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ABSTRACT
Nowadays data centers are increasingly becoming larger and
dynamic due to virtualization. Software-Defined Network-
ing is the leading approach to network virtualization and
flexible management. The wide variety of hardware imple-
mentations have brought strong heterogeneity to the market
of networking devices which are different in terms of Open-
Flow features and performance. In this paper we address the
issue of heterogeneity of four hardware OpenFlow switches
by characterizing selected performance relevant parameters
for the hardware and software flow tables. We characterize
maximum size of hardware flow tables for each switch in-
cluding the behavior of a rule promotion engine that moves
the rules between tables. We show that in the worst case for-
warding packets using software table decreases the through-
put by two orders of magnitude (from 940 to 14 Mbit/s).
Our results can help the developers of SDN applications to
account performance limitations of hardware and software
processing as well as limited hardware support for a specific
rule types.

CCS Concepts
•Networks → Network performance analysis; Net-
work measurement;

Keywords
Software-defined networking; switching; flow tables; perfor-
mance.
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1. INTRODUCTION
Software-Defined Networking (SDN) has established a new

standard for network virtualization by separating data plane
from control plane and letting the user to develop custom
software for the latter. OpenFlow [13] has become the stan-
dard protocol for communication between OpenFlow-enabled
switches and SDN controllers. Many hardware vendors al-
ready offer OpenFlow-enabled network devices that support
various versions of the OpenFlow protocol. The diversity of
OpenFlow implementations (including both hardware capa-
bilities and control plane software behaviors) makes under-
standing and control over a network difficult. As a result,
the network performance becomes affected by the hetero-
geneity of OpenFlow switches and should be investigated to
better understand the consequences of the design and con-
figuration decisions of an SDN-based deployments.

In this paper, we focus on the influence of the hetero-
geneity of switch implementations on the performance of a
software-defined network. We observe different behaviors
and performance characteristics of OpenFlow-enabled de-
vices. The main issue that motivates this work and con-
cerns currently available devices is a change in the perfor-
mance that depends on the state of the switch flow table [11].
Not all devices handle the rules in the flow tables in the
same way; capacity of flow tables and rule compatibility
differ among switch models. As shown in [10], different
switches place the same rules differently as well as optimize
the rules placement during the runtime. This can result in
an unpredictable behavior where forwarding speed may drop
drastically. The authors observed that most of hardware is
still not mature enough for the performance to be predicted
in the repeatable manner, because “each switch under test
has many quirks which result in unexplained performance
changes.” They conclude that“the switch performance is dif-
ficult to predict—a single rule can degrade the update rate
of a switch by an order of magnitude”. The authors stress
high diversity of the performance of the switches. On the
other hand, the authors of [5] have shown that “The results
also show that a more complicated SDN (...) does not neces-
sarily mean performance degradation. Performance reflects
the specific implementation of the SDN.” These statements,



among others, are our main incentive for investigating the
heterogeneity of the switches and its influence on the per-
formance.

Our goal is to investigate the heterogeneity of four mod-
els of OpenFlow-enabled switches by the means of their:
flow table types and capacities, behaviour of the rule inser-
tion and promotion engines, flow tables compatibility with
the various rule types and finally the switching performance.
We manipulate the switch parameters and install forwarding
rules into various flow tables to observe the performance of
the switch. We aim to identify parameters that have strong
influence on the performance. In particular, we answer the
question about the performance of a switch when the hard-
ware flow table is full. Additionally, we investigate what
happens when some rules are removed from the tables and
the rule placement can be reorganized. We focus on a proac-
tive rule insertion, where controller installs rules before the
matching packets arrive to the switch.

The main contributions of this paper are the following: (1)
we investigate four models of physical switches and charac-
terize their SDN capabilities, (2) we analyze the throughput
performance of the switches in various SDN modes, and (3)
we characterize the behavior of the rule management engines
implemented in the switches.

