

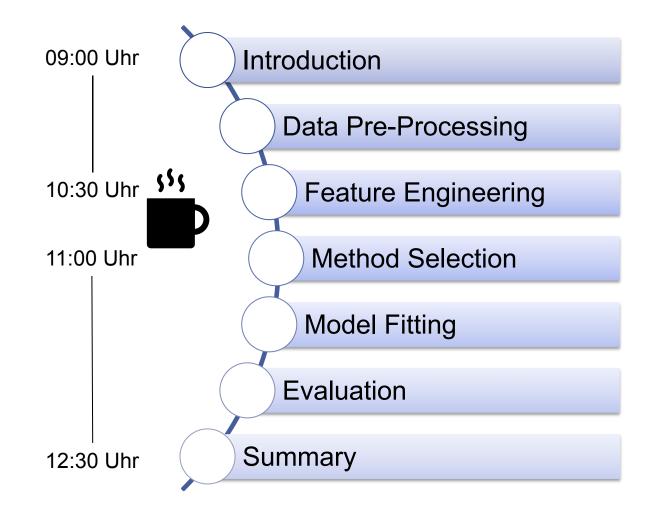
### **Best Practices for Time Series Forecasting**

Presentation by André Bauer & Marwin Züfle

Umeå, June 20, 2019

**Road Map** 





On what you can expect:

- Foundations of Time Series
- Basics of Forecasting
- Basics of Feature Engineering
- Comparing Forecasting Methods
- R Code snippets









André Bauer In 3rd year of PhD Research interests:

- Forecasting
- Elasticity
- Auto-scaling
- Self-aware Computing



- Marwin Züfle In 2rd year of PhD Research interests:
- Forecasting
- Failure
   Prediction
- Data Analytics



Nikolas Herbst Post-Doc Research interests:

- Predictive Data Analytics
- Elasticity
- Serverless

Predictive Data Analytics group is part of Descartes Research (Self-Aware Computing) headed by Samuel Kounev @ University of Würzburg

#### Published

- 1. Forecasting Method Selection: Examination and Ways Ahead @ICAC'19
- 2. Challenges and Approaches: Forecasting for Autonomic Computing @OCDCC'18
- 3. Telescope: A Hybrid Forecast Method for Univariate Time Series @ITISE'17
- 4. Online Workload Forecasting. In Self-Aware Computing Systems @Springer'17 Book chapter

#### **Under Review**

1. Time Series Forecasting: Review and Evaluation of the State-of-the-Art @Invited Article to PIEEE







Installation of R & RStudio

https://cran.rstudio.com/

https://www.rstudio.com/products/rstudio/download/#download

#### # if not installed

install.packages(c("forecast", "devtools", "zoo", "ggm"))

install.packages("xgboost", "randomForest", "e1071")





# Knowing the future makes life easier!

How many

fresh fruits

to order?

Data Pre-Processing Feature Engineerin Method Selection Model Fitting

Summary

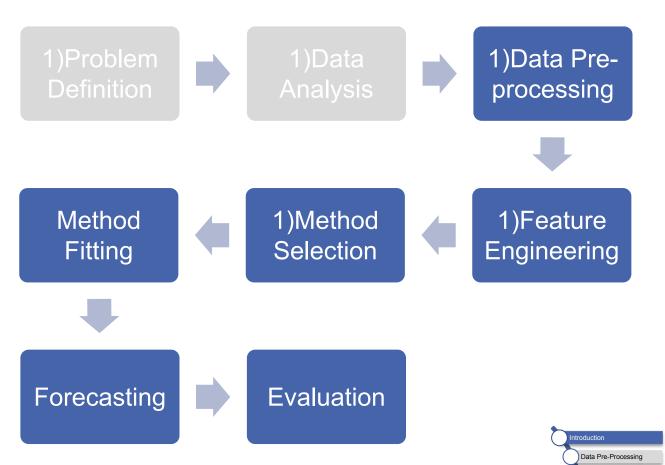
Shop Owner

??

- If shop owner buys
  - Too few fresh fruits, customers are dissatisfied
  - Too many fresh fruits, remaining fruits have to thrown away
- Collect sales figures
  - Analyze purchasing behavior
  - Forecast number of required fruits
- How to forecast and which method?



