
Platform-as-a-Service Architecture for Performance
Isolated Multi-Tenant Applications

Rouven Krebs
SAP AG

69190 Walldorf, Germany
rouven.krebs@sap.com

Manuel Loesch
FZI Research Center for Information Technology

76131 Karlsruhe, Germany
loesch@fzi.de

Samuel Kounev
Julius-Maximilians-University Wuerzburg

97074 Wuerzburg, Germany
samuel.kounev@uni-wuerzburg.de

Abstract—Software-as-a-Service (SaaS) often shares one single
application instance among different tenants to reduce costs.
However, sharing potentially leads to undesired influence from
one tenant onto the performance observed by the others. This
is a significant problem as performance is one of the major
obstacles for cloud customers. The application does intentionally
not manage hardware resources, and the operating system is not
aware of application level entities like tenants which makes the
performance control a challenge. In case the SaaS is hosted on a
Platform-as-a-Service (PaaS), the SaaS developer usually wants to
control performance-related issues according to individual needs,
and available information is even more limited. Thus, it is difficult
to control the performance of different tenants to keep them
isolated. Existing work focuses on concrete methods to provide
performance isolation in systems where the whole stack is under
control. In this paper we present a concrete PaaS enhancement
which enables application developers to realize isolation methods
for their hosted SaaS application. In a case study we evaluated
the applicability and effectiveness of the enhancement in different
environments.

I. INTRODUCTION

Through economies of scale, sharing of fixed costs, over-
commitment and leveraging of workload fluctuations, it is
possible to decrease the overall costs for cloud providers
and consumer. Software-as-a-Service (SaaS) describes the pro-
visioning of applications via the cloud. A SaaS may run
on a Platform-as-a-Service (PaaS) which provides a runtime
environment for applications. Existing PaaS add value through
additional services, e.g., regarding persistence or authentica-
tion.

For economic reasons, in SaaS scenarios, one single ap-
plication instance is often shared between different tenants
[1] by providing every tenant a dedicated and isolated view
onto the application. A tenant is defined as a group of users
sharing the same view on an application. This view includes
the data they access, the configuration, the user management,
particular functionality and related non-functional properties
like performance [2], [3]. Several PaaS support the develop-
ment of Multi-tenant Applications (MTA) by providing multi-
tenancy enabled services, like tenant isolated persistence (e.g.,
Google App Engine1). Gartner assess the importance of the
multi-tenancy cloud provisioning models as important for the
near future [4], [1]. Further, they see performance isolation as
one challenge to be solved.

1https://developers.google.com/appengine/docs/java/multitenancy

The importance of reliable performance in Cloud environ-
ments was shown in [5], and is a major research issue [6], [7].
Especially in MTAs one tenant can significantly decreases the
overall performance due to the tight coupling. In [7], the need
for novel middleware architectures to ensure performance-
related SLAs is emphasized.

A system is performance-isolated, if tenants working within
their SLA-defined quotas observe a performance that is within
their defined SLA guarantees, even in cases other tenants
exceed their quotas [2]. The SLA guarantee usually refers to
response time, and the quota to throughput or arrival rate. In
[2] it is also discussed that elasticity does not solve this issue.

In order to offer performance isolation in MTAs, various
challenges have to be solved. Layer discrepancy describes that
the resource access is intentionally realized in lower system
layers and tenant information is intentionally handled at the
application/middleware layer. Furthermore, cloud systems are
usually over-committed which results in a high utilization and
little buffer capacity. Finally, a solution must be able to handle
several application instances in a distributed setup.

Existing work concerning performance isolation ap-
proaches rather focuses on concrete algorithms/methods in-
stead on architectural aspects. The solutions are developed
for specific applications and scenarios to ensure a specific
behaviour. One SaaS provider might prefer a behaviour where
requests from a tenant exceeding its quota are rejected while
another SaaS provider might prefer to delay the request (e.g.,
[2]). Such decisions might depend on the SaaS provider’s
individual specification or on scenario attributes like the work-
load model (e.g., open- vs. closed-workload). Application-
specific characteristics are another point of interest. In case it
is possible to estimate resource demands for incoming request,
an approach based on indirect resource control [8] is feasible,
while in other situation a feedback control loop that is based
on the observed QoS might be appropriate [9].

In case a MTA is hosted on a PaaS, the platform provider
has to provide an environment for the SaaS developer in which
he can deploy the application-specific isolation algorithms. A
development of such features solely based on traditional PaaS
runtime environments is not possible, as the necessary access
to runtime information [10] and the requests process flow (e.g.,
method from [9], [11]) is limited.