This paper is organized as follows. In Section 2, we intro-
duce the background of OpenFlow switch components that
are relevant further in the paper. We present selected re-
lated work in Section 3. In Section 4, we show the testbed
setup and describe how we measured the switches. In Sec-
tion 5, we discuss the experiments and their results in details
to finally conclude the paper in Section 6.

2. FOUNDATIONS OF SDN SWITCH PER-
FORMANCE

Software-defined networking assumes separation of the data
plane and the control plane. In the data plane, a switch for-
wards the packets, whereas in the control plane, algorithms
make decisions where the packets should be forwarded. The
decisions are converted to a forwarding rules stored in the
flow tables of the respective switches.

2.1 Hardware and Software Flow Tables
The rules saved in the switch can be exact-match (all

match fields are specified) or wildcard-match (some fields
have a value any). Exact match rules are stored in BCAM
memory (binary content-addressable memory). The wild-
card rules are saved in the TCAM (ternary content-address-
able memory) that allows each cell to have three states: 1, 0,
and ∗. Hardware flow tables based on TCAM usually have
very limited capacity and capabilities because this memory
is power hungry and expensive. The rules that do not fit to
the hardware flow tables (either in BCAM or TCAM mem-
ory) are placed in the switch SDRAM—so called software
flow table. As a rule of thumb, the hardware flow tables of-
fer usually nearly the full line switching speed (do not inflict
delay) but their volume is limited. We elaborate more on
this in Section 5.

2.2 Reactive and Proactive Rule Insertion
If an arriving packet cannot be matched against any rule,

the switch forwards the packet to the controller that reacts
with inserting new rules. We call this a reactive rule in-
sertion. In contrast, proactive rule insertion implies that

the switches are preconfigured with the rules to handle all
flows without reactive interaction with the controller. The
proactive rule insertion fits better large scale data center sce-
narios where the paths usually stay constant, whereas the
reactive rule insertion fits better smaller but highly dynamic
networks (e.g., access networks or sensor networks [14]).

Although currently available SDN controllers do no scale
well (as shown in, e.g., [14]), the authors of [12] point that
the current commodity switches are unable to process all
flows in hardware. For example, the authors of [2] point
out that for large-scale delivery content networks there can
be up to 16 million flows. This limits the performance of
the reactive SDN on one hand (due to controller scalability
issues) but also challenges proactive SDN setups on the other
hand (as the capacity of the hardware flow tables is limited).

3. RELATED WORK
The topic of SDN performance attracts many researchers

and some aspects have been already investigated in the lit-
erature. However, various authors usually focus on selected
parts of SDN architecture so they miss the overall picture
of the system (e.g., they focus on the performance of con-
trol path, data path, or a controller [10, 6, 3]), or model a
network in a coarsely black-box manner [7]. Additionally,
many authors (e.g., [5]) do not investigate physical switches
but theorize their findings based on simulators or emula-
tors. The relatively young concept of SDN resulted in mul-
tiple various hardware products that offer the support for
the OpenFlow protocol. This variety resulted in different
implementations and thus the offered performance can dif-
fer among the vendors or even among the switch models of
the same vendor.

The authors of [9] reviewed almost 600 works concern-
ing SDN and its aspects, among others the performance.
They found out that “understanding the performance and
limitation of the SDN concept is a requirement for its im-
plementation in production networks. There are very few
performance evaluation studies of OpenFlow and SDN ar-
chitecture. Although simulation studies and experimenta-
tion are among the most widely used performance evalua-
tion techniques, analytical modelling has its own benefits as
well.” In this Section, we extend their findings and propose
an overview of the state-of-the-art in SDN performance.