- **W** Forecasting
  - Expert knowledge
    - Is expensive
    - Cannot be automated
  - "No-Free-Lunch Theorem"
    - There is no forecasting method that performs best
    - Each method has its benefits and drawbacks



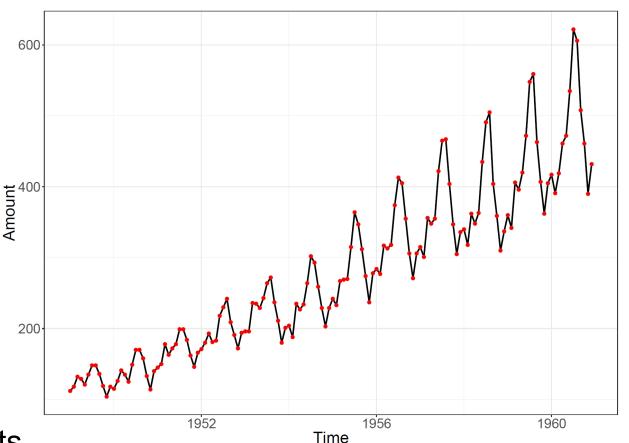


Feature Engineering Method Selection Model Fitting

Summary

# What is a time series?

- Univariate time series
  - $Y := \{yt : t \in T\}$
  - Ordered collection of values over a specific period
  - Equidistant time steps
- Components
  - Trend: long term movement
  - Seasonality: recurring patterns, e.g., produced by humans habits
  - Cycle: rises and falls without a fixed frequency
  - Irregular: statistical noise distribution



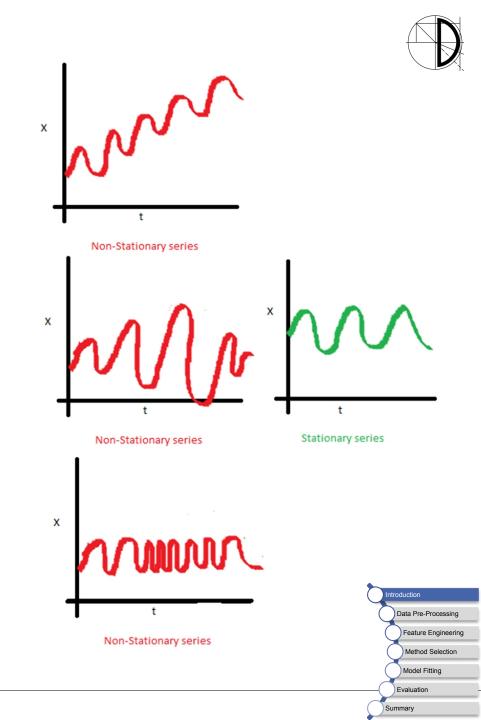
Data Pre-Processin

Model Fitting

Summary

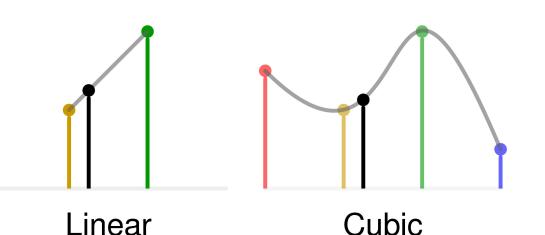
# **Stationarity**

- Most forecasting methods assume
  - Stationarity or
  - Time series can be "stationarized"
- Statistical properties (mean, variance, ...) do not change over time
- In practice
  - Time series have trend and/or season
  - Non-stationary

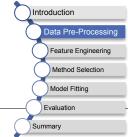


## Missing and problematic values

- Most forecasting methods cannot handle missing values
  - At the beginning: removal
  - In between: reconstruction, e.g., interpolation

