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Abstract—Applications in virtualized data centers are often
subject to Service Level Objectives (SLOs) regarding their
performance (e.g., latency or throughput). In order to fulfill
these SLOs, it is necessary to allocate sufficient resources of
different types (CPU, memory, I/O, etc.) to an application.
However, the relationship between the application performance
and the resource allocation is complex and depends on multiple
factors including application architecture, system configuration,
and workload demands. In this paper, we present a model-based
approach to ensure that the application performance meets the
user-defined SLO efficiently by runtime “vertical scaling” (i.e.,
adding or removing resources) of individual virtual machines
(VMs) running the application. A layered performance model
describing the relationship between the resource allocation and
the observed application performance is automatically extracted
and updated online using resource demand estimation techniques.
Such a model is then used in a feedback controller to dynamically
adapt the number of virtual CPUs of individual VMs. We have
implemented the controller on top of the VMware vSphere
platform and evaluated it in a case study using a real-world
email and groupware server. The experimental results show that
our approach allows the managed application to achieve SLO
satisfaction in spite of workload demand variation while avoiding
oscillations commonly observed with state-of-the-art threshold-
based controllers.

I. INTRODUCTION

Real-world applications are often subject to time-varying
workloads, i.e., the workload intensity and mix change over
time, due to seasonal patterns and trends, or unpredictable
bursts in user demands. Varying workloads result in frequently
changing resource requirements of an application. The tra-
ditional approach is to size a system for the expected peak
workload. However, this approach suffers from inefficiencies
due to the over-provisioning of physical resources and the
limited flexibility to cope with unexpected workload bursts.
Modern virtualization technologies provide mechanisms for
the dynamic provisioning of resources to virtual machines
(VMs). These mechanisms can be used to adapt the resource
allocation of VMs depending on the current demand. Trigger-
based approaches are commonly used in today’s Cloud en-
vironments (e.g., Amazon Web Services [1]), where an ad-
ministrator can specify thresholds on the resource usage and
corresponding mitigation actions (e.g., if the CPU utilization
is above 80%, start an additional application instance).

Many business-critical applications are subject to Service
Level Objectives (SLOs) defined on an application perfor-
mance metric (e.g., latency or throughput). To determine
thresholds so that the end-to-end application SLO is fulfilled
poses a major challenge due to the non-trivial relationship

between the resource allocation and the application perfor-
mance. An application administrator has to take into account
the following factors influencing the application performance:

• Complex application architectures: An application may
comprise several tiers, each deployed in one or more
VMs. The application latency depends on the processing
in each tier and the flow of requests between tiers.
Furthermore, asynchronous communication and limited
software resources (e.g., thread pools or connection pools)
also influence the achievable application performance.

• Heterogeneous resource access: The processing of ap-
plication requests requires access to different types of
resources (e.g., CPU, memory, or IO). The extent to which
each resource contributes to the end-to-end latency may
vary between different application tiers.

• Resource contention: Due to the shared nature of a
virtualized infrastructure, the achievable performance of
one application can be severely impacted by possible
resource contention or interference from the co-hosted
applications, a problem referred to as noisy neighbors.

Furthermore, trigger-based approaches are inherently prone to
an oscillating behavior resulting in unnecessary reconfigura-
tions. A system administrator needs to manually find optimal
values for various parameters (e.g., frequency of checks, quiet
times after reconfigurations) to reduce oscillations. However,
the optimal values for these parameters are application-specific
and no general guidelines can be determined.

In order to overcome the deficiencies of threshold-based
approaches and to enable a fully automated approach to dy-
namically control the resource allocation of virtualized applica-
tions, performance models capturing the relationship between
the resource allocation to an application and the application
performance are required. In this paper, we present a model-
based approach to vertical scaling of virtualized applications
at runtime to ensure that the performance of such applications
can meet their SLOs. More specifically, we make the following
contributions:

1) We propose a layered performance model based on
queuing-theory that describes the non-trivial relationship
between the application performance and its resource al-
location. The performance explicitly captures scheduling
delays in the hypervisor.

2) We describe a learning-based approach to automatically
estimate this model at runtime based on available mon-
itoring data including aggregate application performance
and resource usage statistics. Given that the model is



continuously updated in short time intervals (up to every 5
minutes), it can quickly capture changes in the workload
or the configuration of the application.

3) We design a feedback controller that uses the performance
model to automatically determine and allocate the number
of vCPUs needed by individual VMs in order to fulfill the
application SLO.

4) We evaluate the proposed approach using a real-world
application and compare its performance with that of a
utilization controller that uses a threshold-based scheme.

In this paper, we focus on the vertical scaling of individual
VMs of an application, where resources are added to or
removed from each VM at runtime. Although in virtualized
data centers, horizontal scaling would also be feasible by
cloning and starting additional VM instances for an applica-
tion, it typically takes at least minutes for the new instances
to be ready. Moreover, it requires the application’s capability
to detect and use new instances automatically, which adds
additional complexity to the application architecture (e.g.,
load balancers and session replication mechanisms) and may
not be supported by all applications (e.g., database servers).
Therefore, the vertical scaling of individual VMs is a viable
alternative for virtualized applications as the configured CPU
and memory capacity of a VM can be changed quickly and
frequently in a hypervisor such as VMware ESX via its hot-
add/-remove capability. We have evaluated our approach in a
case study based on the Zimbra Collaboration Server [2], a
widely used email and groupware application. In the Zimbra
experiment, our approach was able to automatically adapt the
number of vCPUs of a VM in response to changing resource
requirements of the workload. It did this more efficiently
and with significantly fewer reconfigurations than a simple
threshold-based utilization controller.

