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Abstract—Architectural performance models are a common
approach to predict the performance properties of a software
system. Parametric dependencies, which describe the relation
between the input parameters of a component and its perfor-
mance properties, significantly increase the prediction accuracy
of architectural performance models. However, manually model-
ing parametric dependencies is time-intensive and requires expert
knowledge. Existing automated extraction approaches require
dedicated performance tests, which are often infeasible.

In this paper, we introduce an approach to automatically
identify parametric dependencies from monitoring data using
feature selection techniques from the area of machine learning.
We evaluate the applicability of three techniques selected from
each of the three groups of feature selection methods: a filter
method, an embedded method, and a wrapper method. Our
evaluation shows that the filter technique outperforms the other
approaches. Based on these results, we apply this technique to a
distributed micro-service web-shop, where it correctly identifies
11 performance-relevant dependencies, achieving a precision of
91.7% based on a manually labeled gold-standard.

Index Terms—Performance Engineering, Performance Model-
ing, Machine Learning, Feature Selection, Parametric Dependen-
cies

I. INTRODUCTION

Architectural performance models are a common approach
to predict the performance properties of a software system dur-
ing system design [1] as well as the impact of reconfigurations
at run-time [2]. A significant factor for the prediction accuracy
of a performance model is its parameterization, i.e., the values
for model parameters such as loop frequencies, branching
probabilities or resource demands [3]. However, these model
parameters often depend on the input parameters of a com-
ponent (e.g., the size of a list impacts the time required to
sort it). Therefore, many architectural performance models
allow to explicitly model input parameters and their influence
on model parameters in the form of so-called parametric
dependencies [4]–[8]. These dependencies describe, e.g., the
resource demand of a function call for a given set of input
parameters. The importance of including such influences has
been discussed by a variety of authors [9]–[12].

Manually modeling parametric dependencies requires ex-
pert knowledge; it is quite error-prone and causes significant
manual overhead. For example, in a case study by Krogmann
et al. [13] more than 24 hours were required to manually

model the parametric dependencies in a small system, which
shows that manually modeling parametric dependencies for
large systems is infeasible. The required effort furthermore
hinders the adoption of performance modeling techniques in
practice [14].

Courtois et al. [15] propose to use regression splines com-
bined with automated performance testing to derive functions
that describe resource demands based on input parameters.
Krogmann et al. [13] use genetic search to find dependencies
between a component’s input parameters and the number
of executed bytecode instructions. However, both approaches
require dedicated performance tests to extract the parametric
dependencies.

We propose to derive parametric dependencies solely from
monitoring data available at run-time. This task can be split
into two sub-tasks: (1) detecting the dependencies, that is,
identifying which parameters influence a model variable, and
(2) characterizing the dependencies, that is, describing how
the value of a parameter can be derived from the influencing
parameters. In this paper, we focus on sub-task (1), the detec-
tion of parametric dependencies. As to sub-task (2), multiple
approaches have been proposed in the literature showing
how known parametric dependencies can be modeled using
standard regression techniques [15]–[17]. Hence, this paper
focuses on the identification of parameters from monitoring
data, i.e., finding if and which model parameters influence
other parameters.

Sub-task (1) can be framed as a classic application of feature
selection: We define one model parameter as a target parameter
and consider all other model parameters as potential features.
The challenges when applying feature selection to this domain
are to obtain suitable measurement streams, to filter and select
the most promising dependencies, and to discard a detected
dependency if there is no modeling gain.

The contributions of this paper are:
• We propose a generic algorithm for the automated

identification of parametric dependencies on monitoring
streams. This includes the pre-processing of monitoring
records, the creation of feature selection tasks, an inter-
face to integrate a chosen feature selection technique, and
three different heuristics to filter the identified dependen-
cies. These heuristics utilize domain knowledge to dras-



tically decrease the number of identified dependencies
reducing them to only performance relevant ones.

• We apply and evaluate three different feature selection
approaches: a filter method based on correlation analysis,
a wrapper method based on M5 [18], and an embedded
method based on Random Forest Regression [19].

• Based on our experimentation, we uncover additional
insights about the applicability of our approach to mon-
itoring data from different load levels and conclude that
the load level has a surprisingly small impact on the
solution quality.

Our approach significantly reduces the required effort of
modeling parametric dependencies, enables automated extrac-
tion of more detailed models and therefore makes the modeling
of dependencies feasible for large systems. The approach
can also be used as assistance for a performance modeling
expert, who can use our system’s suggestions as candidate
dependencies. Furthermore, the approach requires only run-
time monitoring data of the managed application and otherwise
treats the application as a black box. All required structural
information is obtained from the monitoring data. Therefore,
this work fits well into the vision of self-learning and self-
improving performance models [20].

II. RELATED WORK

In this section, we discuss the current state of the art for the
automated extraction of performance models in Section II-A.
Subsequently, Section II-B details how the approach presented
in this paper can be integrated into existing model extraction
pipelines to enable fully automated extraction of parametric
dependencies.

A. State of the art

Multiple approaches have been proposed to extract perfor-
mance models from monitoring data collected during system
operation [16], [21]–[23], [23]–[25]. However, none of these
approaches is capable of extracting parametric dependencies.
Therefore, the extracted performance models cannot predict
the impact of input parameters on the performance of software
components. However, the importance of including such influ-
ences has been discussed by a variety of authors, for example,
by Woodside et al. [9], Pozetti et al. [10], Menasce [11], and
Koziolek [12].

Therefore, a variety of works explicitly considered paramet-
ric dependencies in their work. Krogmann et al. [13] perform
dedicated performance experiments after instrumenting the
application to monitor method call parameters and the number
of executed bytecode instructions. The number of executed
bytecode instructions are later mapped to resource demands
for a specific system using bytecode benchmarks. Therefore,
the proposed approach cannot be applied at run-time, as the
used bytecode instrumentation causes monitoring overheads
of up to 250% [13]. Courtois et al. [15] propose to use
regression splines to extract parametric dependencies. They
perform dedicated performance tests to obtain the data on
which they fit the regression splines. This approach is not

applicable to monitoring data from a running system, as there
is no way to influence what monitoring data will be collected
next. Brosig et al. [16] propose an approach to extract Palladio
Component Model (PCM) instances based on monitoring data
collected by Oracle WebLogic Server. Their approach requires
as input information about parameter tuples for which a
dependency exists. Our approach presented in this paper can
be used to automate this step and provide the required input for
this approach. Ackermann et al. [17] introduce a framework
for modeling dependencies based on monitoring data, i.e.,
deriving a function that calculates a value for a dependent
parameter based on its influencing parameters. This approach
again requires as input information about parameter tuples
for which a dependency is assumed to exist, which can be
provided by our approach.