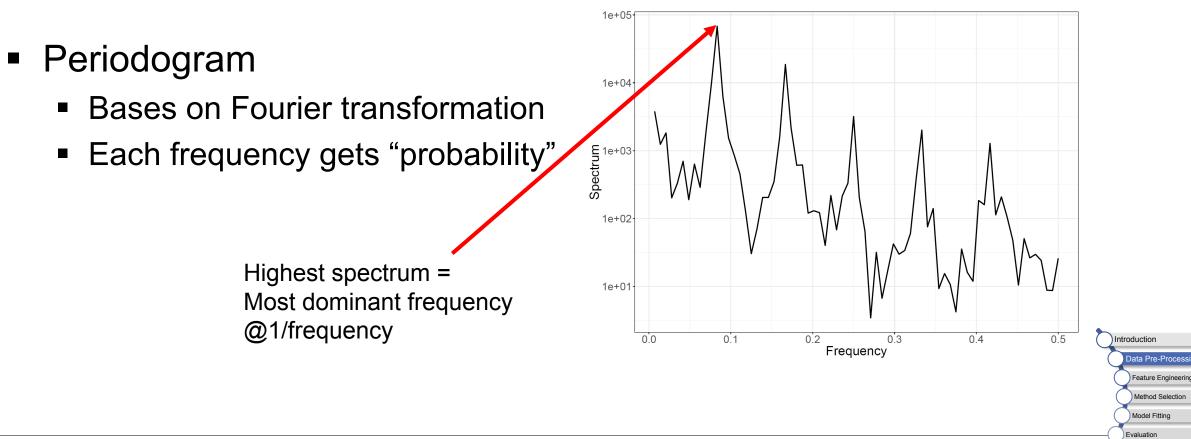


- Some forecasting methods (e.g., ETS) cannot handle negative values
  - Shift time series before forecast to positive
  - Shift time series back after forecast



## Detecting seasonal patterns

- Basic idea in mathematics
  - Break down complex objects into simpler parts
  - Time series is a weighted sum of sinusoidal components



Summary

## Applying a Periodogram

# load package

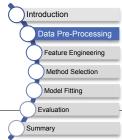
library(forecast)

# plot AirPassengers time series
plot(AirPassengers)

# Creating and plotting the periodogram
pgram <- spec.pgram(as.vector(AirPassengers))
# Building data frame with relevant info
pgram\_df <- data.frame(freq = pgram\$freq, spec = pgram\$spec)
# Determining the top 10 frequencies according to the spectrum
head(1/pgram\_df[order(pgram\_df\$spec, decreasing = TRUE),1],n=10)</pre>



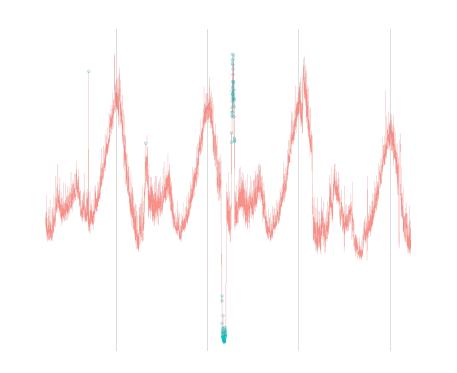




# Anomaly Removal

- To increase accuracy, anomalies can be removed
  - Generalized extreme studentized deviate test
  - Replace anomalies by mean of non-anomaly neighbors
  - Twitter offers package (https://github.com/twitter/AnomalyDetection)
- Detection may be too sensitive and find false-positives





Introduction

Summary

Data Pre-Processia Feature Engineering Method Selection Model Fitting Evaluation



### Find Anomalies

#### # if not installed

devtools::install\_github("twitter/AnomalyDetection")

# load package

library(AnomalyDetection)

#### # add anomalies

air <- as.vector(AirPassengers)</pre>

 $air[c(20,100)] \leftarrow air[c(20,100)] * 5$ 

anom <- AnomalyDetectionVec(air, period=12, direction='both', plot=TRUE)</pre>

data(raw\_data)

```
anom <- AnomalyDetectionVec(raw_data[,2],period=1440,</pre>
```

direction='both', plot=TRUE)