The remainder of the paper is organized as follows. Section
II provides an overview of our model-based approach. Section
III discusses the details of our model extraction and updating
technique, and Section IV presents the design of the feedback
controller that performs automatic vertical scaling of VMs. The
experimental setup and the evaluation results are described in
Section V and VI. We discuss the related work in Section VII
and conclude the paper in Section VIII.

II. APPROACH OVERVIEW

In this section, we give an overview of our approach to
model-based vertical scaling of VMs. We first describe the
basic assumptions behind our approach, and then introduce
the feedback control loop for vertical VM scaling at runtime.

A virtualized application (referred to as vApp) may com-
prise multiple VMs running on one or more physical hosts.
Each VM may host different parts of an application (e.g.,
application server or database). We assume that the application
owner is able to provide a tuple 〈metric, target〉 for each
vApp specifying the SLO, where metric (denoted as p) defines
the application performance metric to be managed (e.g., end-
to-end latency, or throughput), and target (denoted as pref )
contains the desired value of the corresponding metric. We
assume that the user-specified performance metric can be
monitored at runtime without significant overheads. Many
applications provide these statistics through management in-
terfaces or application logs. Existing monitoring frameworks

can be used to collect the required statistics. For example,
VMware Hyperic [3] provides monitoring plugins for a variety
of commonly used applications.

Our approach is based on a performance model p =
f(λ,a) describing the relationship between the application
performance p and the current workload λ and resource
allocation vector a. The structure and parameterization of the
performance model depends on the application architecture.
Given that building such a model is a time-consuming task
and requires in-depth knowledge of the performance behavior
of an application, an automation of the model building process
is necessary for the approach to be practically applicable.

However, the automatic construction of a fine-grained
performance model capturing all performance-influencing fac-
tors of an application and the execution environment would
require an extensive and detailed instrumentation resulting in
high overheads at runtime. Instead, we use a coarse-grained
modeling approach where only quickly changing factors (e.g.,
arrival rates, or scheduling delays at the hypervisor) are
captured explicitly. Other factors are assumed to only change
slowly around the current operating point over time (over
hours and days) and are implicitly integrated in the model
parameters. In order to capture changes in these factors, we
frequently estimate the model parameters online based on real-
time monitoring data.

A feedback control loop uses the performance model
to adapt the resource allocations to the VMs running the
application. To scale a VM vertically we can change the
number of vCPUs or the memory size configured for it. Both
types of reconfiguration can be done at runtime without the
need to restart the VM. Our experiences with ESX show
that the CPU/memory resource configurations can be changed
within 30 seconds without causing service interruptions in the
application.
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Fig. 1. Overview of the feedback control loop

Fig. 1 gives an overview of the feedback loop. The vApp
Manager consists of two modules – the model builder and the
application controller. The model builder learns the perfor-
mance model p = f(λ,a). It receives the current application
performance statistics (latency, throughput, and if available
the queue length of application requests) from the application
sensors and resource usage statistics of all member VMs of
vApp from the system sensor. The system sensor leverages
the monitoring capabilities of the ESX hypervisor (i.e., from
the vCenter PerformanceManager) in order to obtain detailed
scheduling statistics. The application controller uses the model
to predict the VM-level resource allocation vector at+1 that
will be required in the next control interval to fulfill the
user-specified performance target pref at the application level.
Using hypervisor mechanisms for hot-add of vCPUs and main



memory, the new resource allocation settings are then applied
dynamically to the appropriate VMs. The feedback loop is
executed at regular time intervals – the control interval – which
typically lies in the range of seconds to a few minutes, so that
the controller can react quickly to system or workload changes.

Our approach considers both, the scale up of VMs in
response to an increasing workload intensity as well as the
scale down during phases of low usage. While the hypervisor
is able to reschedule resources not used by one VM to another,
a large VM (i.e., with a lot of configured resources) still
causes additional overheads resulting in inefficient usage of
physical resources. For instance in the case of CPU resources,
the ESX hypervisor implements a co-scheduling (a.k.a. gang-
scheduling) policy for all vCPUs of one VM. This can result
in additional scheduling delays if a VM is assigned several
vCPUs. The application controller also determines when the
number of vCPUs can be reduced for a VM.

In the following, we assume that the total available physical
resources of a host are sufficient to fulfill the SLOs of all
hosted applications. We consider the problem of performance
isolation between applications co-hosted on an over-committed
host (i.e., more virtual resources are configured for VMs than
there are physical ones available) orthogonal to our problem.
In addition, there are two other approaches that can help in
this scenario: i) the VMware Distributed Resource Scheduler
(DRS) [4] runs every five minutes to automatically migrate
some VMs from overloaded hosts to other more idle hosts
in the same cluster; ii) the feedback control loop described
in [5] can be used to adapt the resource scheduling settings of
individual VMs so that the SLOs of high priority vApps can
be fulfilled in over-committed scenarios.

III. MODEL BUILDER

In this section, we first give an overview of how the ap-
plication and the execution environment are represented in the
performance model. We then describe how this performance
model is updated at runtime based on monitoring data from
the application and system sensors.

A. Layered Performance Model

The performance model p = f(λ,a) is used to determine
a) whether the performance target can be fulfilled under the
current workload λ and the current resource allocation a, and
b) which resource is currently the performance bottleneck.
In order to answer these questions we represent the system
with a queueing model. Due to the complexity of virtualized
environments, we adopt a layered modeling approach for
describing the application performance, where a virtualized
system consists of a layered architecture, with each layer
contributing to the externally visible application performance.
We distinguish between the following three layers, as shown
in Figure 2:

• The physical resource layer consists of the hardware
resources (CPUs, main memory, etc.) of the physical host.

• The virtual resource layer consists of the virtual resources
(number of vCPUs, size of main memory) which are
configured for each VM. The hypervisor dynamically
schedules the virtual resources on the physical ones
allowing for sharing of physical resources between VMs.