Our contribution is a framework and general approach
which can be used by PaaS providers to ensure performance
isolation for hosted applications, while supporting a plug-in



mechanism to add application-specific algorithms. In prepa-
ration for this, we evaluated the general requirements such
a system has to fulfil, which is a contribution in itself. In a
case study we implemented four algorithms in three platform
environments to validate the usability and effectiveness of the
solution. With this work, we achieved to close the gap between
the current work focusing on algorithms and their applicability
in a PaaS environment.

The remainder of this paper is structured as follows.
Section 2 discusses related work and foundations. In Section
3, system requirements are elaborated. The architecture of the
system is presented in Section 4. In Section 5 we discuss the
important design decisions, and in Section 6, we present a case
study applying the architecture. Finally, Section 7 concludes
the paper.

II. RELATED WORK

The relevant related work can be separated in three parts.
(1) General architectural concerns of MTAs which influences
our work. (2) Performance isolation in the context of multi-
tenancy. (3) Performance control from other contexts.

Koziolek [12] [13] analyzed existing MTAs and described
the essential requirements for a multi-tenant software architec-
ture. Based on this, Koziolek proposed an architectural style
for multi-tenant software applications following the three-tier
web application model where a client communicates via HTTP
with the application tier. The application tier consists of a
load balancer and application servers using a shared database.
In [14], an overview of architectural concerns in MTAs and
their mutual influences including performance isolation is
given. With regards to performance isolation three aspect are
of importance. (1) Tenant affinity, which describes how to
forward a tenant’s request to the present processing nodes.
(2) The chosen type of data isolation (separate database vs.
shared table). (3) Customizability, which may lead to various
resource demands per tenant. Both papers provide foundations
how MTAs are build and show relevant concerns. However,
they do not provide measures for performance isolation.

Zhang [15] and Fehling [16] provide SLA-aware heuristics
for the placement of tenants onto a set of application instances.
However, this approach only reduces mutual performance
influences between isolated groups and will fail if workloads
change unforeseenly. Guo et al. [17], among others, discuss
three basic ideas to ensure performance isolation. (1) Tenant
placement similar to [15], [16]. (2) Static or dynamic request
admission control to limit the amount of competing requests
for each tenant. (3) Fixed resource reservation for each tenant.
However, the authors mention that resource reservation is
complicated, and a specific method or architecture for request
admission control is not provided. Cheng et al. [18] present an
approach based on SLA monitoring. However, in the case of an
upcoming SLA violation, their approach aims at renegotiating
SLAs instead maintaining them.

In [11], the ratio of the mean arrival rate and mean service
rate are observed to detect performance anomalies. Further
the aggressive tenants, who consume the most resources, are
identified in order to apply an adoption strategy of the systems
request flow. Lin et al. [9] address regulating response times
to provide different QoS by use of a feedback-control loop.

The regulator uses the average response times to apply an ad-
mission control. Further, it uses the difference in service levels
agreements between tenants to apply different thread priorities
to them. In [2] four performance isolation mechanisms are
evaluated. One approach selects requests from different tenant
queues in a round-robin style. Others provide an artificial
delay, a black list or separate thread pools. It is shown that
these approaches enforce performance isolation and an efficient
resource usage within a limited range of situations. To fully
leverage their potential, parameters of the approaches (e.g.,
queue priorities) have to be adjusted dynamically. Wang et al.
[8] use a Kalman filter to observe the resource consumption
of various tenants. In a controller it is checked whether a
tenant has negative impact onto the guaranteed resources of the
others. If this is the case, requests of this tenant are rejected.
The prior work [8], [2], [9], [11] focuses on algorithms and
lacks concrete descriptions of architectures and considerations
of how to implement these approaches.

Feedback control loops have been successfully applied
to guarantee target response times of web applications [19],
[20]. In [21] a desired utilization value for a web server was
controlled by adjusting the keep-alive time and the number of
maximum concurrent requests served. In [22] a control loop is
used to decrease performance influences between independent
web sites that are hosted on the same web server by reducing
the quality of the presentation.

The most promising existing approaches to regulate per-
formance are based on a feedback-driven request admission
control loop. However, all approaches lack a sufficient descrip-
tion of architectural issues. The few architectural papers do not
consider performance isolation.

III. REQUIREMENTS

This section provides an overview of requirements we iden-
tified for a system which enhances a PaaS to support perfor-
mance isolated MTAs.

A. Required Functionality

Enforcing performance isolation between different tenants is a
major task of the system. Different tenants may have different
needs and different willingness to pay for performance. Hence,
the solution should be able to provide QoS differentiation.
Over-commitment increases the economic efficiency of SaaS
offerings. If every tenant is using his full quota and thus
the system runs in an overloaded situation, the framework
must keep a valid state. Since workloads from tenants are
characterized by fluctuations, the solution must be able to
handle such variations.

