
BUNGEE Quick Start Guide
for AWS EC2 based elastic clouds

Felix Rauh
(felix.rauh@stud-mail.uni-wuerzburg.de)

and
Nikolas Herbst

(nikolas.herbst@uni-wuerzburg.de)

At the Department of Computer Science
Chair for Computer Science II

Software Engineering

July 7, 2015
BUNGEE version 1.0

Julius-Maximilians-Universität Würzburg http://descartes.tools/bungee

mailto:felix.rauh@stud-mail.uni-wuerzburg.de
mailto:nikolas.herbst@uni-wuerzburg.de

Contents

1 Introduction 1
1.1 Requirements . 1

2 Installation and configuration of BUNGEE for AWS EC2 2
2.1 Load Driver system setup . 2
2.2 AWS EC2 Management Console . 3
2.3 Images for worker vm instances (Launch configuration) 4

3 Getting started 5
3.1 BUNGEE Examples . 5

3.1.1 TestAWS.java . 5
3.1.2 DetailedAWSAnalysis.java . 5
3.1.3 RunBenchmarkonAWS.java . 6

3.2 Property files . 7
3.2.1 measurement.prop file . 7
3.2.2 host.prop file . 7
3.2.3 jmeter.prop file . 7
3.2.4 request.prop file . 7

4 Installation and configuration of BUNGEE for CloudStack 8

5 Result analysis 9
5.1 result.runresult file . 9

6 Possible Extensions to BUNGEE 11

7 Final Remarks 12

ii

1. Introduction

The following instructions intend to enable an easy start using the BUNGEE IaaS elasticity
benchmarking framework.

For in-depth documentation, please refer to the Master’s thesis by Andreas Weber, Chapter
6, Pages 49 - 70.

1.1 Requirements

At the moment BUNGEE works with Windows on your local load-driver machine. We
are working to fix the remaining bugs on Linux/Mac, as JMeter is not called correctly by
BUNGEE on these platforms.

Access to a public elastic IaaS cloud (e.g. AWS EC2) or a private (e.g. CloudStack based)
environment is required.

1

https://sdqweb.ipd.kit.edu/publications/pdfs/Weber2014.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/Weber2014.pdf

2. Installation and configuration of
BUNGEE for AWS EC2

2.1 Load Driver system setup

• Install Java SDK, 1.6 or newer

• Install Eclipse IDE (for Java EE Developers recommended for AWS).

• Install LIMBO Load Intensity Modeling Framework (http://descartes.tools/
limbo) via the Eclipse Update site http://se2.informatik.uni-wuerzburg.de/

eclipse/limbo/.

• Install viewer plugins of the BUNGEE framework via the Eclipse Update site http:

//se2.informatik.uni-wuerzburg.de/eclipse/bungee/

• Install http://aws.amazon.com/eclipseAWS Toolkit/SDK for Java. The AWS
SDK for Android is not needed. To enable all the features within Eclipse you need
your AWS Access Key ID and your AWS Secret Access Key after that installation.

• Checkout BUNGEE Java projects from:
https://github.com/NikolasHerbst/BUNGEE

• Download Apache JMeter http://jmeter.apache.org/download_jmeter.cgi ver-
sion 2.11 and install the JMeter TimestampTimer Plugin from https://github.

com/andreaswe/JMeterTimestampTimer (Apache JMeter 2.11 with the required Times-
tampTimer Plugin is also available at the BUNGEE GITHUB repository.)