To summarize, approaches from literature either require to
run preliminary experiments in a testing environment [13], [15]
or require the detected parametric dependencies as input [16],
[17]. The latter is in fact what we aim to achieve in this work,
which is why our work integrates well with existing literature.
To the best of our knowledge, there is currently no approach
that can automatically identify parametric dependencies based
on monitoring data from production environments.

B. Integration with existing work

The approach presented in this paper can be used to enhance
existing model extraction pipelines, as shown in Figure 1. Cur-
rently, a performance model without parametric dependencies
can be extracted from monitoring data using existing model
extraction approaches [16], [21]–[24]. The approach presented
in this paper can be applied in parallel on the same monitoring
data to automatically identify dependencies between model
parameters. Next, existing approaches for the characterization
of dependencies, such as [15]–[17], can be applied. These find
a concrete function that describes the dependency between the
target model parameter and the influencing parameters.

The resulting functions can then be integrated into the
previously extracted performance model to improve its ex-
pressiveness. The exact nature of this integration step depends
on the modeling features offered by the specific modeling
formalism. However, the presented approach is designed to be
integrated into the existing performance modeling formalisms,
performance model extraction techniques, and dependency
characterization approaches.

III. APPROACH

A high-level summary of our approach is shown in Algo-
rithm 1. As the monitoring data is usually unstructured, we
define the input data in = {r1, . . . , rn} as a set of n unordered
monitoring records r1, . . . , rk. We describe a dependency d =
(p, pe) as a tuple consisting of a dependent parameter p and an
explanatory or independent parameter pe used to describe p.
In the following, we assume a dependency to involve just
one independent parameter pe. Note that the approach is
still capable of identifying two separate dependencies for the
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Fig. 1. Model extraction workflow.

same dependent parameter. Therefore, we can create multi-
parameter dependencies by combining two or more separate
dependencies.

Algorithm 1: High-level summary of proposed ap-
proach.

Input: Monitoring data in = {r1, . . . , rk}.
Output: Set D = {(p1, pl1), . . . , (pn, pln)} containing

all found dependencies.
1 D = ∅
2 S = extractDataStreams(in)
3 foreach si in S do
4 Ti = createFSTasks(si)
5 foreach ti,j in Ti do
6 scoresi,j = applyFSAlgorithm(ti,j)
7 D = D ∪ createDependenciesθ(ti,j , scoresi,j)

8 D = filterResult(D)
9 return D

First, Algorithm 1 initializes an empty set D containing
all found dependencies. Then, we transform the unstructured
monitoring entries into data streams in line 2. The resulting
set of data streams S is a collection of different sub-streams.
Different sub-streams are necessary as loop and recursion
structures make it impossible to aggregate all data streams
on the same call-path. We elaborate on that problem in
Section III-B.

We then iterate through all found data streams S to cre-
ate a list of individual feature selection tasks Ti for each
sub-stream si in line 4. Each task consists of one defined
dependent parameter, together with all possible independent
variables. Each task ti,j is then fed into a black-box feature
selection algorithm in line 6. The algorithms are required
to return a vector scoresi,j , assigning a weight to each
independent parameter for the specific task. These scores
are then used to create the set of dependencies in line
7. Currently, the method createDependencies includes
dependencies if its score is higher than a given threshold θ.
However, this threshold depends on the used feature selection
algorithm and the corresponding scoring technique. Therefore,
createDependencies has to be parameterized with a
certain threshold θ. After all sub-problems and the resulting

tasks have been investigated, the algorithm filters all found
dependencies in line 8 and finally returns the set of found
dependencies D.

In the following, we elaborate on the individual steps taken
by Algorithm 1. Section III-A1 defines the monitoring require-
ments and some necessary pre-processing steps to receive a
valid input for the described algorithm. We elaborate on the
process of extracting data streams from the monitoring data
(extractDataStreams) in Section III-B. Section III-C
gives some details on how to create the individual feature se-
lection tasks (createFSTasks). The application of the dif-
ferent feature selection techniques (applyFSAlgorithm)
is explained in Section III-D. Finally, creation of the actual
dependencies (createDependencies) and the filter pro-
cedures (filterResult) are described in Section III-E and
Section III-F, respectively.

A. Monitoring

In this section, we describe the monitoring streams used by
our approach to identify parametric dependencies.

1) Monitoring Requirements: Our approach completely re-
lies on monitoring data without the additional consideration of
system architecture or source code. The following data has to
be contained in the monitoring stream of each relevant method
invocation in order to ensure that the presented approach can
extract parametric dependencies:

1) Method identifier (e.g., method signature),
2) Call-path trace information to reconstruct method invo-

cations using recursion or loops,
3) Method parameter identifiers (e.g., the parameter name,

type, as well as the concrete parameter values),
4) Method return identifiers, type, as well as the concrete

parameter values,
5) Resource demand of the specific method invocation.

The call-path trace is required to extract structural information
from the monitoring data, for example, which method called
which other methods. This is required for detecting depen-
dencies between different method scopes. For example, if one
parameter in method A influences the behavior of method B.

A monitoring framework that satisfies these requirements
is Kieker [26]. As of now, Kieker does not support logging
parameter and return values. Instead, it offers the option to
insert custom probes enabling customization of the collected



metrics. Therefore, we created a custom monitoring probe
collecting the required information. Additionally, for complex
parameters likes collections and arrays, we log the size of the
collection or the length of the array. Binary objects can be
captured using their id or their size in bytes.

2) Resource Demand Estimation: A resource demand is
the average time a unit of work (e.g., request or transaction)
spends obtaining service from a resource (e.g., CPU or hard
disk) in a system, over all visits at the resource excluding
any waiting times [27], [28]. In most realistic systems, the
direct measurement of service demands is not feasible during
operation due to instrumentation overheads and possibly mea-
surement interference [3]. Therefore, our monitoring data only
provides response time measurements, which is the sum of
waiting time and resource demand. However, one main interest
of this work are dependencies describing the resource demand
of a function call for a given set of input parameters. We
therefore require accurate resource demand estimates.

If the load is sufficiently low, we can assume the measured
response time and resource demand to be similar, as there
would be no queueing delays in that case [29]. As a result,
we suggest circumventing the issue by selectively utilizing low
load scenarios for the input data. If this approach is infeasible,
other approaches exist that can be used to estimate the resource
demands as it is an active field of research [3], [30]–[33].
Willneker et al. [34] show that statistical estimation approaches
can provide comparable accuracy to direct measurements.
However, we require individual resource demands per method
invocation, which is not supported by most statistical ap-
proaches. We investigate the impact of higher utilization levels
in Section IV-C.