As presented in [9], many authors use simulation tech-
niques to solve performance models. In [8], the authors in-
vestigate various performance-related parameters of an SDN
system. The system is modeled and examined in the OF-
Sim simulator. The authors divide the process of packet for-
warding into four stages: data plane, data-to-control plane,
control plane, and control-to-data plane processing. They
identify parameters correlated with the performance and
examine the dependencies between achieved performance,
table sizes and various message rates (packetIn, flowmod).
The authors also note that “performance bottleneck may be
located in the existing switches, and the flow table entry
installation delay is a pressing issue.” Unfortunately, they
do not validate their simulator against a setup with physical
switches, and support for data center networks are in their
future plans. Moreover, the authors assume that the flow
tables have size up to 20 thousand entries which is normally
not the case for hardware forwarding tables, which deliver
high performance. Using real hardware, the authors would



install the most of the rules in the software forwarding tables
or their rules would be rejected by the switch.

The authors of [3] analyze the Linux implementation of
the OpenFlow on a commodity server investigating the per-
formance of the data plane. Their setup is similar to the
NFV approach where the networking hardware is replaced
by commodity servers. The analysis is conducted for single-
and multi-flow case, so that the forwarding performance can
be examined with (for single flow) and without the presence
of the limited size of forwarding table (for multi-flow). Ad-
ditionally the authors test the packet processing delays for
exact-match and wildcard rules as well as for different types
of flow tables and their sizes (usually 25-29µs). Although
their results are relevant for a combination of SDN and NFV,
they lack the context of a data center, where usually hard-
ware network switches are used.

Similarly, the authors of [5] do not examine hardware
switches to investigate the performance. They“indicate that
SDN does have a performance penalty; however, it is not
necessarily related to the complexity level of the underlying
SDN infrastructure”. In their paper, they compare perfor-
mance of an SDN setup with performance of non-SDN net-
working devices. They use software SDN switch and Linux-
based ProGFE which is an alternative to OpenFlow.

On the other hand, the authors of [6], investigate four
various SDN switches (including the software OpenvSwitch)
in a simple experimental testbed. Their aim is to design
an emulator of an OpenFlow switch. They “focus primar-
ily on vendor-specific variations in the control plane, al-
though data planes can also be different across vendors.”
Their findings focus on the controller performance and thus
are not applicable to proactive rule insertion that we focus
on. They observe that network switch “emulators do not
attempt to reproduce vendor-specific details of particular
pieces of hardware, as end-to-end performance is typically
dominated by implementation-agnostic features like routing
(choice of links), link contention, and end-system protocols
(application or transport-layer).” Moreover, they find out
“that an appropriately calibrated emulation infrastructure
can approximate the behaviour of the switches we study.”
Although their findings do not concern our point of view
at the performance analysis directly (they focus mainly on
control plane), their findings support our statement that
a medium-grained end-to-end performance model of SDN-
based data center can be built disregarding the heterogene-
ity of the switches.

On the other hand, there exist analytical performance
models of OpenFlow switches. Jarschel et al. [7] model SDN
using two queues (M/M/1-S and M/GI/I-S) and thus spec-
ify two processing paths having different performance—with
and without the controller. The selection of the controller
and non-controller path is modelled in a probabilistic man-
ner. Unfortunately, the path over the software flow table
that involves CPU processing on a switch is not modelled
making the results applicable to an abstract SDN switch
with unlimited TCAM capacity or to small use cases (cf. [12]).

Another analytical performance model was introduced by
Azodolmolky et al. in [1]. The authors propose a model
based on network calculus as “In contrast to queuing the-
ory, network calculus is concerned with worst case (upper
bounds) instead of average (equilibrium) behaviour and there-
fore does not deal with arrival and departure processes them-
selves but with bounding processes called arrival and ser-

vice curves.” [1]. They validate their model against the re-
sults obtained in the literature, namely in [15]. In [15], the
authors propose a benchmark for OpenFlow switches and
demonstrate it using three hardware switches of which one
has full OpenFlow support and the rest run experimental
firmware. The authors did not mention the models of the
switches under test, however one of the two switches with in-
complete OpenFlow support seems to use the software flow
table (switching latency was reported as ≈ 300µs). Unfortu-
nately, in [1], the authors do not investigate the performance
of the switching using software flow tables.

