The root entity is the distributed datacenter (DistributedDataCenter), which consists
of one or more datacenters (DataCenter) and communicates using a network infrastructure (NetworkInfrastructure). Each DataCenter is
an instance of a CompositeInfrastructure, which contains a set of nodes (Containers) of two types (ComputeNode or StorageNode). Each
node contains a set of nested RuntimeEnvironment entities, which can be any infrastructure software that runs on a physical node, such as
a virtualization platform, an OS, or middleware. Orange diamonds denote “consists of” or “contains,” white arrowheads denote “is a,” and
open arrowheads denote “refers to” or “is associated with.”

Speci�cation

Event

Strategy

OverallGoal

Objective
objectives 1..*

triggering
Event

1

objective
1

tactics
1..*

strategies
1..*

WeightingFunction

1AdaptationProcess

AdaptationPlan

AbstractControlFlowElement

Action

ActionReference Start Stop Loop Branch

usedTactic
1

implemented
Plan

1

tactics
1..*

steps successor
predecessor

actions1..*
referredAction

branches1..2

body

1 cause
1

goal

weightingFunction

*

*

AdaptationPoint

1
adaptation
Point

speci�cations
1..*

weight : Double
WeightedTactic

Tactic

From adaptation
points metamodel

FIGURE 3. Core of the adaptation process metamodel. A strategy (orange section) captures the logical aspects of system adaptation,
defining the objective to be accomplished and some idea of how to achieve it. A tactic (light blue section) composes a set of actions (green
section), which capture the execution of an adaptation operation at the model level.

58 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

at the model level can be predicted by
using stochastic modeling and analy
sis to evaluate the adapted DML model
instance. One of DML’s novel aspects
is that it supports different abstrac
tion levels of service behavior as
well as different stochastic analy sis
 techniques—which, combined, allow
tradeoffs between prediction accu
racy and time to result (time from trig
gering the prediction to obtaining its
result). Our current DML version sup
ports an approximate analytical tech
nique based on meanvalue analysis
and two more detailed and accurate
solving techniques based on discrete
event simulation.4

Model-based self-adaptation
Both software engineers and the auto
nomic computing community use the
notion of a control, or feedback, loop
as an essential generic concept to build
adaptive and selfadaptive systems. The
control loop generally specifies four
phases—monitor, analyze, plan, and exe
cute (MAPE)—and can add “with knowl
edge” (MAPEK).6

We refined this generic control loop to
fit the requirements of our model based
adaptation approach. The modified loop,
shown in Figure 6, exploits DML’s online
performance prediction capabilities to
implement adaptation processes at the
model level.

Observe/reflect. The system collects
monitoring data (observations of the sys
tem and its environment), which is used
to extract, refine, calibrate, and continu
ously update the DML models, providing
the basis for online workload forecast
ing and performance prediction.

Detect/predict. Monitoring data and
online DML models are used to analyze
the current system state so as to detect
or predict performance problems,
such as SLA violations or inefficient
resource use. Proactive system adap
tation requires anticipating perfor
mance problems. To this end, we devel
oped an approach for self adaptive
workload classification and forecast
ing that uses techniques from timese
ries analysis.7 When a change in the
workload intensity is forecast, these
techniques are applied to the online
DML model using online prediction
techniques to predict the impact on the
system performance.

Plan/decide. The online DML models
are used to find an adequate solution
to a detected or predicted problem by
adapting the system at runtime. Three
steps are executed iteratively in this
phase: selection of an adaptation tactic
applied at the model level, prediction
of the tactic’s impact, and incremental

ComputeNode1

<<AdaptationPoints>>
VmSpeci�cAdaptationPoints

<<ComputingInfrastructure>>
 ComputeNodeTemplate

<<CompositeHardwareInfrastructure>>
ServerCluster1

<<DataCenter>>
DataCenterA

<<RuntimeEnvironment>>
 XenServer5.5Template
 ofClass = HYPERVISOR

<<RuntimeEnvironment>> VMTemplate
 ofClass = OS_VM

<<ActiveResourceSpeci�cation>>
processingResourceType = CPU
processingRate = 2.66 GHz
schedulingPolicy = PROCESSOR_SHARING
numberOfCores = 4