3) Anomaly Detection: As our approach is based on mea-
surement data and we aim to find relations and correlations
in the measurements, the proposed technique is susceptible
to outliers. Therefore, an additional step of anomaly de-
tection and filtering is necessary while pre-processing the
monitoring data. The concrete amount depends heavily on
the used algorithms for feature selection. In our case, it was
sufficient to apply a 99.9-percentile filter to any measured
vector. Hence, after collecting the data, we take all values
that are below the 99.9-percentile of the measurements to
remove any outliers. This has proven to be sufficient in our
experiments, however, it may, of course, depend on the used
platform, measurement infrastructure, and application stack.
Hence, we cannot propose a general solution and acknowledge
that other experiment setups might require more sophisticated
solutions [35].

B. Creation of Data Streams

Monitoring streams generated by a system with different
components are generally not structured in such a way that
they can be directly inputted into state-of-the-art machine
learning algorithms. Consequently, pre-processing steps are
necessary to adjust the data to fit into the required format.
For this, structural information has to be extracted from the
monitoring data, loops and recursions have to be resolved,

A B C

Fig. 2. Example graph representation of call-path. A invokes B once, B
invokes C in a loop (5 times).

and resource demands have to be extracted from the measured
response times. These so-called data streams can then be fed
into machine learning algorithms.

In order to create the data streams from the monitoring
streams, the initial data is transformed into a directed multi-
graph representing the call-path, where the vertices represent
a method signature and edges the invocation of a method A
calling method B. This graph is constructed by evaluating
the execution order index and execution stack size of each
method invocation of the current trace. This can be done
using the data listed under (1) and (2) in Section III-A1. Each
edge can now be associated with the respective measurements
(parameter logs, together with runtime measurements). Based
on the constructed graph, the data can be transformed into data
streams. This process is subdivided into two steps.

First, every call-path of the graph is extracted. Each call-
path resembles a succession of method invocations. We define
a call-path as a sub-graph, containing all direct and indirect
successive calls of the specified root-vertex.

Second, loops and recursions are resolved as they are prob-
lematic for our parameter correlation. Consider, for example,
the case of function A calling function B, which then calls
function C in a loop. This is illustrated in Figure 2. In
this case, for every call of A, we get a set of parameter
measurements of A and one measurement set for B, but
multiple sets of measurements for C. Even more problematic
is the fact that the number of measurements is variable and
probably different for every invocation of A and B. This,
however, poses a challenge for our detection algorithms as
most machine learning algorithms cannot deal with a varying
number of measurements per sample. Hence, the collected data
cannot be directly written into the data stream, since each
entry in one data stream has to correspond to the entry of
another data stream with the same index. Therefore, we have
to aggregate all calls from B to C into one call to process
them in the algorithm later on. However, if we ignore C and
collapse all measurements into one aggregation, we lose a lot
of information as C might itself consist of multiple vertices
and call multiple other components (including further loops).
Therefore, a solution has to be found that collapses calls of
loops into one entry, while preserving the ability to extract
dependencies in the loop.

a) Resolving loops: A loop can be identified in the graph
data structure by analyzing the number of edges from one
vertex to another. The number of calls from B to C can be
directly assessed by counting the number of directed edges
from B to C (see Figure 2). Since this is done for each
call-path trace, we can analyze the number of invocations



A B

Fig. 3. Example graph representation of a direct recursion of B calling itself.

A B C

Fig. 4. Example graph representation of an indirect recursion of C and B
calling each other.

from B to C. If the number of invocations varies on different
call-paths, we assume that we have a dynamic loop structure
depending on the internal state or the input parameters.

This is solved by dividing the original data stream into two
sub-problems, (i.e., two sub-streams). That is, on the one hand,
the scope of the function calling upon a looped function (A
and B), and on the other hand, the scope of the loop itself
(C). In order to do this, we create one data stream instance
of our original problem with the loop collapsed to one entry
including the number of collapsed entries as a parameter. We
call the number of entries invocation count or loop count, as
it describes the number of calls from B to C. This addition
is necessary to be able to extract dependencies containing the
iteration count of the loop since this information is lost when
collapsing the entries and splitting into sub-problems. The
second sub-problem instance contains the parameters inside
the loop. This is necessary to avoid losing information about
dependencies inside vertex C (as C could consist of several
vertices and edges itself). Our identification algorithms are
then applied to each of the sub-problems individually.

Given the graph in Figure 2, two sub-problems are created:
one with the data streams of methods A, B and C with all
execution entries of C collapsed to one entry; the other sub-
problem is the loop itself with data streams of methods B and
C, while the entries of B are replicated for each invocation
of C.

b) Resolving recursions: Another common programming
concept in algorithms is recursion. Recursion can be identi-
fied by searching the constructed graph for cycles. We can
distinguish between direct and indirect recursion as seen in
Figure 3 and Figure 4, respectively. However, in this work,
we treat both types of recursions as loops. We represent
each recursion as a black-box and only save the initial call
parameters, the aggregated call parameters, the result, and the
response time. Additionally, the recursion depth is saved as this
information could be meaningful concerning the performance
of the method (similar to the loop invocation count). All
vertices concerned in indirect recursions are contracted to a
single vertex for this analysis.

In the example shown in Figure 3, only the parameters of the

initial invocation of the recursion of B would be considered,
while the other parameter values are aggregated to one set.
However, the recursion depth parameter is added with a value
of 3. Applying the approach on the graph in Figure 4 would
lead to the vertices B and C being merged into a single node
BC and the data of the invocations between both nodes being
aggregated, while adding the recursion depth parameter with
a value of 2.

C. Creating Feature Selection Tasks

This section describes the creation of single feature selection
tasks from existing data streams. Recall that a data stream si =
{v1, . . . , vk} is a collection of k vectors vi with i ∈ 1, . . . , k.
The feature selection techniques introduced in Section III-D
require a distinction between a dependent variable (a.k.a. target
variable) and a set of independent variables (a.k.a. features).
The dependent variable is predicted based on the values of the
independent variables. In order to find all dependencies within
a data stream, we construct a feature selection task for each
vector vi, which analyses the impact of the remaining vectors
on this vector.

Our approach for creating feature selection tasks from data
streams is presented in Algorithm 2. It requires a strict total
order of all vectors as well as an additional label li for
each vector vi. The label l ∈ {MP,AV G,RET,NONE}
describes the data type of each vector vi:

1) Model parameters (MP ): The vector contains perfor-
mance relevant model variables, like resource demand
measurements or loop invocation counts.