Many other authors, for example [11, 4] stress the diversity
of switch capabilities and behaviors what makes network
harder to understand and control. Current OpenFlow switch
implementations may lead to performance bottlenecks with
respect to the CPU load. Also the flow tables where the rules
are inserted may be non-deterministic—on some switches
rules may be rejected whereas on the others, rules may be
installed into the software or hardware flow table.

It is important to stress that the understanding of the
SDN performance with software and hardware flow tables
is as important as understanding the behavior of the SDN
controllers. Faced by the fact, that the flow tables are sim-
ply too small to accommodate enough flows for production
scenarios, we investigate the performance and characteris-
tics of four heterogeneous switches to provide more insight
towards building a complete performance model. The cur-
rently available performance models usually investigate the
performance of SDN controllers, but the forwarding perfor-
mance using the software flow table is not addressed, al-
though it cannot be neglected.

4. SWITCHES UNDER TEST AND EXPER-
IMENTAL ENVIRONMENT

In this paper, our ultimate goal is to investigate the be-
havior of hardware OpenFlow switches in various configura-
tions, especially in the switching that uses the software flow
table. In this Section, we present our testbed, its setup, and
measurement methodology.

4.1 Switches Under Test
We evaluate the performance of four hardware OpenFlow

switches. The exact models and their specifications are pre-
sented in Table 1. We investigate four heterogeneous HP
switches. We characterize briefly the main differences be-
tween them. The models 2920 and 3500yl use ProVision
operating system, whereas 5130 and 5700 use Comware. The
switches based on ProVision system have two flow tables:
one hardware and one software flow table. The 2920 sup-
ports only OpenFlow v1.0, whereas 3500yl supports Open-
Flow v1.0 and v1.3. The 2920 exposes both hardware and
software table as a single abstract table that is reported
by HP VAN SDN controller as table with n/a. Thus, the
controller is not aware of multiple tables and cannot ma-
nipulate the rules location directly. The only possibility to
distinguish the flow location is to query the switch operat-
ing system directly over console. The switch 3500yl acts
identically to 2920 if configured to support OpenFlow v1.0.
For OpenFlow v1.3 it exposes each table with the precon-
figured ID, unfortunately without any reference to the type
of the table (hardware or software). The switches 5700 and
5130 support only OpenFlow v1.3 and contain four hard-



Table 1: Switches under test: models and switching performance in native non-SDN mode (source: vendor
data sheet).
Switch Model Firmware Version Switching Capacity Switching Throughput
HP 2920-24G (J9726A) WB.15.12.0015 92.2 Mpps 128.0 Gbps
HP 3500yl-24G (J8692A) K.15.17.0007 75.7 Mpps 101.8 Gbps
HPE FF 5700-32XGT-8XG-2QSFP+ (JG898A) 2422P01 714.2 Mpps 960.0 Gbps
HPE 5130-24G-4SFP+ EI (JG932A) 3111P03 96.0 Mpps 128.0 Gbps
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Figure 1: The overview of the experimental testbed.

ware flow tables which are: extensibility, mac-ip, egress-vlan
and ingress-vlan. Both switches do not contain software
flow tables. The ingress-vlan and egress-vlan tables pro-
vide support for tunnelling as defined by IEEE 802.1q, how-
ever, when any of these tables is in use, the connection to
the controller is lost. The extensibility table supports all
OpenFlow-mandatory matching fields, in contrast MAC-IP
table supports only vlan vid, eth dst and ip dst.

4.2 Experimental Testbed
Our experimental environment consists of the switch un-

der test (SUT) and four servers that are connected to the
production switch. The overview of the testbed is presented
in Figure 1. The non-SDN production switch is used to
control the experiment management VLAN. It connects all
devices of the testbed using separate VLAN and separate
physical cables so the OpenFlow network is isolated from
the experiment management network. In this way, we can
assure that the measured performance is not influenced by
the experiment control traffic.