## Feature Engineering



Introduction

Summary

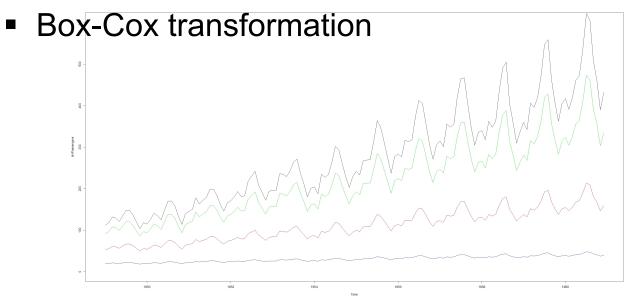
Data Pre-Processi

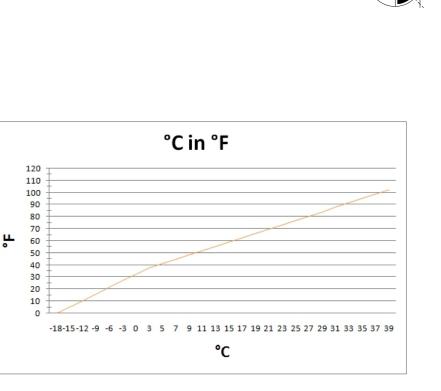
Method Selectio

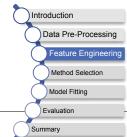
- "At the end of the day, some machine learning projects succeed and some fail. What makes the difference? Easily the most important factor is the features used" [P. M. Domingos 2012]
- Data transformation
  - Simplifies the model
  - May lead to better forecast
- Feature selection
  - Most statistical methods support only the time series
  - Machine learning methods rely on features

## Time Series Transformation

- Time series may be complex
  - High variance
  - Multiplicity effects
- Transformation may lead to easier model
  - Common transformation is logarithm





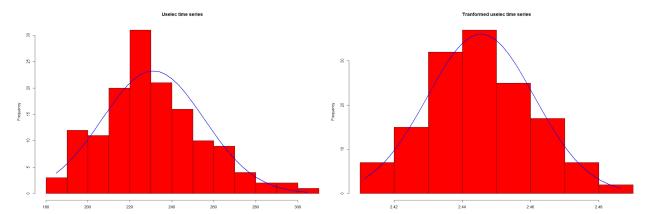


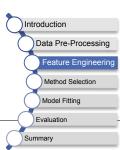
### Box-Cox Transformation

Offers family of power functions:

$$w(t) = \begin{cases} \ln(y), \ \lambda = 0\\ \frac{y(t)^{\lambda} - 1}{\lambda}, \ otherwise \end{cases}$$

- Tries to "normal-shape" the data
- Power parameter λ can be estimated by the method of Guerrero







### **Box-Cox Transformation**

# load package

library(forecast)

timeseries <- AirPassengers

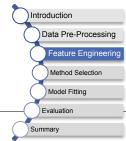
# estimate best lambda

lambda <- BoxCox.lambda(timeseries)</pre>

# transform time series

trans <- BoxCox(timeseries, lambda = lambda)</pre>





### **B** Feature Extraction

Additional info may increase the forecast accuracy

Introduction

Summary

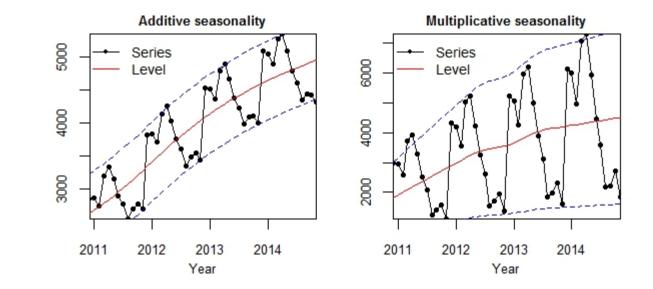
Data Pre-Processing Feature Engineerin Method Selection Model Fitting

- Features from external (correlated) data sources
  - Nearby sensors
  - Weather
  - ...
- Features from the given time series
  - Time series components
  - Fourier terms
  - Categorical information
  - ...