B. Isolation Method Categories

In [10] we introduced four classes of performance isolation
approaches based on request admission control. All have
specific pros and cons, depending on the application scenario
and defined requirements. In the following, we present a brief
analysis of the relevant aspects. Table I lists the informational
requirements for each category.

Static approaches use static rules/algorithms with constant
parametrization for the decision which request is allowed to



TABLE I. INFORMATIONAL REQUIREMENTS FOR DIFFERENT
CATEGORIES

Static Feedback-
based

Resource
Demand

Res. Demand +
Request Types

SLAs yes yes yes yes
Resp. Time no per tenant per tenant per request type
Throughput no per tenant per tenant per request type
Utilization no no yes yes
Demand no no per tenant per request type

pass through or being delayed before it is handled by the
MTA. The parameters are derived from the SLAs for a tenant.
Static approaches were already used in the field of performance
isolation (e.g., [2]).

The feedback-based approaches use QoS runtime informa-
tion (response times, throughputs) to adjust the parametrization
of the admission control. Since the SLA guarantees are com-
pared to the current QoS and load onto the system, a better
isolation with better utilization can be achieve. Lin et al. [9]
present an example of these approaches.

Resource Demand Based Approaches consider the actual
resources used per tenant. Based on the difference between
the observed and guaranteed quota, the admission control is
adjusted to guarantee a fair resource share. Resource Demand
Estimation (RDE) methods [23] can be applied to determine
the resource demands for each tenant and request type by
leveraging additional information (cf. Table I). Examples of
this approach are Lin et al. [9] and Wang et al. [8].

Detailed knowledge of a request-type specific demand
allows fine grained admission control focusing on a particular
resource bottleneck. The resource demand for the same oper-
ation type might vary over time (e.g., increasing DB size) and
for tenants (e.g., divergent configurations, DB size). Respective
methods require measurements on a request type basis as it is
done in [8].

C. Generic Solution

The system should support various performance isolation
approaches as presented in Section III-B since the preferred
approach strongly depends on the application deployed at the
platform. The concrete application-specific isolation algorithm
has to be decoupled from the generic parts that are common
for all algorithms, and from technical details. The proposed
architecture should be portable and thus not being bound to a
specific PaaS, middleware or operating system.

D. Scalability Issues

In MTAs, horizontal scaling is a common pattern. A load
balancer represents the endpoint for the tenants and forwards
requests to the instances [12], [13]. Tenant affinity describes
how requests of one tenant can be distributed over multiple
instances. Session affinity describes the distribution of request
of one user to application instances. In [14], different kinds
of tenant affinity (server-affine, non-affine, cluster-affine) and
session affinity (sticky sessions, non-sticky sessions) are pre-
sented with their application scenario dependent pros and cons.
Some applications may support to dynamically add or remove
instances in order to address load variations. This refers to the
term elasticity. Although, it is not the goal of the framework

to enable elasticity, it must be able to deal with such a load
balancing environment.

E. Performance Overhead and Application Scenario

We focus on interactive web applications. Hence, the delay
which is added to a user’s request must be low. Furthermore,
the communication between different system entities should be
low.

IV. ARCHITECTURE

In this Section we present the system, while addressing the
requirements from the previous Section.

A. Overall Concept

In our former work [2], we demonstrated that approaches based
on request admission control are promising to influence the
performance a tenant perceives. A request admission control
delays or even rejects requests. Hence the consumption of
resources as well as the perceived response times can be
controlled.

Due to different kinds of affinity, the load might be
unequally distributed. Thus the admission control has to be
specific for each instance in a cluster. The discussion pre-
sented in [24] outlines that a central management of request
processing information is needed to support all kinds of
affinity (Figure 1). Hence, the proposed Performance Isolation
Framework (PIF) architecture splits the functionality in two
parts. First, the application-instance specific request admission
control (Execution Point) which might be a separate proxy, or
part of the application server’s request preprocessing pipeline.
Its behaviour follows a specific strategy. Second, the PIF core
which contains the application specific isolation algorithm. It
periodically configures the Execution Point’s strategy with the
policy.

Fig. 1. Overall Approach Based on Admission Control

A strategy is a parametrized algorithm that defines how to
admit, reject or delay requests from a certain tenant, and thus
realizes a request scheduling. An example for a strategy is a
tenant-aware Weighted Round Robin mechanism (WRR) with
own queues and weights for each tenant.

Policies are used to adjust the strategy. They are fragments
containing the new configuration, which are exchanged be-
tween the PIF core and the Execution Point. In case of a WRR,
a policy may set priorities per tenant-specific queue.