We use two servers (S1 and S2) to generate, receive, and
measure the forwarding performance. The servers are con-
nected to the SUT over a dedicated OpenFlow VLAN us-
ing the one gigabit copper interface and the Cat 6 cable.
The third server S3 hosts HP SDN VAN Controller (version
2.5.15.1175) and is connected to the SUT over the controller
VLAN. Finally, the fourth server—experiment controller—
hosts the experiment control software that we developed to
automate the experiments. The experiment controller con-
nects to the generator and receiver servers over the SSH
protocol and controls the traffic generation leveraging iperf
and ping tools to measure SUT’s throughput and the packet
round-trip time. The experiment controller connects addi-
tionally to the SUT over ssh and polls hardware parameters
(e.g., CPU load, the number of flows in the software and
hardware tables, and the location of a given flow) that are
not available over the controller. The experiment controller
uses the REST API of the HP VAN SDN Controller to ma-
nipulate the flow tables of the SUT.

5. RESULTS
In this Section, we present the results of performance char-

acterization measurements for the four switches under test.
We focus on three distinguished aspects: hardware flow ta-
ble capacities, forwarding performance and the behavior of
the rule promotion engine.

5.1 Hardware Flow Table Capacities
The flow tables that handle the SDN forwarding rules have

limited capacity. We identify this limit as the most impor-
tant factor that influences the behavior of the switches. In
this Section, we measure their maximal capacities with re-
spect to the rule type.

5.1.1 Measurement Procedure
In order to measure maximal number of supported rules

by a flow table we used standard 12 tuple matching struc-
ture with output to port action. For each switch we created
set of rules supported by its hardware flow table. The rules
are sorted by the number of wildcarded fields in descending
order in every set. At the beginning we select the first rule
form the respective set (i.e., having as many exact-match
fields as possible). Then, we restart the OpenFlow instance
at the switch to clear all flow tables and assure identical
initial settings before every measurement. We use the di-
rect ssh connection to the switch operating system to as-
sure its clean state. Since the flow table contains rules that
controller installs by default (e.g., redirecting packet to con-
troller or to the software table), we pull the rules number
and store this number as a reference. Next, we insert one
rule and pull the rules number to verify if the rule was in-
serted properly. If the rule counter does not change then the
table is full. We report the table capacity for the given rule
structure. Next, we repeat this procedure for all rules in the
respective set.

5.1.2 Capacities of Hardware Flow Tables
Results of the measurements for all switches are shown in

Table 2. Table 2 should be read as follows. We assume that
all fields are wildcarded, except the fields specified in the
match field column. So, for example in row #6, the switch
3500 can store maximally 1526 rules having the following
matching structure: fields in port, vlan vid, vlan pcp, eth -
src, eth dst, eth type are defined (except of eth src and eth -
dst that are required to be left empty), whereas the rest of
the match fields are wildcarded. Zeros mean incompatibility
with the given switch model.

Concerning the hardware limitations, the switch 2920 can
store maximally 460 rules if all fields are wildcarded (except
the in port and vlan vid that are not allowed to be wild-
carded for this model). Considering the rest of the fields,
any combination of those allows to create maximum of 460
unique rules in hardware. All rules that are not supported



Table 2: Hardware flow table capacities for various rule structures.
Switch 2920 3500 3500 5130 5130 5700 5700

OpenFlow Version v1.0 v1.0 v1.3 v1.3 v1.3 v1.3 v1.3
Flow Table EXT MAC-IP EXT MAC-IP