• BUNGEE experiments perform distributed time measurements of high amount of
short running tasks (in the order of milliseconds). Before running a BUNGEE ex-
periment the time of your local system and the time of the cloud instances should
be configured to synchronize with the same NTP servers. The NTP time service
on Windows machines is getting imprecise within experiment duration. BUNGEE’s
sanity check on after a measurement run fails in these cases as the timestamp of
request sent may be bigger than the one of request processed on cloud instance. We
suggest to use the Meinberg NTP package on your Windows load driver machine
to fix the issue of imprecise system times. (https://www.meinbergglobal.com/
english/sw/ntp.htm#ntp_stable)

2

http://descartes.tools/limbo
http://descartes.tools/limbo
http://se2.informatik.uni-wuerzburg.de/eclipse/limbo/
http://se2.informatik.uni-wuerzburg.de/eclipse/limbo/
http://se2.informatik.uni-wuerzburg.de/eclipse/bungee/
http://se2.informatik.uni-wuerzburg.de/eclipse/bungee/
http://aws.amazon.com/eclipse
https://github.com/NikolasHerbst/BUNGEE
http://jmeter.apache.org/download_jmeter.cgi
https://github.com/andreaswe/JMeterTimestampTimer
https://github.com/andreaswe/JMeterTimestampTimer
https://www.meinbergglobal.com/english/sw/ntp.htm#ntp_stable
https://www.meinbergglobal.com/english/sw/ntp.htm#ntp_stable

2.2. AWS EC2 Management Console 3

2.2 AWS EC2 Management Console

• Login to your AWS EC2 management console

• Create a Load Balancer:

– set Ports on 8080 (HTTP)

– select a Security Group and Security Settings

– set Ping Path (see Configure Health Check) to ‘/?size=1’ and in advanced
Details you can set Timeout = 2 seconds; Interval = 5 seconds and Thresholds
on 2.

– you don’t have to choose an instance

– disable Cross-Zone Load Balancing

– set Connection Draining on 30 seconds

– set Tags you want

• Create a Launch Configuration:

– select a AMI you want; for easy testing can try our preconfigured image for
Elasticity Benchmarking (for more information see below)

– choose a instance type you want

– enable CloudWatch detailed monitoring

– select the your security group like configured above

– finally select a key pair

• Create an Auto Scaling Group:

– select your just now created launch configuration

– select a network and a subnet of your choice

– see advanced details for enabling load Balancing and select the balancer you’ve
created before. Set Health Check Type on EC2 with a Grace Period of 30
seconds

– use scaling policies to adjust the capacity of this group; see Figure 2.1 for an
example

• Make sure you have set the same security group for your Load Balancer and your
Launch Configuration. It will not work when launched instances haven’t the same
group.

3

2.3. Images for worker vm instances (Launch configuration) 4

Figure 2.1: scaling policies example

2.3 Images for worker vm instances (Launch configuration)

You can use our preconfigured AMI for testing BUNGEE. Our Image is available in any
region:

• US East (N. Virginia) - AMI ID: ami-6ff31404

• US West (Oregon) - AMI ID: ami-55c8f465

• US West (N.California) - AMI ID: ami-253ad261

• EU (Ireland) - AMI ID: ami-b94388ce

• EU (Frankfurt) - AMI ID: ami-4e86b853

• Asia Pacific (Singapore) - AMI ID: ami-70390122

• Asia Pacific (Tokyo) - AMI ID: ami-60ac7d60

• Asia Pacific (Sydney) - AMI ID: ami-c5b0c9ff

• South America (São Paulo) - AMI ID: ami-5195144c

Otherwise you can simply set up your own machine: The cloud-side load generation appli-
cation is a java based HTTP server. This allows to easily deploy it on any platform with
a support for java. The application uses Simple (version 5.1.6) as a lightweight HTTP
server framework. You can find the required libraries and classes for the server application
inside the package tools.descartes.bungee.SimpleHTTP of this project.

4

3. Getting started

3.1 BUNGEE Examples

Let’s try some examples of the project you can find at tools.descartes.bungee.cloud.
aws/src/tools.descartes.bungee.examples.

The tests TestAWS.java, DetailedAWSAnalysis.java and RunBenchmarkonAWS.java are
described below.

3.1.1 TestAWS.java

This is a ’Hello World’ to check, if infrastructure setup is okay.

• insert the DNS of your Load Balancer at hostName (line 11)

• run TestAWS.java as a Java application

• this test starts an instance, if none is started yet.