B. Structural Overview

An overview covering all entities in the system is depicted in
Figure 2. It consists of seven major system entities:

A Tenant consisting of multiple users sending requests
which are distributed by the Load Balancer while considering
a potential tenant or session affinity. The Execution Point
is responsible for the request admission control based on
a exchangeable strategy. The actual Performance Isolation
Framework Core maintains state about all data that is required
for the performance isolation mechanism, and is responsible
for the creation of Execution Point specific policies. The
Application Instances run the application provider’s business
logic and process requests. A (Shared) Database is responsible
for data persistence of the application. In cloud systems an
Elasticity Manager usually realizes horizontal scalability by
adding or removing application instances at runtime.

C. Detailed Component Description

This section covers the detailed descriptions of the components
depicted in Figure 2 in detail.

Fig. 2. Architecture of the Performance Isolation Framework

1) Execution Point: The component is responsible for the
request admission control. It accepts, refuses or delays certain
incoming request in order to achieve performance isolation and
a fair performance distribution. In case of static approaches,
the policy is updated only once at the beginning based on the
existing SLAs, affinity and allocation of tenants onto nodes. At
start-up/shutdown, this component registers/unregisters itself at
the Policy Controller.

2) Policy Controller/Generator: The Policy Controller up-
dates the policy forwarded to the Execution Point’s strategy. It
maintains state about all Execution Points and manages the
communication with them. It further allows to (un)register

Execution Points at runtime. The Policy Generator is an appli-
cation scenario specific plug-in component. The Information
Collector periodically triggers the Policy Controller, which
iteratively calls the Policy Generator to create policies for each
Execution Point. An individual policy is required as affinities
or variable performance of the application instances can lead
to different performance.

Policies created by the Policy Generator are specific for an
Execution Point’s strategy, they are both application scenario
specific plugins and tightly coupled. For example, a strategy
might require delay per tenant, or a set of priorities. Therefore,
the interface between the Execution Point strategy and the
Policy Controller defines meta information (e.g., tenant IDs)
and a generic part for the specific policy data.

3) Monitor Server: The Monitor Server receives runtime
information from different probes and persists it with the
Data Maintenance. The probes push data to the Monitor
Server component in pre-configured time frames. The two most
important probes are listed below.

Execution Point Probe: Reports the overall response times,
the processing time of a requests after admission, discarded
requests and throughputs. The granularity (per tenant, per re-
quest type, aggregation interval) can be configured depending
on the used isolation methods.

Application Server Probe & (Shared) Database Probe: For
RDE approaches the resource demand is usually calculated.
Therefore the utilizations of the respective resources are mea-
sured. The required granularity depends on the configuration
and used isolation method [24].

4) Information Collector: The Information Collector man-
ages the overall program flow and collects information from
multiple components which are forwarded to the Policy Con-
troller. Time intervals like the policy update as well as the order
in which components are called, is managed by this compo-
nent. The Information Collector allows that single components
can easily be exchanged and replaced.

5) SLA Checker, Aggressiveness Rater and Efficiency
Checker: The SLA Checker is responsible for delivering the
compliance of the SLA per tenant and application instance
as well as the overall compliance. The tenant- and node-
individual evaluation is needed due to the aforementioned
fluctuations of response times caused by affinity. By default,
the SLA Checker returns the deviation of the average response
time to the response time guaranteed in per cent for the entity
under investigation.

The Aggressiveness Rater component reports the aggres-
siveness for all tenants based on the quotas guaranteed and
the quota used. To optimize the policies, the distribution of
the requests among all application instances is also provided.

The Efficiency Checker calculates the efficiency of the cur-
rent policy. Different understandings of efficiency are possible.
One metric for efficiency is the ratio between the current
throughput and the maximum throughput a system could
achieve. This enables algorithms to increase the throughput for
a tenant, which already exceeds its quota to keep the overall
resource utilization in a good state.

The calculation rules for all three component discussed in
this section are realized as plugins and can be easily replaced



by application scenario specific variants such as an additional
outlier filter for the SLA checker.

6) Tenant Allocation Observer: In case of an affine be-
haviour of tenants, it identifies the set of tenants that are
influencing each other because they share the same application
instance. Without affinities, this component is not required.

7) Elasticity Manager: The Elasticity Manager usually al-
ready exists and must be adapted to start/modify an Execution
Point for each Application Instance that is added.

8) Resource Utilization Observer and Resource Demand
Estimator: The Resource Utilization Observer delivers average
resource utilization information for a certain time frame. The
utilization per tenant is derived by statistical methods [23].
This component is required for the most resource demand
estimation techniques.

The Resource Demand Estimator delivers the estimated
resource demand per tenant, and the estimated demands per
request type. Whereby the same request type of different
tenants is considered separately. Details on how to estimate
resource demands on a tenants basis are found in [23].