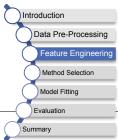
## Time Series Decomposition

- Time series can be break down in different components
  - Trend, season, and irregular
  - Linear and non-linear

- Decomposition is
  - Additive or
  - Multiplicative or
  - Mixed

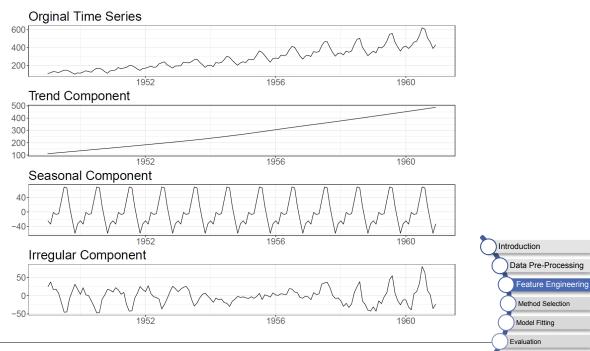


Components can be used as features or for modifying the data



## STL Decomposition

- STL (Seasonal and Trend decomposition using Loess)
  - Trend, season, and irregular
  - Additive
    - Y(t) = T(t) + S(T) + I(t)
    - Y(t) = T(t) \* S(T) \* I(t)is equals to  $\log (Y(t)) = \log (T(t)) + \log (S(t)) + \log (I(t))$
  - Time series must
    - Be seasonal
    - Have at least two full periods
  - Parameter t.window smooths trend





Summary

### Checking Decomposition

# load package

library(zoo)

timeseries <- AirPassengers

# plot time series

plot(timeseries)

#### # get trend

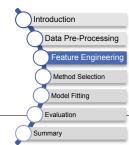
trend<- rollmean(timeseries, frequency(timeseries), fill="extend",</pre>

align = "right")

detrended\_a <- timeseries - trend

```
detrended_m <- timeseries / trend</pre>
```





### Checking Decomposition – Cont'd



#### # get remainder

- seasonal\_a <- mean(detrended\_a, na.rm = TRUE)</pre>
- seasonal\_m <- mean(detrended\_m, na.rm = TRUE)</pre>
- residual\_a <- detrended\_a seasonal\_a
- residual\_m <- detrended\_m / seasonal\_m</pre>

#### # calculate auto-correlations

- acf\_a <- acf(residual\_a)
- acf\_m <- acf(residual\_m)</pre>

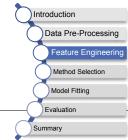
```
if(sum(acf_a$acf^2) < sum(acf_m$acf^2)){
    print('additive decomposition')
</pre>
```

```
} else {
```

```
print('multiplicative decomposition')
```

}





## STL Decomposition

# load package

library(forecast)

timeseries <- AirPassengers

#### # decompose time series

decomp <- stl(timeseries, s.window = 'periodic')
plot(decomp)</pre>

# smooth trend

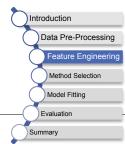
decomp <- stl(timeseries, s.window = 'periodic', t.window =
 length(timeseries)/2)</pre>

plot(decomp)









### STL Decomposition – Cont'd



#### # decompose ts with multiplicative decomposition

decomp <- stl(log(timeseries), s.window = 'periodic')</pre>

plot(decomp)

timeseries <- taylor

# decomposition with different periods

```
decomp <- stl(ts(timeseries, frequency = 24), s.window = 'periodic')</pre>
```

plot(decomp)

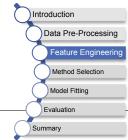
```
decomp <- stl(timeseries,s.window = 'periodic')</pre>
```

plot(decomp)

#### # stl with multiple seasons

```
decomp <- mstl(taylor, s.window = 'periodic')
plot(decomp)</pre>
```





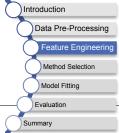


### **Fourier Terms**

 Time series can be written as weighted sum of sinusoidal components

$$f(t) = \frac{a_0}{2} \sum_{k=1}^{\infty} (a_k \cos(kt) + b_k \sin(kt))$$

- For each frequency from Periodogram, Fourier terms can be extracted
  - Approximation of the time series only with dominant frequencies
  - Additional features





# load package

library(forecast)

timeseries <- AirPassengers

# get top 10 frequencies

- pgram <- spec.pgram(as.vector(timeseries))</pre>
- pgram\_df <- data.frame(freq = pgram\$freq, spec = pgram\$spec)</pre>
- freqs <- head(1/pgram\_df[order(pgram\_df\$spec, decreasing = TRUE),1],n=10)</pre>

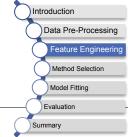
#### # build multi-seasonal time series

mts <- msts(timeseries, seasonal.periods = freqs, ts.frequency =
 frequency(timeseries))</pre>