Row Match field

#1 in port 460 381 0 384 0 640 0
#2 vlan vid 460 381 0 384 0 640 0
#3 vlan pcp 460 0 0 384 0 640 0
#4 eth src 0 0 0 384 0 640 0
#5 eth dst 0 0 0 384 16000 640 65535
#6 eth type 460 1526 1526 384 16000 512 65535
#7 ip dscp 460 1526 1526 512 0 512 0
#8 ip src 460 1526 1526 512 0 512 0
#9 ip dst 460 1526 1526 512 16000 512 65535
#10 ip proto 460 1526 1526 512 0 512 0
#11 tcp src 460 1526 1526 512 0 512 0
#12 tcp dst 460 1526 1526 512 0 512 0

in the hardware flow table are propagated to the software
flow table. The capacity of the hardware table of the 3500yl
switch depends on the OpenFlow version. If we set the ver-
sion of OpenFlow to v1.0 and the matching structure con-
tains only in port, the hardware flow table can store 381
rules with different priorities. This is also true for the in -
port and vlan vid fields together or just the vlan vid alone.
The maximum number of rules with any combination of the
rest of the fields is 1526. In OpenFlow v1.3, the switch dis-
cards rules that contain at least one of the fields: in port,
vlan id. For any other combination of fields, the hardware
flow table can store maximally 1526 rules. The firmware of
5700 switch allows to configure the maximal size of exten-
sibility table up to 65535 entries, however in practice the
limitations are significantly lower. Maximal number of rules
that do not include the field eth type, IP fields and TCP
fields is 512. In all other cases, the maximal rules number
is 640. The MAC-IP table of the 5700 has maximum size of
65535 rules. The extensibility table of the 5130 can contain
maximum 384 rules if all IP and TCP fields are wildcarded.
Otherwise, the maximum equals 512. The MAC-IP tables
in 5130 can hold up to 16000 rules.

5.1.3 Sharing Hardware Resources in Hybrid Switches
Both ProVision switches (i.e., 2920 and 3500yl) are hybrid

and can process packets using OpenFlow and non-OpenFlow
pipelines simultaneously. The switch summary reported by
the HP SDN VAN Controller contains an option hybrid mode.
If it is enabled, then the controller inserts an extra rule
in the last table of the pipeline—so called table-miss rule
that wildcards all match fields and has the lowest priority
0. This rule forwards packet to the standard pipeline if no
match is found for the packet in any flow table. The ProVi-
sion switches share their hardware memory between various
types of rules (e.g., OpenFlow, ACL, QoS). We investigated
the behavior of the rule policy engine that reserves a given
share of rules (expressed in percent) for the OpenFlow use
(command: openflow limit policy-engine-usage 100).

The procedure for measuring the shared OpenFlow ta-
ble capacity consists of the following steps: (1) disable the
OpenFlow instance, (2) change the policy engine usage value,
(3) enable the OpenFlow instance, and (4) fill up the table
with rules that have the maximum number of exact match

fields specified (not wildcarded). The results are presented
in Figure 2. As expected, the dependency is linear. The
OpenFlow policy engine usage can be set with granularity
of 1%. When policy engine usage value equals 0, no re-
sources are allocated to OpenFlow pipeline, i.e, no rules can
be inserted. Value of policy engine usage can be changed
only when the OpenFlow instance in the operating system
of the switch is disabled, therefore it is not possible to scale
flow table size during runtime.
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For the 3500yl switch, we observe a bug that results in the
system failure when the policy engine value exceeds 60−65%
and flow table size contains over 900 rules. Under these con-
ditions, the OpenFlow instance of the switch hangs, packets
are not forwarded, the connection to the controller is lost
and any CLI command related to OpenFlow functionality
freezes the console session. However, at the same time all
other parts of the switch operate normally and CPU load is
negligible low. The switch needs to be restated to function
properly again.

5.2 SDN Forwarding Performance
In this section, we characterize the process of switching

and describe our findings regarding the forwarding perfor-
mance. Our observations concern mainly the differences



among the following two cases: forwarding using a rule placed
in the hardware flow table and forwarding using a rule placed
in the software flow table. In this paper, we do not investi-
gate the forwarding performance with reactive rule insertion
that involves sending packet in message to the SDN con-
troller and processing of the flow mod reply. Instead, we
focus on forwarding performance with proactive rule inser-
tion, where rules are installed before the traffic arrives at
the switch.