D. Usage by Isolation Approaches

Based on Section III-B, this Section gives an overview about
the interaction of the components. Static Approaches use static
strategies in the Execution Point. Since no performance related
runtime information is leveraged, the policy is generated only
once when the amount of tenants registered in the system
changes. In case of Feedback-based Approaches the Informa-
tion Collector collects the required data from the SLA Checker,
Aggressiveness Rater and the Tenant Allocation Observer and
forwards them to the Policy Controller. The Resource Demand
based Approaches make additional use of the Resource De-
mand Estimator’s information. The policy generation algorithm
(Policy Generator) determines a fair amount of resources that
is entitled to each tenant and derives a suitable policy. Request-
type based Resource Demand Approaches leverage knowledge
of the current resource utilization delivered by the Resource
Utilization Observer. This way, a fine-grained and bottleneck-
aware prioritization of request types is possible.

E. Interfaces for Plugins

A concrete performance isolation approach consists of a (1) a
strategy, and (2) a strategy-specific isolation algorithm referred
to as Policy Generator. Both are realized as plug-in and hence
the proposed architecture allows the application developer to
realize performance isolation with regards to his specific needs
by solely implementing the two representative interfaces. The
framework periodically starts the generation of a policy for a
certain Execution Point based on the preprocessed information.
The Strategy has to implement two methods. The first is called
to add an incoming request. The request object transferred is
framework-specific and provides meta data (e.g., tenant ID,
request type). The second method is called when a new request
can be processed (i.e., when a server thread become free) and
has to return a request.

V. DESIGN DECISSIONS

In this section we discuss various design and trade-off deci-
sions taken to fulfil the requirements elaborated in Section III.

A. Isolation Capabilities

High degree of isolation vs. performance overhead: The use of
a policy which sets priorities for a certain time-frame results
in a lower accuracy since the workload may change in the
meantime. Contrary, per-request calculation which makes use
of the maintained data would produce a high overhead. Such
per-request calculations may make sense for batch jobs but not
for interactive scenarios. Therefore, the execution point which
implements a fast working strategy to control the requests and
complex computations are done asynchronously in the policy
generator.

Data aggregation in the monitoring process further reduces
the accuracy and adoption speed. However, due to the vast
amount of requests, relinquishing the use of an asynchronous
computation of the policy and data aggregation are not an
alternative. It is worth to mention, that monitoring intervals
and policy update intervals can be adjusted to increase the
adaptation speed.

QoS differentiation & over-commitment: The periodically
triggered policy generation uses information about the tenants’
aggressiveness and response time compliances. Since these
information are rated in relation to the values guaranteed in
the SLAs, QoS differentiation can be realized by comparing
percentage values when weighting tenants. For the same rea-
son, the handling of over-commitment is no problem.

B. Generic Solution

Suitability for various isolation approaches: The proposed
architecture provides components and measures to deliver all
information required by the mechanisms identified in Section
III-B.

Plug-in mechanism for isolation algorithm: By delivering
all relevant data to the Policy Controller which maintains state
about all Execution Points and abstracts the technical commu-
nication, the policy generation algorithm (Policy Generator)
can easily be implemented and replaced. The Execution Points’
strategy is decoupled from the technological details and can be
easily replaced/implemented. If needed, individual implemen-
tations for the SLA/Efficiency Checker and the Aggressiveness
Rater are possible.

Portability between different system environments: Load
balancers might not support to control/delay requests based
on strategies, hence they are implemented in the Execution
Points. Therefore, the Execution Points are deployed together
with the MTA instance. Furthermore, the use of OS-dependent
interfaces required by the framework is minimized if RDE
approaches that are independent of resource measurements are
used.

C. Scalability Issues

Once a new Application Instance with the respective Execution
Point is added, the Execution Point registers itself at the Policy
Controller. With the next policy generation, respective policies
can be created.

The amount of policies generated increases linear with
the amount of Application Instances and the amount of data



that has to be processed by the policy generation algorithm
increases linear with the amount of tenants.

In case of affinity, the proposed framework is able to deal
with unequal performance distributions as input parameters
by providing instance-specific data for the policy generator.
The tenant affinity and existing allocation are analyzed by the
Tenant Allocation Observer. Hence, the policy generator can
limit its admission decisions to relevant tenants.

VI. CASE STUDIES

This section presents a concrete implementation of the frame-
work. We focus on two major goals. G1 is to show that the pro-
posed framework can be used to enhance PaaS environments.
G2 is to show the framework’s capability to support various
isolation algorithms from different categories in a wide range
of scenarios. As additional goal, we estimate the additional
overhead of the approach (G3). In total we investigated the
applicability within three platforms, and present four concrete
isolation methods of different categories (cf. Section III-B)
whereby the presentation primarily focuses on the results
gathered in the most complex setups. Since we refer to existing
isolation methods, we do not discuss the methods itself in
detail.