### 🐺 Fourier Terms – Cont'd

```
# get Fourier terms
```

fourierterms <- fourier(mts, K = rep(1,length(freqs)))</pre>

#### # plot Fourier terms

```
plot(fourierterms[,1], type='l')
```

for(i in 2:20){

```
readline(prompt="Press [enter] to continue")
```

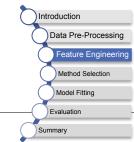
```
lines(fourierterms[,i], col=i)
```

}

#### # continue Fourier Terms

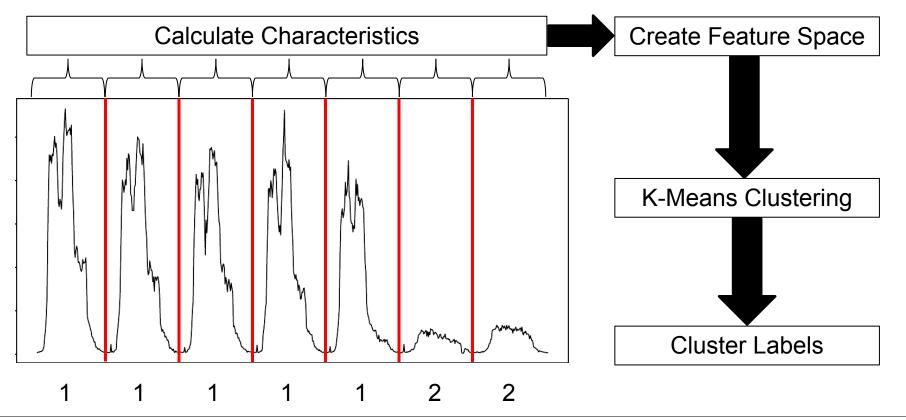
future.fourierterms <- fourier(mts, K = rep(1, length(freqs)), h = 30)</pre>





## Categorial Information

- Idea: cluster periods of time series
  - Split time series into periods
  - Calculate for each period statistical characteristics





Introduction

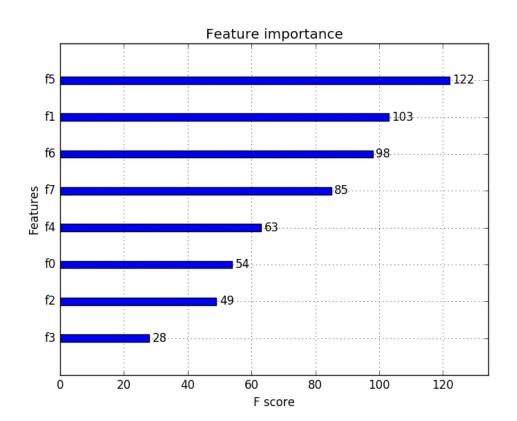
Data Pre-Processing Feature Engineerin

Model Fitting

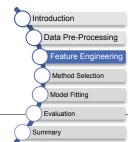
Summary

### **Feature Selection**

- Goal: reduce the number of features
  - Preventing from overfitting
  - Speed up training/prediction time
- Statistical feature selection
  - Correlation, anova, …
- Model-internal feature selection
  - Linear models, tree-based models
- Wrapper methods
  - Forward selection, backward elimination







### Forward Selection Exhausting Search

#### # load libraries

library(forecast)

library(ggm)

30

timeseries <- AirPassengers

split <- ceiling(length(timeseries)\*0.8)</pre>

end <- length(timeseries)</pre>

# get top 3 frequencies

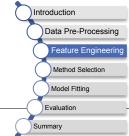
pgram <- spec.pgram(as.vector(timeseries))</pre>

pgram\_df <- data.frame(freq = pgram\$freq, spec = pgram\$spec)</pre>

freqs <- head(1/pgram\_df[order(pgram\_df\$spec, decreasing = TRUE),1],n=3)</pre>









### Forward Selection – Cont'd

#### # build multi-seasonal time series

mts <- msts(timeseries, seasonal.periods = freqs,</pre>

ts.frequency = frequency(timeseries))