2) Averaged value (AV G): This vector contains averaged
values as they are created when loops or recursions occur
in the data stream (see Section III-B).

3) Return value (RET ): These are the logged return values
of a specific function invocation.

4) Normal (NONE): Values of these vectors are non-
averaged and usually describe function parameter values.

Note that any vector is assigned exactly one label depending
on the first rule that applies. Hence, averaged return values
are always classified as AV G, instead of RET , as rule (2)
applies first.

Together with the labels, Algorithm 2 requires a strict total
order of all vectors. This order describes the chronological
order of the parameter occurrences. The vector vi is monitored
after vj , if vi > vj for i, j ∈ 1, . . . , k with i 6= j. For
simplicity, we assume that we have no concurrent records and
therefore ∀i, j ∈ 1, . . . , k : vi = vj ⇔ i = j. Both the strict
total ordering and the set of labels can be obtained directly
during the creation of the data streams in Section III-B without
additional overhead.

Algorithm 2 describes how the four different classes in-
fluence the creation of feature tasks. First, we consider the
performance relevant model parameters VMP as the most
critical parameters, as we are aiming to find dependencies
describing them. Hence, we use all available parameters to find
such dependencies in lines 5 and 6 of Algorithm 2. However,
we do not relate MP s with other MP s, as such dependencies



Algorithm 2: Creation of Feature Selection Tasks.
Input: Data stream S = {(v1, l1), . . . , (vk, lk)}
Output: Set T = {t1, . . . , tl} containing l created

tasks.
1 T = ∅
2 Let VMP be the subset of S, with
∀vi ∈ VMP : li =MP

3 Define VAVG, VRET , VNONE analogously
4 Let VIND = S \ VMP // indep. variables
5 foreach vi in VMP do
6 T = T ∪ (vi, VIND)

7 VIND = VIND \ VRET
8 V ′RET = ∅
9 foreach vi in descending ordered VIND ∪ VRET do

10 VIND = VIND \ vi
11 if vi /∈ VAVG then
12 T = T ∪ (vi, VIND ∪ V ′RET )
13 if vi ∈ VRET then
14 V ′RET = V ′RET ∪ vi

15 return T

are irrelevant (they are usually both known or unknown at the
same time).

Second, we merge both return values VRET and all re-
maining vectors VIND and sort them in descending order in
line 12 of Algorithm 2. Here, we implicitly use the defined
ordering. However, return values can only influence other
values of lower order, while standard parameters only influ-
ence parameters of higher order. Therefore, we first delete all
VRET from the set of independent variables in line 7 and then
successively add them to the set of returned parameters V ′RET
in line 14. These returned parameters V ′RET can then influence
other parameters. On the contrary, all standard vectors VNONE
are left in the set of independent variables, but they get
successively removed from VIND in line 10, as they can
no longer serve as independent variables. We never use the
averaged parameters VAVG as dependent variables. Since they
contain aggregated values over multiple invocations, they are
considered in a different data stream in more detail. However,
we use them as independent variables for all other tasks,
but successively remove them from the set of independent
variables VIND in line 10.

D. Applying Feature Selection Techniques

After creating concrete sub-tasks for each data stream, we
can use standard feature selection techniques from machine
learning to select the most promising variables as dependen-
cies. Recall from Algorithm 1 that one task t = (vD, VIND)
contains a dependent vector vD and a set of independent
vectors VIND with the same length. The goal of the feature
selection is to receive a scores vector, that is, a ranking for
each vl ∈ VIND for the given vD. This ranking expresses
how useful vl is to describe vD, that is, how well vD can be

described using vl. This task is a classic feature selection prob-
lem, as machine learning engineers often face the problem of
selecting the most promising features (independent variables)
to predict a given target (dependent variable). Therefore, all
presented algorithms can return such a ranking.

However, usually, this ranking is not normalized. In classic
feature engineering, this is not an issue as only the relative
score of the different independent variables is of interest.
Our problem statement is different in the sense that we not
only need a relative rating, but also a normalized – and
hence comparable – score. This score is required during the
filtering step in Section III-F, where this score is the decision
parameter, whether or not a feature selection task is modeled
into a dependency. Therefore, we have to adapt some state-of-
the-art techniques to make them applicable in our scenario.

In the following, we discuss the three main classes of
feature selection techniques [36]: filter, wrapper and embedded
methods.

1) Filter: Filter techniques assign a value to the possible
independent variables without any interaction with the target
algorithm. Features are then ranked based on the score and
either selected or removed based on a cutoff value for the
scoring. The methods are often uni-variate and solely consider
the independent variables; therefore they are computationally
cheap and commonly used as a pre-processing method.

In this work, we use Pearson’s r as a measure for correlation
as it was shown to be effective in related work [37]. Hence,
for each independent variable, we compute the correlation with
the dependent variable and use it as score. One advantage of
Pearson’s r is that it is already normalized between -1 and 1.

2) Wrapper: Unlike filter approaches, wrapper methods
evaluate subsets of independent variables proposed by different
search algorithms (forward selection, backward elimination,
etc.), and thus enable the detection of interactions between dif-
ferent independent variables. Scores are assigned based on the
accuracy of the predictive model using the particular subset.
Since multiple subsets have to be evaluated and a model has
to be created for each evaluation step, the main disadvantages
are the significant computation time and the increased risk of
over-fitting [36]. Additionally, the result highly depends on the
chosen regression algorithm for evaluation.

For evaluating subsets of the variable space, M5 trees [18]
are used. This enables the ability to identify non-linear and
complex dependencies. In order to find the optimal score, we
evaluate the performance of all subsets and store the Root
Mean Squared Error (RMSE) [38]. Then, each independent
variable gets a score based on the weighted average of all
scores of all subsets it was involved in. Each subset is weighted
with the inverse of the number of parameters involved. Hence,
the more parameters involved, the less influence on the score
of the involved parameters it has.

However, as this score is based on the RMSE of the resulting
regression, it is not normalized and therefore not comparable
between different feature selection tasks. Therefore, we divide
the score of each independent variable by the inverse of
the RMSE of a baseline classifier. The baseline classifier



always returns the mean value of all training samples. Hence,
we weight the performance of each independent variable in
dependence on the performance of this simple baseline. If the
baseline performs well, the dependent variable does not show
enough variance. This, therefore, justifies a low score, as the
modeled dependency does not express a lot of information
gain.