A. Implementation and System Environments

In environment E1 we realized an admission control in a
simulated MTA described in [2]. In another environment E2 a
separate HTTP proxy was implemented to realize the request
admission control for a Tomcat instance serving a single
servlet. The third environment E3 for our detailed discussion
was based on the SAP Hana Cloud Platform. The different
components of our framework were implemented in Java. The
plugins are specified by a configuration file loaded at the
startup of the application. At the moment, we provide three dif-
ferent implementations of the Execution Point. First, a Valve2

as an integral part of the SAP Hana Cloud Runtime Container
referred to as Lean Java Server (LJS). Second, a standalone
proxy application which enables a generic usage for different
runtime environments. Third, as an integral component of a
simulation used to simulate multi-tenant applications already
used in [2]. The Resource Demand Estimator’s implementation
follows the approach described in [23]. The communication
between the probes, central parts of the PIF and the Execution
Points was REST based.

Figure 3 presents the experiment setup in detail. The
Controller Host is a standard PC hosting the PIF Core and
the Load Driver Client which controls the experiment’s load.
The Load Driver Server and the Application Server have 16x2
GHz CPUs, 16 GB of memory and run on SLES11 SP2.
The Load Driver Server hosts the load driver for an enhanced
version of the widely accepted TPC-W [25] benchmark which
was adapted to support multi-tenancy (MT TPC-W) [26]. The
Application Server hosts several XEN-virtualized VMs with
one pinned processing unit and 2 GB memory. Each VM hosts
the LJS which runs the MT TPC-W application simulating an
online book store. A MySQL DB was directly deployed in
the VM. Further, the CPU utilization of the VM, the response

2http://tomcat.apache.org/tomcat-7.0-doc/config/valve.html

Fig. 3. System Environment E3

times and the throughputs per request type and tenant were
measured.

B. Results

1) Static Approach: In E1, a Round Robin algorithm was
used for admission control. We run an over-committed scenario
in which one tenant exceeding the reference throughput Xre f
(disruptive tenant) and nine other tenants (abiding tenants)
shared one system. The actual average response time for all
abiding tenants increased 3% at a load increase of the factor
10 for the disruptive.

2) Feedback-based Approach: In this Section we describe
two cases studies based on two different scenarios.

a) SAP Hana Cloud: We defined the maximum average
response time for a time frame of 2 minutes to be Rre f =
2500ms at a maximum throughput Xre f = 3100 requests/minute
for each tenant. A feedback-based approach according to the
definition described in Section III-B was implemented. The
admission strategy is based on a Weighted Round Robin
scheduler. The controller plugin uses two Proportional Integral
(PI) controllers following our previous work [27]. One for sit-
uations where SLA violations exist, the other when the system
runs inefficiently. The definition of efficiency we implemented
(in the Efficiency Checker) describes how well the system
guarantees Rre f for tenants exceeding Xre f when for other
tenants Rre f is not violated. We used the environment described
in Figure 3 with two VMs in an non-affine and non-sticky
configuration with 100 available threads.

Fig. 4. Performance Isolation with Feedback-based Approach

In Figure 4 both tenants started with 500 users. After
this initial ramp up phase 500 users were added to the
disruptive tenant to make it exceeding Xre f . At 600 seconds
all users where started. Due to damping in the controllers



Fig. 5. Efficiency with Feedback-based Approach

implementation and delay in the monitoring it took around
300 seconds before the weights were adjusted to provide
Rre f for the abiding tenant whereas the disruptive tenant has
significantly higher response times.

In Figure 5 the disruptive tenant starts with 1000 users and
the abiding one with 500 users. The throughput for the abiding
tenant was below Xre f , and Rre f did not exceed the SLA. At the
beginning of the observation the throughput of the disruptive
tenant was reduced by the Policy Generator to maintain Rre f
for the abiding tenant. At 1200 seconds the load of the abiding
tenant was immediately reduced by 300 users. Thus, the overall
system utilization was reduced; hence the resources became
free which could be used by the disruptive tenant without
violating the isolation to increase the efficiency. Consequently,
the throughput for the disruptive tenant increased between
1210 and 1270 seconds. Besides the new generated policies the
fast reaction was a result of the admission control scheduler
as discussed in [27].

b) Tomcat and Proxy: The admission control in envi-
ronment E2 was based on a black list [2]. When a tenant
is blacklisted, all its requests are rejected. Tenants on the
white list share a single FIFO queue. A rule-based controller
observed the SLAs of the last period and put a disruptive tenant
onto the blacklist if SLAs of the others were violated. Due
to the binary behaviour, the observed response times of this
approach were oscillating.

3) Resource Demand based Approach: This case study
was again based on environment E3. Resource Demand based
Approaches isolate resources and consequently the response
times and throughputs which is the actual goal of our system.
However, the mapping of a particular response time to resource
requirements is still a challenge in itself [28]. The implemented
algorithm uses a CPU demand estimation approach and the
observed utilizations, in order to compare a tenant’s resource
utilization with a pre-configured one. We presented the details
in [23]. Based on this comparison, the priority for tenants is
continuously derived on a short term basis.