• it tests whether BUNGEE can connect to AWS and can measure request response
times

3.1.2 DetailedAWSAnalysis.java

The Detailed Analysis process searches for the maximum intensity in requests your cloud
can sustain at every scaling stage via a binary search. Be aware that this process can
easily take up to several hours.

• make sure the files defined in lines 20–22 exist

• inside the host properties file you have to set the DNS of you Load Balancer as
hostname

• you can switch on or of the GUI by changing the value/file inside the jmeter prop-
erties file

• this test creates the calibration/mapping files that are used for the next test: the
amount of instances is controlled by BUNGEE (controller disabled) – BUNGEE
searches the maximum load intensity your system can withstand at a certain scaling
level.

5

3.1. BUNGEE Examples 6

3.1.3 RunBenchmarkonAWS.java

This executes a load profile defined in DLIM scaled to a given upper maximum number of
instances.

• select a property file for the settings of your test (line 15)

• use our preconfigured property files or create/adapt your own (the property files are
documented separately, see below)

opt Use LIMBO to build own Descartes Load Intensity Profiles (DLIM) or extract model
instances from own traces. We suggest the LIMBO tutorial as background.

• make sure, the called files inside that property file are existing (line 1–6)

• inside the called host properties file you have to set the DNS of you Load Balancer
as hostname

• run this Java application for a benchmark which is defined inside the property file;
here the calibration files from above are used

• the jmeter GUI can be activated at propertyFiles/jmeter.prop

• This program executes the elasticity measurement based on the DLIM load profile
given as input (the amount of resources is now controlled by your controller/AWS
autoscaling configuration).

• BUNGEE executes a sanity check on the measurement data, whether your load driver
machine achieved to send the requests accurately timed.

6

3.2. Property files 7

3.2 Property files

These property files are important for AWS EC2. The other property files additionally
needed for CloudStack based environments.

3.2.1 measurement.prop file

mappingFile=path/file.mapping #the created mapping file of the analysis run

before

numberOfBenchmarkedResources=10 #set the max number of instances that are

spawning

relativePathes=true #true or false

intensityModelFile=path/file.dlim #LIMBO load intensity profile used for the

benchmark

hostPropertiesFile=path/file.prop #for the communication with the host

requestPropertiesFile=path/file.prop #location of the request file for JMeter

warmUpSeconds=300 #duration without measuring

secondsPerTimeUnit=225 #depends on the load profile, here we have a time unit (1

arrival rate value) per 15 minutes - the experiment of simulation one day is

speed up times 4 when using 225 (resulting in 6h experiment time)

3.2.2 host.prop file

hostname=DNS #insert the load balancer DNS here

port=8080 #port for HTTP communication

3.2.3 jmeter.prop file

noGui=true # true or false activates the GUI; also set the jmx file

jMeterPath=path/ApacheJMeter.jar #relative path to the JMeter project

jmxFile=jmx/noGui.jmx #select a jmx you like; depends on the boolean Gui

propertyFile=propertyFiles/jmeter.properties #yet another file for JMeter

properties

3.2.4 request.prop file

arguments for JMeter

problemSize=500000

timeout=1000

7

4. Installation and configuration of
BUNGEE for CloudStack

Please check out the code to get BUNGEE with CloudStack working. Find the places
inside the code where to add needed information (like above). This property files are used
for CloudStack:

• cloudSettings.prop

• netscaler.prop

• cloudstack.prop

Inside the measurement.prop file you should add: cloudStackPropsFile=cloudstack.prop.

8

5. Result analysis

You can use the viewer Plugin (see Figure 5.1) to analyse the results. Also generate and
watch charts, for an example see Figure 5.2.

To enable the viewer plug-in features in Eclipse click on Window → Show View →
Other. . . , select BUNGEE Elasticity Measurement and choose the views you want.

If you click on a BUNGEE generated file inside ”measurement” or ”calibration” you can
see the result in the correspondent view. Be warned – klicking on a runresult file could
take a while, because it contains all the timestamp of sent requests. At the moment you
can not save the figures, because of the itext licence.