3) Embedded: Embedded techniques are a result of try-
ing to combine the advantages of both filter and wrapper
techniques. The selection of independent variables is accom-
plished during the execution of a specific learning algorithm,
thus reducing computation time while still considering the
interactions of variables. However, not all approaches support
this technique. We chose the random forest algorithm [19]
for this task, a specific type of bootstrap aggregated decision
trees [39].

The core idea of bagging is to use bootstrap samples using
a standard training set for fitting the k ensemble models. A
bootstrap sample of size n is generated by uniformly sampling
n instances from the training set with replacement. Random
Forest uses a modified tree learning algorithm selecting a
random subset of independent variables at each candidate
split in the learning process instead of considering the entire
variable space. The random forest algorithm assigns a rating
based on the performance of the individual decision tree to
each tree. Therefore, we use the selection of the independent
variable in the respective decision tree together with the rating
to obtain a ranking of the relevance of the independent variable
for predicting the dependent variable.

There are different measures for evaluating the importance
of a variable in tree-based models [40], [41]. We are consid-
ering the Gini importance, which is also called mean decrease
in impurity (MDI). Additionally, we include an additional
variable consisting of noise. We use it to compare the perfor-
mance of independent variables to the noise as a criterion for
normalization similar to the baseline regressor of the wrapper
approach. We divide the score of each independent variable by
the score of the noise variable. Therefore, we receive a ratio
of how much more information a particular variable contains
in comparison to a baseline variable.

E. Creating Dependencies

After obtaining the score vector computed in Section III-D,
we use this score to create dependencies for the discovered
relations. Each of our adapted algorithms returns a vector
scores for each variable selection task. This vector assigns
each independent variable an individual weight, reflecting its
importance for describing the specific dependent variable.
Furthermore, we ensure that the given score is normalized.
Therefore, we can compare the scores of the different variable
selection tasks with each other. Based on this score, we either
accept a task and model the found relation as a dependency, or
we reject the task as we do not see any valuable dependency
in the considered relation.

We achieve this by applying a threshold θ for each se-
lection task. As the methods introduced in Section III-D all

support different scores, we define three different thresholds:
θFilter for the filter approach, θWrapper for the wrapper, and
θEmbedded for the embedded approach. Therefore, the method
is parameterized with θ as already discussed in Algorithm 1.
For any given θ, if the score of a variable is higher than θ
we create a dependency from that particular variable to the
dependent variable of the current feature selection task v. If
none of the scores exceeds the defined threshold value θ, we
do not create any dependencies and return an empty set. We
analyze the impact of these thresholds in Section IV-A. We
describe the procedure for dependency creation more formally
in Algorithm 3.

Algorithm 3: Creating the resulting dependencies.
Input: Selection task t = (v, VIND),
vector scores = (s1, . . . , s|VIND|)
Output: Set of found dependencies D or ∅

1 Let p, pi be the corresponding parameters of v, vi for
i ∈ 1, . . . , |VIND|.

2 D = ∅
3 foreach vi in VIND do
4 if si ≥ θ then
5 D = D ∪ (p, pi)

6 return D

Note that in line 1 of Algorithm 3, we assume to have the
corresponding parameter names of each vector vi available.
This is necessary as Algorithm 3 models the dependencies
between the parameters, not their corresponding measurement
vectors vi. As the parameter names are usually given during
implementation, we do not include it as a formal input, but
rather retrieve it during execution.

F. Result Filtering

Finally, in the last step of Algorithm 1, we filter all modeled
dependencies from Section III-E to reduce the number of
resulting dependencies. Since we are extracting dependencies
for performance models, some parameters are more critical
than others. Hence, although some dependencies might be
correct in terms of existing correlations in the monitoring data,
the relation between the parameters might not be useful in our
performance model. In the following, we present three post-
processing steps filtering the dependencies that are important
to us.

1) Filtering identical parameters: After observing initial
results, we discovered that many identified dependencies are
actually due to identical parameters. This is a common practice
in software engineering. For example, one parameter p (e.g.,
a list) is passed to one method m1, which then forwards
this parameter to the next method m2, which processes it.
Therefore, method m1 and m2 share the same parameter p,
which is correctly modeled and identified by our approach.
However, now the parameter values pm1

and pm2
of m1 and

m2 both exhibit a dependency to the resource demand pd of
method m2, as m2 is concerned with the processing of p.
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Therefore, we delete the dependency from pm1
to the resource

demand of m2. The relation between pm1
and m2 is captured

by the dependency between pm1
and pm2

and the successive
dependency of pm2

to the resource demand of m2. Note that
this step only applies if pm1 and pm2 are exactly identical.

2) Filtering correlating dependencies: It is explicitly the
desired behavior of our algorithm to extract two different
dependencies d1 and d2 to a dependent parameter pd. Both
independent parameters p1 and p2 influence pd, but are not
identical (if they are, the dependency is filtered in the previous
step.). Now, we analyze the correlation between p1 and p2. If
both p1 and p2 correlate, we have a redundant dependency
and therefore want to select the stronger relation. Hence, we
analyze the scores of the dependencies of p1 and p2 assigned
by the feature selection technique in Section III-D. We delete
the dependency with the lower score and therefore keep the
stronger relation. This reduces over-fitting as we select fewer,
but more significant variables. Note that both relations are
kept, if there is no strong correlation between p1 and p2. In
our experiments, a Pearson’s r correlation coefficient of at
least 0.8 has shown to be sufficient.

3) Graph-based filtering: Our last step is to eliminate all
dependencies that do not influence any performance-relevant
model parameters. For example, two input parameters might
be influencing each other. However, if none of them influ-
ences any resource demand, they do not have any (modeled)
performance impact. Therefore, capturing the relation between
them is useless as it does not give us any performance-relevant
information.

Hence, we construct a graph consisting of all model param-
eters as nodes and all dependencies as directed edges between
them. The edges are the opposite direction of the dependency
(i.e., if a dependency has a model parameter as target, the
model parameter will be the source of the directed edge).
Now, we iterate through all performance relevant parameters
and perform a breadth-first search. All dependencies that were
not discovered by any of the breadth-first searches are deleted.
As they are not discovered, they have no path and therefore
no (transitive) relation to any of the performance relevant
parameters. We consider resource demands as well as loop
counts as performance relevant parameters.

IV. EVALUATION

We evaluate our approach in a case study using TeaStore,
a distributed micro-service benchmark application that repre-

sents a webshop for tea [42]. Users can browse the available
products by category and look at individual products. After
logging in, the user can add items to the shopping cart, modify
the content of the shopping cart, and checkout by entering
shipping and payment information. Previous orders are tracked
on the user’s profile page. TeaStore displays advertisements for
other products based on the user’s previous orders, his current
shopping cart, and the item/category he is currently looking
at.