We used the environment E3 with one application server,
100 threads and a smaller database volume compared to the
previous experiments. Each tenant was configured to use max.
50% of the CPU. In Fig. 6, till t=900 s both tenants had 1000
users and the same response times. Afterwards we added 1000
users to the disruptive tenant.

In this scenario the database significantly increases its
volume due to the active users, resulting in an increasing
response time. The system continuously updated the resource

Fig. 6. Performance Isolation with Resource Control

demand estimates. The abiding tenant’s response time is only
slightly influenced by the disruptive tenant.

Fig. 7. Differentiation of Tenants with Resource Control

The next experiment had two tenants with 1200 users
each. One of the tenants was using a small-sized database,
while the other used a database which was around 10 times
larger and consequently higher demands occurred. Both tenants
were configured to use 50% of the CPU resource. Figure 7
shows that the tenant with the large-sized database has higher
response times due to the limited resources. The observed
relative error of the resource allocation was always below 9%.

C. General Observations and Goals

It was easily possible to integrate different isolation methods
into our enhanced PaaS. We always used the same core system
without any adaptation. In the valve-based implementation of
the admission controller, the overall increase of response time
and resource utilization compared to a non-isolated version
was negligible. In the proxy version, we observed an increase
that is typical for web proxies. The utilization of the frame-
work’s core depends on the components, the policy generators
and the update intervals. However, the average CPU utilization
usually stayed clearly below 15%.

To achieve G1 the architecture was implemented as an
enhancement of the SAP Hana Cloud Platform including all
monitoring capabilities. By implementing additional Execution
Points we showed the architecture’s applicability for other
PaaS environments. To answer G2 we implemented different
Policy Generators and Execution Point Strategies. For the
first we chose static, feedback (proportional integral and rule
based) and RDE based ones. For the latter, Round Robin,
Weighted Round Robin and Blacklist. Thus, various scenario-
specific isolation methods were proofed to work within this
architecture. The overhead of the system (G3) was shown
to be acceptable due to aggregation and asynchronous policy
generation.



VII. CONCLUSION

Software-as-a-Service (SaaS) usually shares one single appli-
cation instance between different tenants to decrease costs
(MTA). However, the tight coupling of tenants and the ap-
plication’s intentioned abstraction from the resource control
makes performance isolation a challenge. Several request ad-
mission control based methods to ensure performance isolation
exist. These are specific for concrete scenarios depending on
the application’s attributes, workloads and specifications of
the application provider. Additionally, related work does not
discuss architectural aspects. In case a MTA is hosted on a
Platform-as-a-Service, the platform provider has to provide an
environment for the SaaS developer in which he can deploy
the application-specific performance isolation algorithms. A
development of such performance isolation features solely
based on the traditional SaaS runtime environment is not
possible, as the access to runtime information and the request
process flow is limited.

In this paper we discussed the requirements a PaaS en-
hancement to support performance isolated MTAs has to
fulfil. Subsequently, we derived the architecture of a frame-
work that enhanced PaaS to enable application developers
to implement tailored performance isolation mechanisms for
their applications. The architecture enables a light-weight
request admission control following a configuration which is
periodically updated. To maintain a good request response
time, the configurations are asynchronously derived from
preprocessed monitoring information. The case study shows
that the proposed architecture/framework is able to enhance
a PaaS to support a wide range of algorithms for scenario-
specific performance isolation with an acceptable performance
overhead.

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant no. 317704 (CloudScale).

REFERENCES

[1] Y. Natis, “Gartner reference model for elasticity and multitenancy,”
Gartner, Gartner Report, June 2012.

[2] R. Krebs, C. Momm, and S. Kounev, “Metrics and Techniques for
Quantifying Performance Isolation in Cloud Environments,” Elsevier
Science of Computer Programming Journal (SciCo), 2013.

[3] C.-P. Bezemer, A. Zaidman, B. Platzbeecker, T. Hurkmans, and A. Hart,
“Enabling multi-tenancy: An industrial experience report,” in Software
Maintenance (ICSM), 2010 IEEE International Conference on, 2010.

[4] R. Desisto, “Hype cycle for software as a service, 2012,” Gartner, Tech.
Rep., 2012.

[5] Bitcurrent, “Bitcurrent cloud computing survey 2011,” Bitcurrent, Tech.
Rep., 2011.

[6] M. Armbrust, A. Fox, R. Griffith, and A. Joseph, “Above the clouds: A
berkeley view of cloud computing,” EECS Department, University of
California, Berkeley, Tech. Rep., 2009.