5.1 result.runresult file

#

#Tue May 26 11:10:58 CEST 2015 #Timestamp automatically created

responseFile=responses.csv #responses of the benchmark. The file contains: id,

timer start, start, end, response Time, latency, start Wortk, end Work,

duration, result, failed, response Code, Server IP

warmUpSeconds=180.0 #waiting-time after a new instance has started

timestampFile=timestamps.csv #timestamps for the benchmark test. Stamps are

automatically created

Figure 5.1: BUNGEE Eclipse Viewer Plug-In has four differnet Views for different files

9

5.1. result.runresult file 10

Figure 5.2: charts generated by the BUNGEE Eclipse Viewer Plug-In

10

6. Possible Extensions to BUNGEE

• add own metrics that are based on measured response times, throughput, resource
supply/demand changes

• change application type (adapting the jmx-file containing the JMETER test plan)
and connecting BUNGEE to the elastic application in the cloud running behind the
load balancer

• employ other than out-of-the-box controllers that implement the AWS or CloudStack
autoscaling API

• AWS and Cloudstack support is given by now. BUNGEE can be easily extended to
support OpenStack and other cloud management APIs

• Distributed, synchronised execution of several BUNGEE load driver instances to
achieve higher intensities (more than 600 req/sec)

11

7. Final Remarks

Your feedback is highly appreciated. Countless hours of work have been spent for this
work - please cite us if you are using our framework:

Nikolas Roman Herbst, Samuel Kounev, Andreas Weber, and Henning Groenda. BUNGEE:
An Elasticity Benchmark for Self-Adaptive IaaS Cloud Environments. In Proceedings
of the 10th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2015), Firenze, Italy, May 18-19, 2015.

@inproceedings{HeKoWeGr_2015_SEAMS_BUNGEE,

author = {Nikolas Roman Herbst and Samuel Kounev and Andreas Weber and

Henning Groenda},

title = {{BUNGEE: An Elasticity Benchmark for Self-Adaptive IaaS Cloud

Environments}},

keywords = {IaaS, benchmark, metric, cloud, elasticity, resource,

measurement},

booktitle = {Proceedings of the 10th International Symposium on Software

Engineering for Adaptive and Self-Managing Systems (SEAMS 2015)},

day = {18--19},

location = {Firenze, Italy},

month = {May},

year = {2015},

pdf = {http://se2.informatik.uni-wuerzburg.de/pa/uploads/papers/paper-782.

pdf},

slides = {http://se2.informatik.uni-wuerzburg.de/pa/uploads/slides/slides-

paper-782.pdf}

}

For more information please refer to:

BUNGEE IaaS Cloud Elasticity Benchmarking Framework:
http://descartes.tools/bungee

LIMBO Load Intensity Modeling Framework:
http://descartes.tools/limbo

Further Descartes Tools:
http://descartes.tools

12

http://descartes.tools/bungee
http://descartes.tools/bungee
http://descartes.tools/bungee
http://descartes.tools/limbo
http://descartes.tools/limbo
http://descartes.tools/limbo
http://descartes.tools
http://descartes.tools
http://descartes.tools

	Contents
	1 Introduction
	1.1 Requirements

	2 Installation and configuration of BUNGEE for AWS EC2
	2.1 Load Driver system setup
	2.2 AWS EC2 Management Console
	2.3 Images for worker vm instances (Launch configuration)

	3 Getting started
	3.1 BUNGEE Examples
	3.1.1 TestAWS.java
	3.1.2 DetailedAWSAnalysis.java
	3.1.3 RunBenchmarkonAWS.java

	3.2 Property files
	3.2.1 measurement.prop file
	3.2.2 host.prop file
	3.2.3 jmeter.prop file
	3.2.4 request.prop file

	4 Installation and configuration of BUNGEE for CloudStack
	5 Result analysis
	5.1 result.runresult file

	6 Possible Extensions to BUNGEE
	7 Final Remarks