# decompose time series

decomp <- stl(timeseries, s.window = 'periodic')</pre>

# get Fourier terms

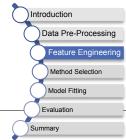
fourierterms <- fourier(mts, K = rep(1,length(freqs)))</pre>

features <- cbind(timeseries,fourierterms,decomp\$time.series[,1:2])</pre>

# get powerset of featuer combinations

feature.powerset <- powerset(1:ncol(features))</pre>







### **Forward Selection – Cont'd**

acc <- c()

```
# wrapper with exhausting search
```

```
for(i in 1:length(feature.powerset)){
```

feature.set <- as.matrix(features[,feature.powerset[[i]]])</pre>

model <- nnetar(timeseries[1:split], xreg = feature.set[1:split,])</pre>

fc <- forecast(model, xreg = feature.set[(split+1):end,])</pre>

```
# get MASE based on validation data
```

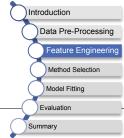
acc[i] <- accuracy(fc, timeseries[(split+1):end])[12]</pre>

}

# get features with lowest MASE

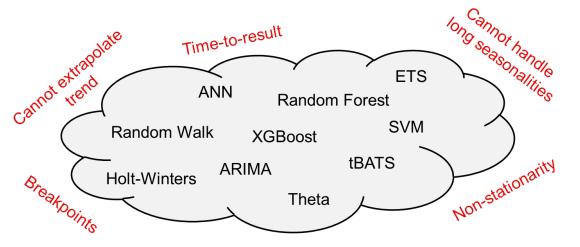
best.set <- features[,feature.powerset[[which(acc == min(acc))]]]</pre>





## Method Selection

- There exist many different forecasting methods
  - Statistical methods
  - Machine learning-based methods
- "No-Free-Lunch Theorem"
  - There is no globally best performing forecasting method
  - Each method has its benefits and drawbacks
- We need additional knowledge on which forecasting method to choose for a particular type of time series





Introduction

Summary

Data Pre-Processing Feature Engineerin Method Selection Model Fitting Evaluation

### Strength & Weaknesses

| $\square$       |   |
|-----------------|---|
| $\bigwedge$     |   |
| $\overline{\ }$ | V |

Introduction

Summary

Data Pre-Processing Feature Engineering Method Selection Model Fitting Evaluation

| Method        | Strengths                                                                                                                   | Weaknesses                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| sNaïve        | <ul> <li>+ almost no run-time</li> <li>+ very easy to use and intuitive forecast</li> </ul>                                 | <ul> <li>provides no useful values for multi-step-ahead forecasting</li> <li>captures no trend</li> </ul>             |
| Theta         | + good for time series with a strong trend                                                                                  | - cannot handle long or multiple seasonalities very well                                                              |
| ETS           | <ul> <li>+ good for time series with a strong trend</li> <li>+ good for detecting sinus-like seasonal patterns</li> </ul>   | <ul> <li>cannot handle long or multiple seasonalities very well</li> <li>requires positive values</li> </ul>          |
| sARIMA        | <ul> <li>+ can handle non-stationary time series</li> <li>+ option to automatically estimate parameters</li> </ul>          | <ul> <li>unpredictable and high run-time for model training</li> <li>insights are limited to parameters</li> </ul>    |
| tBATS         | + can handle complex seasonal patterns                                                                                      | - requires positive values                                                                                            |
| ANN           | <ul> <li>+ can detect non-linear patterns</li> <li>+ data-driven approach</li> </ul>                                        | <ul> <li>tends to overfitting of training data</li> <li>training often computationally expensive</li> </ul>           |
| XGBoost       | + fast run-time<br>+ accurate method                                                                                        | <ul> <li>cannot handle trend data very well</li> <li>requires many hyper-parameter settings</li> </ul>                |
| Random Forest | <ul> <li>+ identifies correlations between features and performance</li> <li>+ integrates overfitting prevention</li> </ul> | <ul> <li>has poor explainability of the result</li> <li>cannot extrapolate trend data very well</li> </ul>            |
| SVM           | <ul> <li>+ use mathematical models to prevent overfitting</li> <li>+ is robust to small data sets</li> </ul>                | <ul> <li>is highly sensitive to hyper-parameter settings</li> <li>training often computationally expensive</li> </ul> |