[7] G. M. Dinkar Sitaram, Moving To The Cloud: Developing Apps in the
New World of Cloud Computing. Syngress, 2012.

[8] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong,
“Application-level cpu consumption estimation: Towards performance
isolation of multi-tenancy web applications,” in IEEE 5th International
Conference on Cloud Computing (CLOUD), 2012.

[9] H. Lin, K. Sun, S. Zhao, and Y. Han, “Feedback-control-based per-
formance regulation for multi-tenant applications,” in Proceedings of
the 2009 15th International Conference on Parallel and Distributed
Systems, Washington, DC, USA, 2009.

[10] R. Krebs and M. Loesch, “Comparison of Request Admission Based
Performance Isolation Approaches in Multi-Tenant SaaS Applications,”
in Proceedings of the 4th International Conference on Cloud Computing
and Service Science (CLOSER 2014), 2014.

[11] X. Li, T. Liu, Y. Li, and Y. Chen, “SPIN: Service performance
isolation infrastructure in multi-tenancy environment,” Service-Oriented
ComputingICSOC 2008, pp. 649–663, 2008.

[12] H. Koziolek, “The sposad architectural style for multi-tenant software
applications,” in Proc. 9th Working IEEE/IFIP Conf. on Software
Architecture (WICSA’11). IEEE, July 2011, pp. 320–327.

[13] ——, “Towards an architectural style for multi-tenant software appli-
cations,” in Software Engineering, 2010, pp. 81–92.

[14] R. Krebs, C. Momm, and S. Kounev, “Architectural Concerns in Multi-
Tenant SaaS Applications,” in Proceedings of the 2nd International
Conference on Cloud Computing and Services Science (CLOSER 2012).
SciTePress, April 2012.

[15] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun, and X. Li, “An effective
heuristic for on-line tenant placement problem in saas,” IEEE 19th
International Conference on Web Services, vol. 0, pp. 425–432, 2010.

[16] C. Fehling, F. Leymann, and R. Mietzner, “A framework for optimized
distribution of tenants in cloud applications,” in Cloud Computing
(CLOUD), 2010 IEEE 3rd International Conference on, 2010.

[17] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A framework
for native multi-tenancy application development and management,” in
E-Commerce Technology and the 4th IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, 2007.

[18] X. Cheng, Y. Shi, and Q. Li, “A multi-tenant oriented performance
monitoring, detecting and scheduling architecture based on sla,” in
Pervasive Computing (JCPC), 2009 Joint Conferences on, 2009.

[19] N. Leontiou, D. Dechouniotis, and S. Denazis, “Adaptive admission
control of distributed cloud services,” in Network and Service Manage-
ment (CNSM), 2010 International Conference on, 2010, pp. 318–321.

[20] A. Kamra, “Yaksha: A self-tuning controller for managing the perfor-
mance of 3-tiered web sites,” in In International Workshop on Quality
of Service (IWQoS, 2004, pp. 47–56.

[21] J. L. Hellerstein, V. Morrison, and E. Eilebrecht, “Applying control
theory in the real world: experience with building a controller for the
.net thread pool,” SIGMETRICS Performance Evaluation Review, 2009.

[22] C. Lu, Y. Lu, T. F. Abdelzaher, J. A. Stankovic, and S. H. Son,
“Feedback control architecture and design methodology for service
delay guarantees in web servers,” IEEE Transactions on Parallel and
Distributed Systems, 2006.

[23] R. Krebs, S. Spinner, N. Ahmed, and S. Kounev, “Resource usage
control in multi-tenant applications,” in CCGRID 2014, 2014.

[24] M. Loesch and R. Krebs, “Conceptual Approach for Performance Isola-
tion in Multi-Tenant Systems,” in Proceedings of the 3rd International
Conference on Cloud Computing and Services Science (CLOSER 2013).
SciTePress, May 2013.

[25] TPC, “TPC BENCHMARK W,” Transaction Processing Performance
Council, 2002, transaction Processing Performance Council.

[26] R. Krebs, A. Wert, and S. Kounev, “Multi-Tenancy Performance Bench-
mark for Web Application Platforms,” in Proceedings of the 13th
International Conference on Web Engineering (ICWE 2013), Aalborg
University, Denmark. Springer-Verlag, July 2013.

[27] R. Krebs and A. Mehta, “A Feedback Controlled Scheduler for Per-
formance Isolation in Multi-tenant Applications,” in Proceedings of the
3rd IEEE International Conference on Cloud and Green Computing
(CGC 2013), 2013.

[28] V. C. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low level
Metrics to High level SLAs - LoM2HiS framework: Bridging the gap
between monitored metrics and SLA parameters in cloud environ-
ments,” in High Performance Computing and Simulation (HPCS) 2010,
2010.