TeaStore consists of five services, a database, and a service
registry. The WebUI service delivers static web pages and
fills them with dynamic information by querying the other
four services. The ImageProvider delivers and caches the
product images. Password hashing and session validation are
managed by the Auth service. The Persistence service
encapsulates access to the database and provides a caching
mechanism. Finally, the Recommender service tailors the
displayed advertisement to the current user by training a
machine learning model on the previous orders. TeaStore uses
a modern technology stack and is representative of current
distributed micro-service applications [42].

Using this application, we aim to answer the following
research questions:
• RQ1: Which feature selection technique is best suited for

the identification of parametric dependencies?
• RQ2: What is the effect of the proposed result filtering

approach on the quality of the identified dependencies?
• RQ3: What is the impact of increased system utilization

on the quality of the identified dependencies?
Based on these research questions, we perform the following

three experiments. Section IV-A presents the first experiment,
designed to answer RQ1. RQ2 will be analyzed in Sec-
tion IV-B. Our third experiment – which answers RQ3 – is
presented in Section IV-C.

A. Comparison of Feature Selection Techniques

Our approach is modular and can include any existing
feature selection technique. As described in Section III-D,
we integrate one technique from each of the three categories
of feature selection methods: a filter method, an embedded
method, and a wrapper method. We evaluate which of these
techniques produces the best results and what the advantages
and disadvantages of each technique are.

1) Experiment setup: For this experiment, we distribute
TeaStore across three servers as shown in Figure 5: The
Recommender, the Auth and the Registry are de-
ployed on Server 1 (Intel Xeon E5-2650 v3, 10 cores). The
Persistence and the Database are co-located on Server
2 (Intel Xeon E5-2650 v4 with, 12 cores). Lastly, the Webui
and the Imageprovider are deployed on Server 3 (Intel
Xeon E5-2640 v3, 8 cores). Apart from the CPU, all servers
are identical HPE ProLiant DL360 Gen9 servers, equipped
with 32 GB of RAM, running Debian 9 and Docker 17.03.2-ce.
All services run inside Docker containers, each assigned one
core and 4 GB of memory limits to ensure resource isolation.
We apply a closed workload of one user with a think time
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Fig. 6. ROC-curves for the four analyzed features selection techniques, circles
indicate the selected threshold.

of zero. The workload profile is similar to TeaStore’s browse
profile, which covers the full functionality of TeaStore. We
use the closed workload so we can ensure that the monitored
response time is equal to the resource demand. We run the
experiment for two hours, resulting in a total of 2.4 million
monitoring records. We implemented our framework using
Java and the WEKA library [43] for the machine learning
techniques.

In order to evaluate the feature selection techniques in
isolation, we apply our approach without the result filtering
presented in Section III-F. This enables us to compare the
unprocessed results of the different selection techniques. As a
gold standard, an expert creates a set of expected dependen-
cies. For this experiment, the expert labels any dependencies
that exist and not only the dependencies he would include in a
performance model, as we are looking to evaluate the ability of
the feature selection techniques to detect any existing depen-
dencies from the monitoring data. As the process of manual
labeling is time-intensive and requires in-depth analysis of
the source code, we limit the scope of this evaluation to the
Recommender service.

2) Threshold analysis: All feature selection approaches can
be parameterized with a threshold parameter θ as introduced in
Section III-E. We study the impact of the threshold parameter
θ by analyzing the receiver operating characteristic (ROC)
curve of each proposed feature selection technique. Figure 6
depicts the true-positive rate against the false-positive rate.
In the area of machine learning, the true-positive rate (aka
recall) is defined as the amount of true positives (i.e., the
amount of correctly identified dependencies) divided by the
sum of the true positives and the false negatives (i.e., the
amount of missed dependencies) for any given threshold
setting θ. Analogously, the false-positive rate (aka fall-out)
is the number of false positives (i.e., the amount of falsely
identified dependencies) divided by the sum of false positives
and true positives. Simply put, the ROC curve displays the

TABLE I
ACCURACY OF DIFFERENT FEATURE SELECTION TECHNIQUES.

Approach TP FN FP TN Precision Recall F1

Filter 22 0 0 90 1.00 1.00 1.00
Embedded 22 0 5 85 0.81 1.00 0.90
LR Wrapper 22 0 32 58 0.41 1.00 0.58
M5 Wrapper 21 1 32 58 0.40 0.95 0.56

impact of decreasing the threshold θ, as it shows how for
a given share of falsely classified dependencies, how many
correct dependencies will be found. The area under the ROC
curve (AUC) score is the integral over this function and is
therefore maximized at 1. Higher values are preferable, as they
express the probability of ranking a positive example over a
negative one.

Figure 6 depicts the ROC curves for the four approaches,
together with the corresponding AUC score. The dashed red
line shows the theoretical performance of a random classifier.
All approaches clearly outperform a random classifier, each
offering a certain trade-off. We note that all approaches achieve
an AUC score > 0.9, with the LR Wrapper and the embedded
approach slightly outperforming the M5 wrapper. However,
the filter approach even exceeds their performance by offering
a perfect ranking and an AUC score of 1.0. This means that
there exists a threshold resulting in a perfect classification of
all possible dependencies.

As our focus is on the detection of dependencies, a high
number of true positives is desirable. Therefore, based on
the threshold analysis, we choose the thresholds depicted in
Figure 6, with a threshold θFilter of 0.8 for the filter approach,
a threshold θWrapper of 200 for the M5 wrapper and LR
wrapper, and a threshold θEmbedded of 30 for the embedded
approach.

3) Results: The first thing to note is that the wrapper algo-
rithm using M5 (M5 Wrapper) takes over 2 hours to complete.
Therefore, we also include a wrapper variant using linear
regression (LR Wrapper), which is expected to be faster than
M5. This variant terminates after 10 minutes. In comparison,
the embedded approach terminates after 14 minutes, while
filter needs only 5 minutes. All but the measured run time
for M5 wrapper lie in an acceptable range, as monitoring data
from a two-hour period is analyzed. In the following, we will
discuss the threshold settings as well as the performance of
the individual approaches in terms of accuracy.

The results of the respective approaches using the defined
thresholds are presented in Table I. It shows the absolute
number of true positives (TP), false negatives (FN), and
false positives (FP) of each approach, as well as the gold
standard based on human-labelling. We furthermore add the
true negatives (TN), that is, the number of correctly not-
identified dependencies as well as the precision, the recall,
and the F1 score. The precision, calculated as TP / (TP + TN),
expresses the share of correct dependencies from all identified
ones. Analogously, the recall expresses the share of correct



TABLE II
IMPACT OF EACH RESULT FILTERING STEP.