5.2.1 Measurement Procedure
We measure the maximal switching throughput and the

CPU load for the switching using every flow table available
in the given switch model. In this part, we generate traffic
for 60 seconds using iperf and measure average throughput
using the topology presented in Fig. 1. We make sure that
the number of the installed rules is constant over the exper-
iment, so that the rule promotion engine, which we describe
in Section 5.3, does not affect the measurements.

5.2.2 Forwarding Performance for the Software and
Hardware Flow Tables

The results for the forwarding throughput are presented in
Figure 3. For the 2920 and 3500yl, we observe a drastic drop
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Figure 3: Maximal throughput obtained for the
switches using various flow tables.

of the forwarding performance when a rule is installed in the
software flow table (shortly denoted as SW in Fig. 3). The
forwarding throughput of the hardware flow tables results in
the full line-speed of the switch (about 941 Mbit/s) for all
models, tables and OpenFlow versions. The performance
in the non-OpenFlow mode is identical as when switching
using the hardware OpenFlow table.

Forwarding using the software flow table causes the per-
formance to drop from one (for the 3500yl) up to two orders
of magnitude (for the 2920). A rule is placed in the software
flow table (assuming it exists) if: (1) the rule is incompatible
with the hardware flow table, or (2) the hardware flow table
is full. This inflicts a serious constraint for the design of the
software installed in the SDN controllers.

The switch forwarding capacity (expressed in packets per
second) may be configured manually by changing software-
rate parameter in the switch operating system. The switch-
ing capacity is expressed in packets per second. We changed

the switching capacity using the software rate parameter
(command: openflow instance name limit software-rate

<X>) and observed the switch CPU load and the through-
put. The maximum value of the software rate parameter
is hard-coded in the switch and equals 2000 for the 2920
and 10000 for the 3500yl. In Figures 4 and 5, we present
how the throughput and the switch CPU load depend on the
limited switching capacity for the 2920 and 3500yl switches
respectively.
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Using the software flow table, the switches offer perfor-
mance that practically eliminates them from the production
environments. The 3500yl offers only about 6% of the maxi-
mum advertised throughput, whereas the 2920 provides less
than 2%. This means that the developers of the SDN appli-
cations that control the behavior of an SDN-based network
should be aware of the switch limitations and avoid filling
the hardware flow table at all costs.

5.3 Rule Promotion Engine Behavior
Finally, we conduct experiments to investigate the behav-

ior of the rule promotion and rule insertion engines. The rule
promotion engine is responsible for moving the rules between
the hardware and the software flow tables that are used si-
multaneously by the ProVision-based switches (3500yl and
2920). The rule insertion engine is responsible for selecting
the flow table where a new rule should be placed. In this
Section, we focus on the rule promotion engine.



5.3.1 Measurement Procedure
The behavior of the rule promotion engine has not been

officially documented, so we set up an experiment to inves-
tigate its behavior in details. As the rule promotion engine
operates only in the ProVision-based switches, we will ex-
periment in this Section with the 2920 and 3500yl switches
only.

In this experiment, we configure the 3500yl to operate in
OpenFlow v1.0, since we observe, that for OpenFlow v1.3
the switch does not move the rules between tables. For both
switches, we set a software limit of the hardware table size
to 76 for 3500yl and to 23 for 2920 by setting the openflow
policy-engine usage to 5%. We want to install forwarding
rules into the software flow table and then observe if the
rules are promoted to the hardware flow table when occa-
sion arises. Unfortunately, this is not possible since we can-
not place the rules directly in the software flow table (the
table does not have an ID). Thus, we first fill the hardware
flow table with dummy rules (i.e., rules that can never be
matched) and then install the two active rules that enable
the iperf traffic in both directions between the experiment
servers (S1 and S2 in Fig. 1). As a result, the iperf rules are
installed in the software flow table as we aimed. We start
to measure the forwarding throughput exactly as described
in Section 5.2.