Application

layer

Virtual resource

layer

Physical resource

layer

VM1 VM2vApp

vCPU vCPU

Physical CPU

Fig. 2. Overview of layered queueing model

• The application layer captures the performance behavior
of the application, including software resources (e.g.,
caches or thread pools) and the control flow between
different VMs.

Each layer introduces additional sources of contention,
which may slow down the processing of application requests.
In today’s hypervisors, the physical resources are not dedi-
cated, i.e. the hypervisor dynamically schedules resources to a
VM depending on its current demand. In order to increase
consolidation ratios and improve resource efficiency, it is
possible to over-commit the physical resources of a host.
That means, the sum of the configured virtual resources for
all the VMs can exceed the capacity of a physical resource
of the host. In over-committed scenarios, the different VMs
may contend for the same resources at the physical resource
layer forcing the hypervisor to time-division scheduling. At
the virtual resource layer, different processes may request
processing time at resources resulting in delays due to guest
operating system scheduling. At the application level, software
resources (e.g., thread pools) can lead to software contention
limiting the possible application throughput. These different
levels contribute to the complex relationship between resource
allocation and application performance.

In order to address the complexity of the layered ar-
chitecture of virtualized systems, we adopted a modeling
approach based on the Method of Layers (MOL) [6], [7].
MOL is an extension to traditional queueing networks enabling
hierarchical modeling. The service time of a queue at level l
is equal to the response time of an underlying closed queueing
network at level l − 1, i.e., the service times at higher layers
include delays due to contention in the lower layers. In the
following, we describe the modeling of CPU resources in a
virtualized environment.

On the application layer, each VM is represented as a
M/M/a queue, where the number of servers a corresponds
to the number of vCPUs currently assigned to the VM.
Depending on the type of application, the scheduling strategy
needs to be chosen accordingly. In the following, we assume
FCFS scheduling, but the approach can be extended to PS
(Processor Sharing)1 scheduling as well. The residence time
Rv,a of VM v with a vCPUs is (for a M/M/a/FCFS queue [6]):

Rv,a = Dapp
v,a (1 +

Qv,a

a
Bv,a). (1)

Qv,a is the mean queue length seen on arrival of a new
request. Bv,a is the probability that a newly arriving request
will find all servers busy. Dapp

v,a is the service demand for
processing one request. In the following, this service demand
is called application demand in order to distinguish it from the
service demands on the virtual and physical resource layers.

1Round robin with infinitesimally small time slices.



Bv,a can be computed using the Erlang C formula [6]. In
our experiments, we used the conservative approximation of
Bv,a = 1 as we are focused on the high utilization region
where newly arriving requests have to wait for service most
of the time.

The application demand consists of the processing time
at different virtual resources (vCPUs and I/O resources) as
well as delays due to contention for software resources (e.g.,
connection pools). In general, the application demand is de-
fined by the function gapp(N,Dvirt

1 , ..., Dvirt
n ), where N is the

number of requests being processed concurrently, and Dvirt
i is

the service demand of virtual resource i. If assuming detailed
knowledge of the application implementation, the function
gapp could be represented by a queueing model, describing the
fine-grained application control flow including accesses to the
virtual resources and software resources. However, the operator
of a virtualized application usually does not have the necessary
knowledge of the application internals to create such a model.

In order to avoid the intrinsic complexity of explicitly
modeling the application control flow, we chose a coarse-
grained modeling approach. Given that we are focused on
modeling the vCPU behavior, we do not explicitly model the
other resources. Instead, we introduce a general delay resource
with IS (Infnite Server)2 scheduling, representing all resources
apart from the vCPU. Then the application demand of VM v
with a vCPUs is:

Dapp
v,a = Dvirt

v,cpu +Dother
v,a . (2)

Dvirt
v,cpu is the service demand at the vCPU, i.e., the CPU time

required to process one request. In the following we call it
the virtual resource demand. Dother

v,a is the time a request
spends at other resources in the system. It is assumed that
the value of Dother

v,a does not change frequently. As described
in Section III-B, we continuously update this value to reflect
changes in Dother

v,a . Equation (2) is valid if the application
processes the requests in an FCFS order and the number of
requests processed concurrently is less than or equal to the
number of vCPUs. If the application is modeled with PS
scheduling, delays incurred by the operating system scheduler
due to contention at the vCPU needs to be included in Dapp

v,a .

Changing the number of vCPUs can have a profound
impact on the application performance behavior. Therefore,
we expect the application demand Dapp

v,a to change depending
value on the number of vCPUs a. For instance, when adding
vCPUs to a VM, application thread pools might become a
limiting factor due to the increased parallelism resulting in
an additional slow-down of the application. Therefore, the
application demand Dapp

v,a (and also Dother
v,a ) is learned in

relation to the number of vCPUs a.

The virtual resource demand is defined as:

Dvirt
v,cpu = W scheduler

v +Dphys
v,cpu. (3)

The time W scheduler
v is the time a request is delayed due to

VM v waiting for a free physical CPU. Dphys
v,cpu is the service

demand at the physical resource layer. This is the CPU time
VM v requires to process one request without any contention
due to the CPU scheduler in the hypervisor or the operating

2Ample servers available so there is no queuing.

system. We call this service demand the physical resource
demand.