<<ActiveResourceSpeci�cation>>
processingResourceType = vCPU
processingRate = 2.66 GHz
schedulingPolicy = PROCESSOR_SHARING
numberOfCores = 2

<<ModelVariableCon�gurationRange>>
NrOfVcpus
minValue = 2
maxValue = 4

<<ModelEntityCon�gurationRange>>
VmInstances
variationType = PropertyRange
minValueConstraint = "minVmInstances"
maxValueConstraint = "maxVmInstances"

<<ModelEntityCon�gurationRange>>
VmHost
variationType = SetOfCon�gurations
possibleValues = "XenServer1,
XenServer2, ..."

<<RuntimeEnvironment>>
VM1

<<RuntimeEnvironment>>
VM2

<<RuntimeEnvironment>>
XenServer1

<<ActiveResourceSpeci�cation>>
processingResourceType = LAN
bandwidth = 1 Gbit

<<ActiveResourceSpeci�cation>>
processingResourceType = CPU
processingRate = 2.66 GHz
schedulingPolicy =
 PROCESSOR_SHARING
numberOfCores = 4

<<template>>

<<template>>

<<template>>

<<ContainerRepository>>
ContainerTypeA_Specs

<<ComputingInfrastructure>>
DatabaseServer

<<CustomCon�gurationSpeci�cation>>
non-functionalProperties =
XenServer5.5Con�gurationModel

<<ComputingInfrastructure>>

FIGURE 4. Sample resource landscape instance annotated with adaptation points. The container repository (<<ContainerRepository>>)
stores and refers to templates instead of modeling all the details of each container, which reduces modeling overhead. System adaptation
points include the number of a VM’s CPUs (NrOfVcpus), the number of VM instances (VmInstances), and the VM’s location (VmHost).

context ModelEntityConfigurationRange

inv minVmInstances:

 let similarContainers : Set(Container) = Container.allInstances()

 -> select(c | c.template = self.adaptableEntity)

 in similarContainers -> size() > 1;

context ModelEntityConfigurationRange

inv maxVmInstances:

 let similarContainers : Set(Container) = Container.allInstances()

 -> select(c | c.template = self.adaptableEntity)

 in similarContainers -> size() < 4;

FIGURE 5. Boundaries for two ModelEntityConfigurationRange adaptation points, which
are specified in the Object Constraint Language.

 J U LY 2 0 1 6 59

construction of an adaptation plan. The
three steps are driven by the adaptation
process model.

Act/adapt. The actual adaptation is
performed on the real system by exe-
cuting the adaptation actions that
have been successfully applied at the
model level.

EVALUATION RESULTS
One of the industrial case studies in
which we applied our approach was
to model a representative business
application (as defined by the SPEC-
jEnterprise 2010 benchmark). Figure 4
shows the resource landscape and the
adaptation points for the case study;
the application architecture model
instance can be seen at http://descartes
.tools/dml/examples. The adaptation
process is shown in Figure 7.

Efficiency gains
To demonstrate the efficiency gains of
our model-based system adaptation—a
proactive approach—we compared the
total amount of allocated resources
and the number of SLA violations when
applying our approach against con-
ventional static resource allocation—a
reactive approach—using data from an
industrial partner to ensure that the
workload was realistic.

Figure 8 shows the workload as the
number of processed transactions from
Monday to Sunday in 15-minute frames
(a total of 575 frames). We assumed that
the maximum workload would be eight
times the standard workload (8× work-
load intensity).

The static approach required 2,300
active nodes (575 time frames × 4 nodes).
The reactive approach, which performs
an adaptation action (to add or remove

a node) when an SLA’s response time is
violated or when a resource is not used
efficiently, performed 109 adaptation
actions and used 1,002 active nodes. The
number of active nodes decreased—44
percent of the resources used with the
static assignment—but at the cost of
109 SLA violations.

Our proactive approach, which
adjusts resource allocation to the pre-
dicted workload before violations
occur, used 1,040 active nodes, but had
only 43 SLA violations. Thus, although
our approach needs approximately 5
percent more resources than the reac-
tive approach, it can avoid approxi-
mately 60 percent of the SLA violations
for that approach.