During the bandwidth measurement, the switch does not
move the active rules between tables and the bandwidth
stays low—none of the rules in the hardware flow table is
actively matched. Then, we start removing the dummy rules
from hardware table and the rules from the software flow
table are being moved one by one to the hardware table as
the space in the hardware flow table is freed. According to
the OpenFlow specification, the less wildcarded rules should
be matched first and should be placed at the beginning of
any flow table. Therefore, we expect the switch to promote
the rules with more exact-match structure in the first turn.

5.3.2 Prioritizing of the Rule Promotion
To determine the order in which the rules are promoted

from the software table to the hardware one, we filled com-
pletely the hardware flow table of the 3500yl switch with
dummy rules (76 rules) and inserted the same number of
dummy rules in the software flow table.

For each dummy rule, we set the timeout parameter value
calculated according to the following formula: timeout=time
offset+ order number of the rule. The time offset prevents
the switch from removing the rules from the table until we
finish inserting all the rules necessary for the experiment,
i.e., the parameter defines when the action of the rule pro-
motion engine may be triggered. In the last step, we insert
the iperf rules and start the throughput test. The iperf
rules are more exact than all dummy rules. Every second
during the measurement, we poll the switch for the current
number of rules in the software and hardware flow tables.
Additionally, we record the load level of switch CPU.

As shown in Figure 6, we observe that from the ≈ 36-
th second, the 3500yl starts removing the rules from the
hardware flow table (due to the timeout set to 30s and about
6s warm-up time) and replaces them with rules from the
software flow table. At the ≈ 65-th second, both iperf rules
are promoted to the hardware flow table and the CPU load
drops down to 2%.

At the same moment—see Figure 7—the throughput of
the 3500yl increased from 64 to 940 Mbit/s. Even though
the iperf rules are the most exact, they were moved to the
hardware flow table in the last turn. Therefore, the rules
are moved from the software table to the hardware table in
the reverse order than they were inserted. This statement is
always true and does not depend on how many wildcarded
fields the rules contain or what priority they have. This may
lead to many performance drawbacks—e.g., the rules cannot
be ordered for the promotion from the hardware flow table to
the software flow table, because the rule promotion engine
works in a first-come-first-served fashion. The analogous
results for the 2920 are illustrated in Figure 8.
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Figure 6: Behavior of the rule promotion engine for
the 3500yl: numbers of rules in the flow tables. This
Fig. has the x axis aligned with the Fig. 7.
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Figure 7: Behavior of the rule promotion engine for
the 3500yl: throughput. This Fig. has the x axis
aligned with the Fig. 6.

The experiments with the switch 2920 show that after
the iperf rules are replaced from software to hardware, the
throughput drops to 0 and the connection between the ex-
periment servers is lost. The port counters in the switch de-
tect arriving packets, however the packets are not forwarded
between ports and no notification is sent to the controller.
To restore the communication it is necessary to send a new
flow mod message and install the rules again.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have investigated the parameters that

influence the performance of four heterogeneous OpenFlow-
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Figure 8: Behavior of the rule promotion engine for
the 2920: throughput

enabled switches. In particular, we focused on capacities
and forwarding performance of the hardware and software
flow tables. We observed that the forwarding performance
depends mainly on the location of the active rule. If the
active rule is located in the software flow table, the perfor-
mance is degraded by up to two orders of magnitude (941
vs. 14Mbit/s). The knowledge about the location of the
active rule is thus crucial for the performance and should
be acquired by every developer of the SDN controller ap-
plications. The location of a rule is influenced by many
parameters such as: capacities of the TCAM and BCAM
memories, behaviors of the rule promotion and insertion en-
gines, and the compatibility of a given rule with the TCAM
memory used in a given model of switch. This stresses the
heterogeneity of OpenFlow-enabled switches—even if they
are delivered by the same vendor. As a part of our future
work, we plan to build a descriptive model that supports the
modeling of the performance heterogeneity of SDN switches
including their software and hardware flow tables.
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