In the VMware ESX hypervisor, there are two main reasons
for scheduling delays: over-commitment and co-scheduling.
When several VMs require CPU resources at the same time in
an over-committed scenario, the hypervisor may be forced to
put some of the VMs in a ready state where they wait until
a physical CPU becomes available. Furthermore, if a VM has
two or more vCPUs, the hypervisor will try to schedule the
vCPUs at roughly the same time in order to ensure that the
CPU time of the individual vCPUs of the same VM progress
simultaneously. If there are not sufficient free physical CPUs to
schedule all vCPUs of a VM, the hypervisor may put the VM
in a costop state until enough physical resources are available
at the same time. While a VM is in the ready or costop state
the application processing in the VM is delayed. The delays
due to scheduling at the hypervisor layer result in a variable
service rate of the vCPU that not only depends on the current
application workload of this VM, but the workloads of all other
VMs on the same host.

B. Model Estimation

The parameters of the layered performance model are
estimated based on monitoring data provided by the application
and the hypervisor. The following parameters are tracked
continuously: the application demand, the virtual resource
demand, and the physical resource demand. In the following,
we describe our approach to estimating these parameters.

The estimation of the different demands is based on exist-
ing techniques for resource demand estimation (see [8] for an
overview of such techniques). However, these techniques do
not take the different layers of a virtualized system into ac-
count. For instance, the techniques described in [9], [10], [11],
[12] are using end-to-end application latency observations.
However, as the application latency also includes delays due
to contention effects at the hypervisor level, the dynamically
changing workload at the hypervisor layer results in unstable
demand estimates.

The demand estimates are updated in a regular interval,
called the estimation interval. At the end of each estimation
interval, new readings from the application and system sensors
are obtained, and the demand estimates are updated accord-
ingly. For demand estimation only the last M measurements
are considered, so that the model estimator can adapt to
changes in the system configuration and application behavior.
The time period consisting of M measurements is called the
estimation window. In our experiments we use an estimation
interval of five minutes and an estimation window of one hour.

The physical resource demand Dphys
v,cpu is estimated based

on observations of the average application throughput X and
the total CPU execution time crunv of a VM v. The value
crunv is provided by the ESX hypervisor for each VM. Using
the Utilization Law [13], the following relationship can be
assumed:

Dphys
v,cpu =

crunv

L ·X
. (4)

L is the length of the observation period, Dv,phys
cpu is the

physical resource demand, and X is the observed application
throughput. In th current prototype, we compute the physical



resource demand Dv,phys
cpu using the above equation as an

average across the estimation window. If different workload
classes are distinguished at the application level, one can use
stochastic estimation techniques such as linear regression [14]
or Kalman filters [12]).

In order to estimate the virtual resource demand, we rely
on scheduling statistics reported by the hypervisor. VMware
ESX provides the creadyv and ccostopv performance counters for
each VM, reporting the total time VM v is in a wait state due
to CPU contention from other VMs or due to co-scheduling.
This allows us to estimate W scheduler

v , the time a request is
delayed due to the VM being in a wait state, similar to the
estimation of the physical resource demands:

W scheduler
v =

creadyv + ccostopv

L ·X
. (5)

By estimating the wait time W scheduler
v for each estimation

interval and combining it with the physical resource demand
Dphys

v,cpu, we obtain the virtual resource demand Dvirt
v,cpu.

The application demand is estimated based on observations
of the residence time Rv,a and the average queue length Qv,a

seen by a request on arrival at VM a with a vCPUs. The
average queue length Q can either be observed directly if the
application provides these statistics or be derived using Little’s
Law [13]. Using Equation (1), we can estimate the application
demand Dapp

v,a based on the above observations. We use non-
negative least squares regression to determine the application
demand. When we estimate the application demands, we use
the previously obtained virtual resource demands and only
estimate the overhead factor Dother

v,a . So the linear model for
the linear regression is:

Rv,a−Dvirt
v,cpu(1+

Qv,a

a
Bv,a) = Dother

v,a (1+
Qv,a

a
Bv,a). (6)

The linear regression is executed separately for each number
of vCPUs k. The estimation of Dapp

v,a only uses latency Rv,a

and queue length Qv,a statistics from estimation intervals with
vCPU count a.

IV. RESOURCE CONTROL

The layered performance model described in Section III is
used to dynamically scale the VMs of a virtualized applica-
tion in order to ensure application SLOs under dynamically
changing workloads. In this section, we describe the resource
controller, realized in a model-based feedback control loop. At
the beginning of each control interval, the resource controller
analyses the layered performance model along with the mea-
sured application performance to determine whether VMs need
to be scaled up or down, either to mitigate SLO violations or
to improve resource efficiency.

The current approach is focused on adding and removing
vCPUs from individual VMs during system runtime. Changing
the number of vCPUs of a VM is a relatively cheap recon-
figuration given that modern operating systems support hot-
plugging of CPU resources without the need to reboot the
guest operating system. Thus applications can directly benefit
from the additional computing power.

A. Resource Control Algorithm

The resource control algorithm is a hill-climbing optimiza-
tion algorithm executed for each vApp at the beginning of a
control interval. Algorithm 1 shows the steps of the algorithm.
The algorithm expects the fully-parameterized performance
submodels M1, ...,Mn of each VM, which are created and
maintained by the model builder. Additionally, it requires the
target application latency Tref as provided by the system
administrator, the current arrival rate λ of application requests,
and an allocation vector a = (a1, ..., an) containing the current
number of vCPUs for each VM of a vApp. It returns the
desired vCPU allocation vector a

next for the next control
interval, which is then applied to the system.

The algorithm answers (a) whether a reconfiguration is
needed to ensure the application performance target, and (b)
which VM should be reconfigured. The first part of the algo-
rithm evaluates if the application can still fulfill its performance
targets if a vCPU is removed from any of the member VMs and
chooses the VM which has the least impact on the application
performance (lines 1-12). The second part of the algorithm
is executed if the application performance targets are or will
soon be violated, and determines which VM is best scaled up
to improve the application performance (lines 13-22).