Overhead analysis
To better understand efficiency, we
divided the overhead of our proactive
adaptation approach into overhead

for workload classification and fore-
casting and overhead for the adapta-
tion process. Our experiments showed
that workload classification and fore-
casting overhead ranged from seconds
to a few minutes, depending on the
data and configuration settings.5 The
adaptation process overhead is sig-
nificantly higher because it depends
on the number of iterations to find a
solution at the model level and model
performance− analysis overhead for
each iteration. The number of itera-
tions to find a solution is application
specific and relies on the adaptation-
process specification. In general,
the more clearly adaptation goals
are specified within the process, the
fewer iterations are required to find a
solution. The overhead for analyzing
model performance depends on the
techniques used for online performance
predictions and on model complexity.

Observe/re�ect

Online
DML

models

Real
system

Performance
metrics

Transaction
mix

Workload
intensity

Performance
prediction

(a) Select
adaptation

tactic

(b) Predict
performance

impact

<<extact>>
<<re�ne>>
<<calibrate>>
<<update>>

Execute
adaptaton

plan

Plan/decide

(c) Construct/update
adaptation plan

Act/adapt
Detect/predict

Bottleneck
Analysis

1

3

4
2

Data�ow

<<behavior>>

Phase number

Bottleneck
analysis

Workload
forecasting

FIGURE 6. Self-aware system adaptation loop in a real system. The system executes the
DML models that implement the adaptation plan, which includes system architecture, oper-
ational goals and policies, dynamic system state, and adaptation strategies and process.

60 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

RESEARCH FEATURE

Experiments revealed that the time
to obtain prediction results varied
between seconds and a few minutes in
the worst case.4,5 As demonstrated in
representative case studies, this is suf-
ficient for different scenarios such as
business information systems and com-
putationally intensive applications.5

Our DML-based framework to de-
sign self-aware IT systems has
advantages over trigger-based

and black-box modeling in that it con-
siders the individual effects and com-
plex interactions between application
workload profiles and resource conten-
tion at multiple levels and can describe

dynamic aspects like adaptation pro-
cesses at the model level. Descriptions
are easy to understand, can be machine
processed, and are reusable. Validation
in several case studies shows that sig-
nificant resource- efficiency gains are
possible without sacrificing SLA perfor-
mance requirements.

<<Objective>>
OptimizeResourceEf�ciency

<<OverallGoal>>
"Maintain SLAs of all
services while using
resources ef�ciently"

hasObjectives hasObjectives

<<MetricType>>
OverallUtilization

<<Speci�cation>>
< 500ms <<Speci�cation>>

> 60%

<<WeightedTactic>>
AddResources
weight = 1.0

<<Loop>>
iterationCount = iterations

<<Action>>
AddVM

FALSE

TRUE
<<Action>>

AddVCPU

allServersAtMaxCap

<<InputParameter>>
name = "iterations"
type = Integer

<<WeightedTactic>>
RemoveResources
weight = 1.0

<<Objective>>
MaintainSLAs

<<MetricType>>
90%_Quantile_of_rtx

FALSE

TRUE

<<Action>>
MigrateVMserverAtMinCapExists

<<WeightedTactic>>
MigrateVM
weight = 0.5

<<Adaptation Plan>>

<<Adaptation Plan>>
<<Adaptation Plan>>

<<Event>>
Scheduled

Optimization

<<Strategy>>
ResolveBottleneck

<<Strategy>>
ReduceResources

<<Event>>
SlaViolated

objective objective

<<uses>>

<<uses>> <<uses>>

FIGURE 7. A schematic representation of the adaptation process for the case study. The overall objective is to maintain service-level agree-
ments (SLAs) while using resources efficiently, which branches to MaintainSLAs (left) and OptimizeResourceEfficiency (right), each of
which has an attendant strategy to either increase resources (ResolveBottleneck) or decrease them (ReduceResources). Each strategy has
corresponding tactics and actions.

25
0,

00
00

5
6

7
8Workload

Forecast

0
50

,0
00

0
15

0,
00

00
Tr

an
sa

ct
io

ns
 p

er
 1

5
m

in
.