Result filtering
Identified dependencies

Relevant Irrelevant Invalid Total

None 11 94 5 110
Identical (1) 11 45 5 61
1+Correlating (2) 11 35 1 47
1+2+Graph-based (3) 11 8 1 20

dependencies that were found. It is defined as TP / (TP+FN).
The F1 score is the harmonic mean of precision and recall.

We observe that the filter approach seems best suited for the
automated identification of parametric dependencies (RQ1). It
manages to identify all 22 dependencies, without identifying
any incorrect dependencies and therefore achieves an F1 score
of 1.0. The embedded approach performs reasonably well,
as it also identifies all 22 correct dependencies with only
five false positives, achieving an overall F1 score of 0.9.
In contrast, both wrapper approaches identify 32 additional
incorrect dependencies. However, they also identify most of
the 22 dependencies. The M5 Wrapper misses one of the
correct dependencies, resulting in the lowest F1 score of 0.56.

Summarizing, all approaches manage to identify almost
all or all of the required dependencies and achieve a high
recall. However, the filter approach outperforms the compa-
rable approaches by achieving a perfect F1 score of 1.0 not
having any false positives. We attribute the large number of
false positives of the wrapper and the embedded approach
to the fact that their respective underlying machine learning
techniques are prone to over-fitting. Additionally, the tuning
of the hyper-parameters of the underlying machine learning
algorithms for both the embedded and wrapper approaches
has a significant influence on the classification performance.
Overall, we conclude that the wrapper approach is not well
suited for the identification of parametric dependencies, as it
results in a large number of false positives. Furthermore, the
long run time of the M5 wrapper approach (over 2 hours for
a single service) makes it inapplicable for larger systems. The
embedded approach can be used in scenarios where a human
validates the proposed dependencies, as in such cases one may
prefer a slight tendency towards false positives in order not to
miss any relevant dependencies.

B. Benefits of Result Filtering

In Section III-F, we introduced three steps of filtering the
identified dependencies in order to retain only performance
relevant dependencies that should be considered for inclusion
in a performance model. We now evaluate if our approach
accidentally removes any performance relevant dependencies
or if it fails to remove any dependencies that are not perfor-
mance relevant; further, we evaluate the overall quality of the
identified dependencies.

1) Experiment setup: We apply the same test setup as
before but with traces from the entire TeaStore application

Resource 
demand 

  getRecoms( List cart )

WebUI REST 
Endpoint Orderbased 

 getRecoms( List cart )

 getRecoms( List cart )

Selector

relevant dependency irrelevant dependencyparameter

Fig. 7. Call path for recommendations annotated with identified dependencies;
class and call names abbreviated, list parameter refers to list size.

as input for our dependency detection approach. This makes
it infeasible to have a pre-defined gold-standard by a human
expert, as the evaluated system is too complex for detailed
manual inspection. Instead, we go through all identified de-
pendencies and label them with respect to our knowledge of
the system.

This setup is appropriate for this evaluation step, as here
we are only interested in analyzing the impact of the result
filtering (RQ2). The results of Section IV-A suggest that the
filter approach is the most effective technique to identify
dependencies. Hence, in the following experiments, we focus
our evaluation on the filter approach.

2) Results: We distinguish between three types of depen-
dencies: (1) relevant dependencies, (2) irrelevant dependen-
cies, and (3) invalid dependencies. Relevant dependencies are
the ones we are looking for and that we want to include in our
performance model. Irrelevant dependencies are dependencies
that are semantically correct, but do not influence the accuracy
of the performance model (neither positively, nor negatively).
Invalid dependencies are dependencies that are either seman-
tically incorrect or negatively influence the accuracy of the
performance model. Hence, we want to focus on relevant
dependencies to keep the performance model reasonably sized
and understandable for a human. The goal of the filtering step
is not to filter invalid dependencies, as it is not possible for
an automated approach to decide whether or not a modeled
dependency is semantically correct based on the monitoring
data. Instead, we focus on reducing the number of irrelevant
dependencies as already explained in Section III-F.

Table II presents the impact of the individual steps of
the result filtering. Initially, our approach identifies 113 de-
pendencies on the data set, of which 95 are irrelevant and
five invalid. After filtering dependencies that involve identical
parameters, we are left with 61 dependencies. The first step
filters 49 dependencies, all of which are irrelevant. Figure 7
shows some example dependencies that are deleted during
Step 1 of the filtering process. The WebUI issues a query,
requesting a list of product recommendations based on the
list of items in the cart of a user. This query is received
by the REST endpoint of the Recommender component,
which then forwards the request to a strategy-selector. The
strategy-selector chooses the appropriate algorithm (in this
case the Orderbased recommender), which then processes
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Fig. 8. Call path for purchases annotated with identified dependencies; class
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the actual request. The resource demand of the Orderbased
recommender is dependent on the number of items in the cart
(i.e., the length of the list cart), which is correctly identified.
However, as shown in Figure 7, the approach actually detects
a dependency from all list-sizes to the respective resource de-
mand. While this is technically correct, we drastically improve
readability by removing all red dependencies in Figure 7.
We end up with the description of the list being forwarded
through several components and its impact on the resource
demand of the Orderbased recommender, where it finally
gets processed. As these types of indirection are a common
practice in software engineering, 49 similar cases of parameter
pass-throughs can be filtered in Step 1.

The second filtering step deals with correlating dependen-
cies. An example is shown in Figure 8. Here, the WebUI
places an order which is sent to the Auth service to verify
that the user is logged in. If so, for each item in the cart, a
new OrderEntry is created at the Persistence service.
This represents a loop that is called once for each element in
the items list. However, we can see that two dependencies
influencing the loop count are identified: (1) the size of the
list, which does make sense, and (2) the price of the order,
which seems strange. Indeed, there is a correlation between
the size of the list and the price of the order. The probability
of a higher price of the order increases, if more elements are
in the cart. Therefore, both the cart size and the total price
of the order correlate with the loop count. However, the price
of the order directly influencing the loop count is an invalid
dependency since it would imply that an increase in item prices
would lead to a higher loop count – which is invalid. Now, as
there exists a dependency and therefore a correlation between
the size of the cart and the total cart price, Step 2 deletes the
dependency of price to the loop count, since the relation
involving the size of the cart is stronger. In addition to ten
irrelevant dependencies, the second step filters four invalid
dependencies, resulting in a total of 14 filtered dependencies.