In the first step (line 1-4), the performance submodels of
each application tier in VM v are analyzed to determine the
expected residence time of newly arriving application requests
given the current average queue length Qv . The function
GetQueueLength (line 2) returns the current number of re-
quests processed or waiting for service in VM v. This value can
often be extracted from application log files (e.g., web server
access logs or mail server logs). Assuming a stable system
within the control interval, it can also be derived based on the
observed average arrival rate/throughput and average response
time using Little’s Law. The function AnalyseModel takes
a performance submodel Mv , the current queue length Qv and
the number of vCPUs av for VM v as the input. It then calcu-
lates the expected residence time for newly arriving requests
using Equation (1) with the current number of vCPUs (line 3)
or with one vCPU less (line 4). The function AnalyseModel
will return ∞ if av < 1 or av > amax, with amax usually set
to the number of physical CPU cores of the host system. This
ensures that no infeasible configurations are proposed by the
algorithm.

In order to determine possible candidate VMs for scale
down, the algorithm calculates the expected end-to-end latency
Tdown if one vCPU is removed from any of the VMs (line 5
and 6). If the calculated Tdown is less than δ · Tref for any of
the VMs, the VM for which removing one vCPU leads to the
minimum increase in the end-to-end latency Tdown is selected
for scale down. The factor δ is a configurable parameter that
controls the aggressiveness with which the controller scales
a VM. In the experiments we used a value of δ = 0.75%.
Before scale down, an additional check is performed to ensure
that the service rate µdown with one vCPU less is sufficient
to sustain the current workload (line 9-11). The function
GetAppDemand is a helper function that reads the current
value of the application demand Dapp

v,a from a performance
model Mv and for a given number of vCPUs a. The stability
check avoids unnecessary oscillations, because the queue size
would increase again after scale down. This is an issue with



a non-interactive, job-based system (e.g., the mail transfer
agent), where it is often acceptable that a certain request queue
builds up before the SLO is violated.

If there is no potential for a scale-down identified, the
controller checks whether a scale-up might be required. First
the expected end-to-end latency Tcur for the current arrival rate
and current allocation is calculated (line 14) and compared
to the target application latency Tref (line 15). Then the
algorithm determines the expected speedup s if adding one
vCPU to any of the VMs. By scale up of VM v, the speedup
s[v] is the ratio between the predicted service rate µup with one
additional vCPU and the current service rate µcur (line 19).
Then the VM with the highest expected speedup is selected
and if the speedup is above a minimum value smin, a vCPU
is added. The value smin is configurable and controls how
aggressively the controller will scale up a VM.

Algorithm 1: Resource control algorithm

Input: number of VMs n, target latency Tref ,
application performance models (M1, ...,Mn),
arrival rate λ, number of vCPUs (a1, ..., an)

Output: desired number of vCPUs (anext1 , ..., anextn )
Data: vectors Rdown, Rcur, Rup, Tdown, s of size n

1 for v = 1 to n do
2 Qv ← GetQueueLength();
3 Rcur[v]← AnalyseModel(Mv , Qv , av);
4 Rdown[v]← AnalyseModel(Mv , Qv , av − 1);

5 for v = 1 to n do

6 Tdown[v]← Rdown[v] +
∑n

j=1,j 6=v Rcur[v];

7 d← argmin
v

(Tdown[v]);

8 if Tdown[d] < δ · Tref then
9 Dapp ← GetAppDemand(Md, ad − 1);

10 µdown ←
1

(ad−1)Dapp ;

11 if λ < µdown then
12 anextd ← ad − 1;

13 else

14 Tcur ←
∑n

v=1 Rcur[v];
15 if Tcur > Tref then
16 for v = 1 to n do
17 Dapp

cur ← GetAppDemand(Mv , av);
18 Dapp

up ← GetAppDemand(Mv , av + 1);

19 s[v]←
av·D

app
cur

(av+1)·Dapp
up

;

20 u← argmax
v

(s[v]);

21 if s[u] > smin then
22 anextu ← au + 1;

In each control interval, the algorithm adds or removes
only one vCPU at a time. This helps the model estimator to
learn the application demands D

app
k gradually by exploring the

reconfiguration space. In our experiments, the control interval
length was set to 20 seconds. With such a short control
period, the controller can also react to fast workload changes
adequately over several control periods. However, as future
work we also plan to support scaling multiple vCPUs per
control interval.

B. Bottleneck Analysis

While the performance model and the resource control al-
gorithm described previously are focused on capturing chang-
ing the number of vCPUs assigned to an application, the
model can also be useful to detect non-CPU bottlenecks
during runtime and trigger additional reconfigurations. This
is especially important if the resource control reaches a point
where adding vCPUs will not improve the application perfor-
mance further. There are different reasons why an application
may not benefit from additional vCPUs. In the following, we
will discuss possible situations and describe when additional
reconfigurations may be necessary.

The ESX hypervisor implements a co-scheduling scheme
for vCPUs, i.e., all vCPU of the same VM are scheduled
roughly at the same time. With increasing number of vCPUs,
the probability increases that a VM has to wait because there
are less idle physical resources than the VM has vCPUs.
Given the current physical demand Dphys and the virtual
demand Dvirt, we have an estimate of the time a request is
delayed due to hypervisor CPU scheduling. The proportion

ωvirt =
W scheduler

Dapp can be used as an indicator for excessive
vCPU contention on a host. If this value reaches a certain
threshold (e.g., 30% of the application processing time is due
to scheduling delays at the hypervisor level), mitigation actions
to reduce the contention on the host can be taken. See [5] on
an orthogonal approach optimizing scheduler settings enabling
SLO differentiation of virtualized applications. If the physical
resources of a host are insufficient to serve the needs of all
VMs, it is possible to relocate the VM to a less-utilized host
using VM live-migration facilities of the hypervisor (see [4]).