Mon.−00:00 Wed.−23:15 Sat.−23:00

0
1

2
3

4
W

or
kl

oa
d

in
te

ns
ity

 fa
ct

or

(a)

Ac
tiv

e
no

de
s

1
2

3
4

Mon.−00:00 Wed.−23:15 Sat.−23:00
(b)

FIGURE 8. Workload intensity as related to node use in the case study. (a) Forecast versus actual workload intensity for four nodes over
time. Transactions are in 15-minute time frames for a total of 575 possible time frames over six days. (b) Same timeline with three pos-
sible node-allocation approaches. The peaks and valleys represent node use. In the static approach (red horizontal line), all nodes must be
active for all 575 time frames. The reactive (green lines) and proactive (blue lines) approaches add and remove nodes more efficiently to
cope with workload intensity, but the proactive approach avoids many more SLA violations.

J U LY 2 0 1 6 61

REFERENCES
1. S. Kounev et al., “Model-Driven Algo-

rithms and Architectures for Self-
Aware Computing Systems,” Dagstuhl
Reports, vol. 5, no. 1, 2015; http://drops
.dagstuhl.de/opus/volltexte/2015/5038.

2. G. Blair, N. Bencomo, and R.B. France,
“Models@Run.time,” Computer, vol. 42,
no. 10, 2009, pp. 22–27.

3. S. Kounev, F. Brosig, and N. Huber,
The Descartes Modeling Language,
tech. report, Univ. of Würzburg, 2014;
https://opus.bibliothek.uni
-wuerzburg.de/frontdoor/index
/index/docId/10488.

4. F. Brosig, “Architecture-Level Soft-
ware Performance Models for Online
Performance Prediction,” PhD dis-
sertation, Computer Science Dept.,
Karlsruhe Inst. of Technology, 2014;
http://nbn-resolving.org/urn:nbn
:de:swb:90-435372.

5. N. Huber, “Autonomic Perfor-
mance-Aware Resource Management
in Dynamic IT Service Infrastruc-
tures,” PhD dissertation, Computer
Science Dept., Karlsruhe Inst. of Tech-
nology, 2014; http://nbn-resolving
.org/urn:nbn:de:swb:90-432462.

6. J. Kephart and D. Chess, “The Vision
of Autonomic Computing,” Computer,
vol. 36, no. 1, 2003, pp. 41–50.

7. N.R. Herbst et al., “Self-Adaptive
Workload Classi� cation and Forecast-
ing for Proactive Resource Provision-
ing,” Concurrency and Computation—
Practice and Experience, vol. 26, no. 12,
2014, pp. 2053–2078.

ABOUT THE AUTHORS

SAMUEL KOUNEV is a professor and head of the Chair of Software Engineering

at the University of Würzburg. His research interests include software systems’

performance and dependability, autonomic computing, and systems benchmark-

ing. Kounev received a PhD in computer science from the Technical University

of Darmstadt. He is a member of ACM, IEEE, and the German Computer Science

Society. Contact him at skounev@acm.org.

NIKOLAUS HUBER is a software architect at CarGarantie Versicherungs AG and

an associate researcher in the Chair of Software Engineering at the University of

Würzburg. He received a PhD in computer science from the Karlsruhe Institute of

Technology (KIT). Contact him at nikolaus.huber@uni-wuerzburg.de.

FABIAN BROSIG is a lead developer at Minodes GmbH and an associate

researcher in the Chair of Software Engineering at the University of Würzburg.

His research interests include software performance engineering with an empha-

sis on runtime performance and resource management. Brosig received a PhD

in computer science from KIT. Contact him at fabian.brosig@uni-wuerzburg.com.

XIAOYUN ZHU is a senior architect at Futurewei Technologies. Her research

interests include the application of control theory, optimization, and statistical

learning to the automation of IT systems and services management. Zhu received

a PhD in electrical engineering from Caltech. She is a member of ACM, IEEE, and

USENIX. Contact her at xiaoyun.zhu@huawei.com.

Selected CS articles and
columns are also available for
free at http://ComputingNow
.computer.org.

From the analytical engine to the
supercomputer, from Pascal to von
Neumann—the IEEE Annals of the History
of Computing covers the breadth of
computer history. The quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history
activities, and international conferences.

www.computer.org/annals