Note that the irrelevant dependency mapping the size of the
cart to its price, as depicted in Figure 8, is not deleted in
Step 2. However, the graph-based filtering from Section III-F
filters this dependency. The graph-based filtering will not mark
this dependency during the breadth-first step, as it is not
related to any performance relevant parameter. The irrelevant
dependency depicted in Figure 8 will therefore be deleted
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Fig. 9. Classes of identified dependencies from monitoring data of an
increasingly utilized system.

by the third filter step, together with 27 other irrelevant
dependencies.

Summarizing, we can say that all three filtering steps
combined delete 86 irrelevant and four invalid dependencies.
Therefore, over 90% of “unwanted” dependencies are filtered.
After analyzing the remaining one invalid dependency, we con-
clude that its existence is rooted in the applied workload. Our
approach finds a dependency between the number of requested
images and their requested size at the ImageProvider
component. This is due to the implementation of the WebUI,
requesting either a list of small product review pictures or one
single high-resolution in-detail product image. Therefore, this
relation can be observed from the monitoring data. However,
we classify it as invalid as this relationship is not based on the
software code, but rather on the workload profile of the specific
component. Without in-depth knowledge about the application,
it is not possible for our approach to filter these rare edge-cases
as – based on the monitoring data – this observation is actually
correct.

Additionally, seven of the remaining eight irrelevant de-
pendencies are added due to the addition of the discussed
invalid dependency. These are technically correct (e.g., mod-
eling the parameter passing of the requested image size),
but finally relate to the discussed invalid dependency and
are therefore marked as irrelevant as they do not model
a performance-relevant property. If we were to remove the
discussed invalid dependency by hand, these seven irrelevant
dependencies would subsequently be filtered by the described
filtering mechanisms, as they describe a relation to this invalid
dependency. After doing so, we are left with one single
irrelevant dependency.

Summarizing, we conclude that our approach was able
to enrich the base performance model of TeaStore with 11
relevant dependencies learned from monitoring data. We can
furthermore calculate the precision using relevant dependen-
cies as true positives and invalid ones as false positives (given
that irrelevant dependencies can neither be counted as true
positives nor false positives). With 11 relevant and a single
invalid dependency, our approach achieves a precision of
91.7% after all filtering steps.



C. Impact of System Utilization

Our approach approximates the resource demands based on
the observed response time, as detailed in Section III-A2. This
approximation works well under low resource utilization, but
becomes inaccurate with increasing load [3]. We now evaluate
the impact of different utilization levels on the accuracy of our
approach. To this end, we conduct a third measurement series.

1) Experiment setup: We start with the identical setup as
in Section IV-B. However, we now increase the number of
users concurrently using TeaStore to cause higher system
utilization. We first determine that the WebUI is the bottleneck
service by analyzing the utilization of each container. Next,
we empirically determine the workload intensity of a closed
workload that leads to a certain CPU-utilization of the bottle-
neck service. For each utilization level, we collect monitoring
data for two hours. We feed this data into the filter-based
dependency detection algorithm already used in Section IV-B
and label the resulting dependencies according to the same
scheme. The experiment setup used in Section IV-B created
∼ 15% utilization at the WebUI. In this experiment, we added
measurements for utilization levels of approximately 20%,
30%, 40%, 50%, 60%, 70%, 80%, and 90% CPU utilization
at the bottleneck resource.

2) Results: The results of our analysis are shown in Fig-
ure 9. We can observe that the number of irrelevant and invalid
dependencies increases with higher system utilization. This
is expected, as the accuracy of the response time estimation
for resource demands decreases with increasing utilization [3].
However, our approach still identifies all correct dependencies
even with increasing resource utilization at the bottleneck
service. Furthermore, we observe that there exist stronger
factors influencing the accuracy of the approach than the
load level alone, as the number of irrelevant and invalid
dependencies is not increasing monotonously.

This is contrary to our initial expectation as inaccuracies in
the estimated resource demands should lead to inaccuracies in
the dependency detection. We conclude that the inaccuracies
of resource demand estimates do not affect the approach as
strongly as expected since the relative differences between the
resource demand estimates remain the same. Even though the
increased load has a negative effect on the accuracy of the
estimated resource demands, all demands get affected to a
similar degree. Therefore, the relative proportions between the
estimates stay intact and are therefore still observable by our
approach. We conclude that the approach can still be used on
monitoring data from higher utilization levels, however, man-
ual review of the identified dependencies becomes increasingly
necessary as the precision slightly deteriorates.

V. LIMITATIONS

From our experiments, we can not conclusively show that
the thresholds determined in Section IV-A are transferable to
other systems or if the threshold tuning is an elemental step of
the algorithm calibration for each system. Exploring this would
require a case study spanning a large number of representative

systems and workloads, including a variety of approaches for
hyper-parameter tuning.

Parameters describing the current state of a system, for
example, the number of entries in a database, can also in-
fluence the performance of a software component [44]. Our
approach could be extended to support such dependencies by
adding state variables into every single feature selection task.
However, this would drastically increase the run-time of the
approach and manual identification of state variables by an
expert.

We evaluate the capability of our approach to accurately
identify the existence of parametric dependencies. However,
we do not investigate how much the prediction accuracy of
a performance model improves after including the identified
parametric dependencies since this depends on the applied
modeling formalism, model solver, dependency characteri-
zation approach, the system under consideration, and the
granularity of the model. As part of our future work, we aim
to integrate our approach into an existing model extraction
pipeline and evaluate the impact of our approach in an end-
to-end scenario.

VI. CONCLUSION

In this paper, we introduced an approach to identify para-
metric dependencies for performance models. The presented
approach uses monitoring data from a running system without
any further knowledge about the application, the deployment,
or the component structure. This monitoring data is then
analyzed and correlations between different parameters are
identified with the use of different feature selection approaches
from the area of machine learning. In our evaluation, we
analyze three different approaches for feature selection and
show that a filter-based approach outperforms the competing
techniques in terms of solution quality and run-time. Further-
more, we analyze different post-processing steps intended to
reduce the number of irrelevant dependencies on a micro-
service reference application. The post-processing steps elimi-
nate over 90% of the unwanted dependencies and increase the
precision for 11 correctly identified dependencies to 91.7%.
The limitations of the proposed approach are analyzed by
conducting additional experiments with different load levels.
We observe that although the precision of the approach suffers
with increasing load levels, it still correctly identifies all
dependencies under high utilization.

This work represents a significant step towards the vision
of self-aware performance models [20]. We aim to augment
our technique with automated model extraction and character-
ization techniques, and integrate the identified dependencies
into machine learning based performance models [45]. This
will enable a performance model to autonomously learn and
improve itself during system operation in a production envi-
ronment.
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