The proportion ωapp = Dother

Dapp can be used as an indicator
for either a bottleneck in the application (e.g., insufficient
thread pool sizes) or at other hardware resources (e.g., main
memory or I/O). In order to pinpoint the bottleneck more
precisely, more monitoring data about the current state of the
application or hardware might be required. Such metrics may
be available as the Zimbra case study in Section VI-D shows.
However, the capabilities to solve these bottlenecks during
system runtime without service interruption may be limited.

C. Reconfiguration

We have implemented the resource control algorithm for
the ESX hypervisor. The ESX hypervisor currently supports
CPU hot-plug, i.e., adding more vCPUs to a VM without ser-
vice interruptions. However, hot-remove of vCPUs is currently
not supported by most guest operating systems. It is necessary
to reboot a VM to reduce the number of vCPUs. In order
to avoid this limitation, we use CPU hot-plug mechanisms
included in some guest operating systems (e.g., the sysfs kernel
interface in Linux). We use these mechanisms to deactivate
individual cores in the operating system to simulate the influ-
ence on the application performance. Given that the hypervisor
is not aware of the deactivated cores, these cores may cause
additional scheduling overheads in the hypervisor.

After a reconfiguration takes place, the model estimator is
suspended for a short period of time, because some requests
observed directly after the reconfiguration may be enqueued or
currently in service during the scale-up/-down. The latencies



of these requests are only insufficiently represented by Equa-
tion (2) as those requests experienced two different service
rates. In order to prevent these observations from influencing
the model estimator negatively, we skip all control intervals
where the observed average latency T indicates the the requests
arrived in the system before the reconfiguration at time tlast
(i.e., tcur − T < tlast).

V. EXPERIMENT SETUP

The Zimbra Collaboration Server [2] is a groupware server
based on common open-source components. In this case study,
we use the Zimbra server to demonstrate the effectiveness of
our queueing-theory-based modeling and the vCPU scaling ap-
proach. In order to better understand the performance behavior
of Zimbra, we first describe its architecture. Then we describe
the experiment setup and our results.

A. Zimbra Architecture

The architecture of Zimbra is divided into three main
components: mailbox server, mail transfer agent (MTA) and
LDAP server. Each user of Zimbra has a mailbox on one mail-
box server. The mailbox contains the user’s mails, calendars,
address books, etc. The user can access the mailbox either
using a Web interface provided by the mailbox server through
HTTP(S) or using different desktop clients (SOAP, IMAP, or
POP3). The mailbox server stores the mailbox data in different
locations: a MySQL database containing the meta-data, the
content of mails, etc., is stored directly on the file system, and
a Lucene search index speeds up content searches. When a
user sends a mail, the mailbox server passes it to the MTA
that delivers it to the recipient’s server. The MTA may also
receive mails from other servers on the Internet. The MTA runs
a number of checks on each mail it receives. Most noteworthy
are the spam and virus checks. The LDAP server manages the
central configuration for multiple Zimbra instances and handles
the user authentication. There are different deployment options
for these components, ranging from one to three VMs.

Each component of Zimbra has a different resource bottle-
neck. The mailbox server is IO-bound due to database and mail
content storage, whereas the MTA is CPU-bound as the virus
and spam checks are computationally expensive. Therefore, we
choose the VM running the MTA for evaluating the vertical
scaling of vCPUs.

Although the mailbox server and the MTA can be consid-
ered as one application, due to asynchronous communication
between them, the processing time at the MTA is excluded
in the latency seen by a user. When a user sends a mail, the
request returns before the mail is delivered to the recipient.
Therefore, it is necessary to also monitor application perfor-
mance stats at the MTA. Given that Hyperic [3] currently
only monitors the queue length of the MTA, we implemented
our own application sensor that can also measure the current
throughput and latency of the MTA.

B. Experiment Setup

The experiments are executed using three ESX hosts,
ESX1, ESX2, and ESX3, running vSphere 5.1. Each host
has the same physical hardware (2.6 GHz Intel Xeon E5430,
32 GB RAM, 150 GB local disk). ESX1 runs a vCenter

Server instance, a Hyperic monitoring server, the Zimbra load
generator, and our controller. ESX2 runs a VM with the
mailbox server and ESX3 runs one with the MTA (both with
Linux CentOS 6.4, Zimbra 8.0.5, 4GB RAM and initially 1
vCPU). Mailbox server and MTA are deployed on separate
VMs as they can cause high IO rates on the datastore. Given
that our prototype currently does not support the control of
IO resources, we want to exclude the impact of potential IO
contention. The MTA is not connected to the Internet so that
only mails from the mailbox server are processed.

For workload generation we use an adapted version of
a load driver from the Zimbra performance lab. The driver
simulates a session-based, closed workload for a configured
number of users. A session consists of several tasks sending
requests to the server. Tasks represent atomic user actions (e.g.,
reading, writing, moving, and deleting mails). The sleep times
between the tasks of a session are exponentially distributed.
We modified the driver to support dynamic workloads so that it
can vary the number of concurrent sessions of users according
to a given time series. The mailbox server contained 2500
mailboxes, each with 10MB mail content. We simulated 500
concurrent users. The session intensity was changed every 15
minutes randomly between 1 and 8 sessions per user and per
hour.

VI. EXPERIMENT RESULTS

A. Application Scalability

In this experiment, we evaluate the scalability of the
application with an increasing workload and number of vCPUs.
The workload consists of a fixed number of 500 active users.
The session intensity is step-wise increased every hour starting
from 2.5 up to 10 sessions per user per hour. The complete
experiment run had a duration of 9 hours. The mailbox server
is initially configured with 2 vCPUs and the CPU utilization
of both cores is below 30%. The bottleneck is the MTA server
which is automatically scaled from 1 to 6 vCPUs by our
model-based controller in response to the increasing workload.
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Fig. 3 shows the estimated physcial resource demand
Dphys, the virtual resource demand Dvirt, and the application
demand Dapp

a depending on the number of vCPUs a. Dphys

is relatively constant and shows only a slight load-dependency
with 5 and 6 vCPUs (rising from approximately 2 to 2.3
seconds). This load-dependency is not explicitly captured in
the model. We rely on the model estimator to adapt to these
changes in the physical resource demand.

Fig. 4 shows the scheduling statistics as reported by ESX
for the MTA VM. The statistics are reported every 20 seconds
and show total CPU time during which the VM was in a certain
scheduling state. The increase of Dvirt is caused by delays at
the hypervisor due to co-scheduling effects. Although there are
no additional VMs contending for the physical resources with
the MTA server, its co-stop time increases. With increasing
workload the I/O wait time as reported by the hypervisor also
increases. We explain the co-stop time with the observed I/O
wait: due to individual vCPUs which are delayed by I/O, other
vCPUs are slowed down by the hypervisor such that the CPU
times of the different vCPUs of a VM do not diverge.

However, the hypervisor co-scheduling overhead is not the
only reason for the limited scalability of the MTA. Figure 4
also shows that, the used CPU time (reported by the crun
statistic) stagnates with the increasing number of vCPUs.
With 6 vCPUs the application could get 120 seconds CPU
time in each 20 second interval. However, it is only able
to use about 60 seconds of that. To mitigate the bottleneck,
a reconfiguration of the application would be required (e.g.,
changing the number of processing threads in the MTA).

B. Physical Resource Contention

In order to evaluate the impact of physical resource con-
tention on the model estimation, we added additional load VMs
to the host where the MTA VM (configured with 2 vCPUs) is
running. We used 8 load VMs with 1 vCPU each running a
micro-benchmark calculating Fibonacci numbers. These load
VMs demand all the physical CPU resources of the host. As a
result, the VM running the MTA server is constantly competing
for the physical CPU resources and the processing of mails is
therefore slowed down in the MTA.

0 50 100 150 200 250
0

1

2

3

4
No Contention Contention

D
e

m
a

n
d

 (
in

 s
e

c
o

n
d

s
)

Time (in minutes)

 

 
Dphys

D
a
app (direct)

D
a
app (indirect)

Fig. 5. Demand estimates under physical resource contention.

Fig. 5 shows the estimated physical demand Dphys and
the application demand Dapp

a depending on the number of
vCPUs a estimated using two different approaches. The in-
direct approach described in Section III-B based on a least-
squares regression in Equation (6) estimates the application
demand based on the estimated virtual resource demand. For
comparison, we also estimated application demand directly
based on the residence time equation (see Equation (1))
performing a linear regression on the observed mean latency
and the average queue length on arrival.

TABLE I. COMPARISON OF DIRECT TO INDIRECT ESTIMATION OF

D
app

a FOR A GIVEN VCPU CONFIGURATION

Direct Indirect Relative Error

No contention 2.16 2.11 1.96%

Contention 3.65 3.65 <1%

In the first part of the experiment, the micro-benchmarks
in all load VMs are not running, i.e., the VM running the
MTA receives all requested resources. When the CPU-heavy
computation begins in the load VMs after approximately
100 minutes, the VM running the MTA experiences physical
resource contention. The application processing rate is slowed
down, and the application demand increases as one would
expect. In contrast, the physical resource demand (i.e., the
CPU time on the physical CPU to process one request) is not
influenced by the physical resource contention. The compari-
son between the directly and indirectly estimated application
demands show that the difference between both is small. See
Table I for the exact values.

C. Dynamic Workload

To evaluate the behavior of the resource controller under a
dynamic workload, we ran a workload with a typical pattern
for an application in the course of a week. We used the
access logs from the FIFA98 world cup web servers [15] and
extracted the session intensities of a complete week (06/01-
06/06/1998). We scaled the session intensities down to adjust
the workload to the computing capacity of our system. Fig. 6
shows the workload at the Mailbox server and at the MTA.
Only a fraction of the requests to the Mailbox server result in
a mail being sent through the MTA. We can observe a workload
pattern typical for many real-world applications, where the
demand during the day is significantly higher than in the night.
Additionally, there are differences in the workload between
weekdays and weekends. This results in varying resource
requirements of the application in the course of a week.
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Fig. 6. Dynamic workload

We refer to the model-based controller described in Sec-
tion IV as the demand controller, and compare it with a
threshold-based utilization controller and the static allocation
of one vCPU. We used two variations of the utilization con-
troller with different control intervals. The utilization controller
checks the CPU utilization of the MTA VM every minute
(or every 5 minutes). If the average utilization of the control
interval is above 90%, it adds an additional vCPU to the VM;
if the current CPU usage is below 40%, it removes one vCPU.

Fig. 7 shows the observed latency of the MTA with the
demand controller and the utilization controller (1 minute
control interval). The latency of the MTA is the time from
receiving a mail until it is delivered to the recipient’s mail-
box server. For the MTA we chose a target latency of 2
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Fig. 7. Comparison of the MTA latency between the demand controller and
the utilization controller.

TABLE II. COMPARISON OF CONTROLLER PERFORMANCE

Latency (seconds) Reconfigurations vCPUs

mean max mean max

Demand controller 20.48 95.99 13 1.4 2

Util. controller (1 min) 10.82 67.86 273 1.83 3

Util. controller (5 min) 25.97 92.1 72 1.46 3

Static allocation 1385 2842 0 1 1

minutes. If statically allocating only 1 vCPU the server gets
overloaded during workload spikes, so the mails queue up
and we observe maximum latencies of over 45 minutes (see
Table II). Both controllers can avoid the overload situation by
adding additional vCPUs during phases of high workloads. We
conclude that both controllers can effectively maintain the mail
delivery latency below the target value, therefore fulfilling the
application SLO.
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Fig. 8. vCPU reconfigurations with the demand and the utilization controller
(1 minute control interval).

On the other hand, Fig. 8 shows that the demand controller
is significantly more stable than the tested variants of the
utilization controller. The utilization controller exhibits an
oscillating behavior with 273 (or 72) reconfigurations with
the 1 minute (or 5 minutes) control interval compared to the
13 reconfigurations of the demand controller. At the same
time the total vCPU allocation of the demand controller is
lower compared to those of the utilization controllers. Even
though additional optimizations of the control interval and
the thresholds of the utilization controller may improve its
efficiency and stability further, the optimal setting for the
utilization controller heavily depends on the application and
its workload, and it may change as the application state and
the execution environment evolve. In contrast, our demand
controller only requires the target application latency, which
is usually available for a business critical application.

D. Influence of Memory Configuration

In this experiment, we evaluate the potential of the Zimbra
Collaboration Server for the scaling of the memory size during
system operation. In the previous experiments, we focused on

TABLE III. IMPACT OF MAILBOX SERVER MEMORY CONFIGURATION

Mean latency (in ms) Std latency Buffer pool hit rate

4GB 106 55 95.6%

8GB 50 26 99%

the cpu-bound MTA server. When varying different workload
parameters, the MTA yielded a constant memory allocation.

In contrast, the mailbox server is I/O-bound and uses
different application caches to reduce the number of hard disk
accesses. The following three major caches were identified: (a)
the mailbox cache keeping the meta data of the mails, contacts,
calenders, etc., of a user in memory, (b) the message blob cache
retaining the content of last read mails in memory, and (c) the
buffer pool of the underlying MySQL database. In the previous
experiments only 500 of the 2500 provisioned mailboxes were
actively used. Table III shows the application performance of
the mailbox server with 4GB and 8GB of main memory when
the number of actively used mailboxes is increased to 2000. We
conclude that the buffer pool hit rate has a significant influence
on the application performance. By learning the correlation
model between the easily observable buffer pool hit rate and
the application latency, it would be possible to detect when
the buffer pool becomes a bottleneck and additional memory
should be added to the VM.

However, experiments where we added main memory dy-
namically to the VM showed that the mailbox server cannot
benefit from the additional memory directly. The reason is that
the buffer pool of the MySQL database is allocated statically
and cannot be changed at runtime. The same applies to the
Jetty application server of the mailbox server which is a Java-
based application with a maximum heap size. While the buffer
pool size as well as the Java heap size can be over-provisioned
at application startup to accommodate a future memory scale-
up, this is not an option in practice, because if these sizes
are larger than the physical memory size, it can result in
heavy swapping at the operating system layer. In order to
leverage dynamic changes to the memory configuration of a
VM, additional application support is required.

VII. RELATED WORK

Early research on auto-scaling for distributed applications,
including [16], [17], [18], has largely focused on coarse-
grained scaling of physical servers. As an increasing number of
applications start running on virtualized platforms, more recent
studies [19], [20], [21] applied machine learning or demand
prediction techniques to automatically determining the number
of VMs in a tier (i.e., horizontal scaling) to meet a target SLO
for a multi-tiered application.

Resource control primitives from virtualization platforms
also enable to vary the amount of resources allocated to a
VM (i.e., vertical scaling). Limits (aka. caps) are dynamically
adapted in [22] based on a fuzzy-logic model and in [23] using
a regression model. In [5], this work was extended to control
the guaranteed resource reservation of VMs and resource
pools. In [24], VM-level CPU shares (aka. weights) were used
to improve performance isolation of co-located applications.
However, approaches based on limits, reservation and shares
are limited by the maximum resource configurations of a VM
and cannot react to unexpected workload increases beyond the
configured capacities.



Dawoud et al. [25] compare vertical and horizontal scaling
and use a simple threshold-based controller for adapting the
number of vCPUs. CloudScale [26] uses resource requirement
predictions to scale a VM vertically. However, a user still has
to manually determine thresholds for a given SLO. Yazdanov
et al. [27] use an auto-regressive prediction model to predict
the resource requirements of a VM in order to dynamically
hot-plug CPUs in Xen. The approach does not consider the
application performance in the scaling decision. VScaler [28]
uses reinforcement learning to decide when to scale up or
down, but it does not explicitly take into account contention
effects at the hypervisor level.

Our work differs from related work in the following
aspects: (a) it uses a layered queueing model to decide when to
hot-add or -remove vCPUs to ensure application SLOs, (b) it
automatically estimates per-request resource demands, which
are inputs to the performance model, and (c) it uses low-level
scheduling statistics from the hypervisor to explicitly capture
the effects of physical resource contention.

VIII. CONCLUSION

In this paper, we have presented a model-based approach to
vertical scaling of vCPUs in order to meet SLOs of virtualized
applications. The approach learns a performance model de-
scribing the relationship between the application performance
and the resource allocation to the associated VMs. This model
is used to adapt the number of configured vCPUs of a VM in
accordance with the application SLO.

The presented approach provides several links to future
work. Currently, we do not distinguish between different work-
load classes in the application performance. This assumption
simplifies the analysis and estimation of the model. However,
for some applications it is necessary to be able to specify the
SLO goals for different request types. We plan to extend our
approach to support multiple workload classes. Furthermore,
we also plan to extend our model-based approach to include
additional resources to be able to control memory and I/O
resources. For example, we want to adapt memory resources
of a VM dynamically so that the application can enlarge caches
accordingly to reduce the number of hard disk accesses.
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