## How to select a proper forecasting method?



| Expert Knowledge                                                                                                                 | Static Decision Rules                                                                                               | Dynamic Recom. System                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Advantages:<br>• No implementation<br>overhead                                                                                   | <ul> <li>Advantages:</li> <li>Scale with increasing amount of time series</li> <li>Expert knowledge only</li> </ul> | <ul> <li>Advantages:</li> <li>New rules are learned over time</li> <li>Ability to adapt to new</li> </ul> |
| Drawbacks:<br>Expensive                                                                                                          | required in design time                                                                                             | conditions                                                                                                |
| <ul> <li>Does not scale with increasing amount of time series</li> <li>Decision often cannot be explained objectively</li> </ul> | <ul> <li>Drawbacks:</li> <li>Cannot adapt to new conditions</li> <li>Does not gain knowledge over time</li> </ul>   | <ul><li>Drawbacks:</li><li>More complex techniques</li><li>Implementation required</li></ul>              |

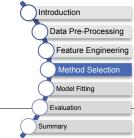


## Static Rules for Method Selection

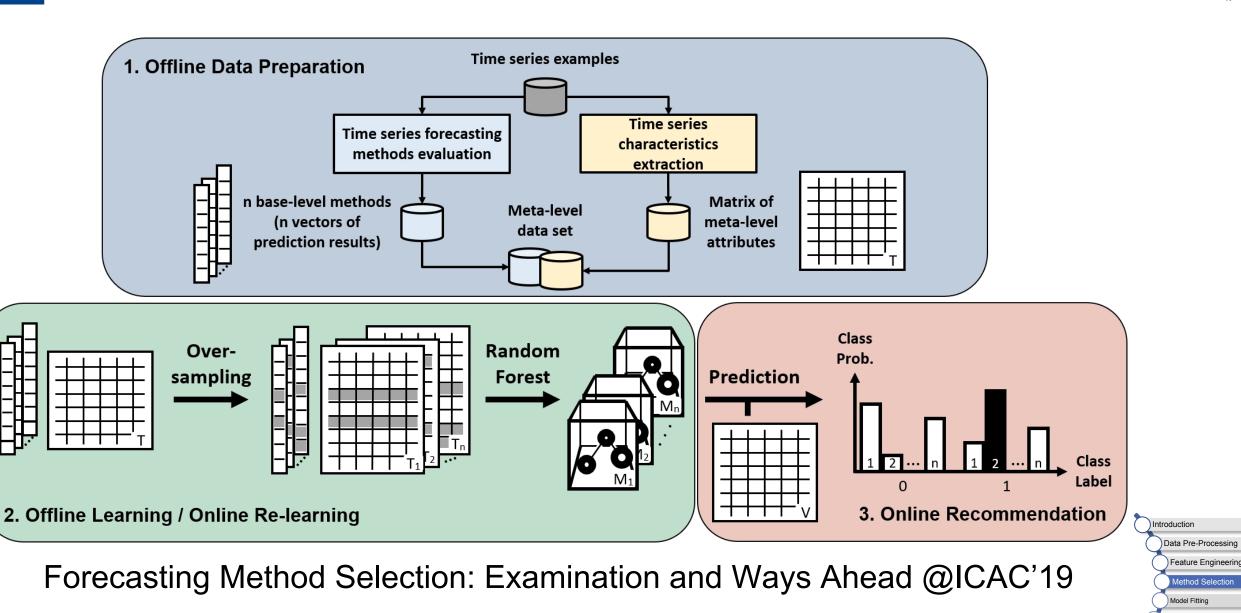


- Calculate time series characteristics
  - Seasonality
  - Trend
  - Skewness
  - Non-Linearity
  - Chaos
  - .

- Define simply rules based on expert knowledge
  - IF (Seasonality > 0.15): Do not use ETS
  - IF (Skewness > 0.70 && Non-Linearity < 0.20): Use ARIMA</p>



# Dynamic Recommendation System



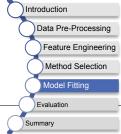
Evaluation

Summary





- Fitting forecasting models in R is very easy since there are many libraries existing:
  - forecast
  - xgboost
  - randomForest
  - e1071
- Parameter optimization:
  - Most statistical forecasting models do not require parameter optimization or it is included in the provided implementation
  - Machine-learning based forecasting methods highly depend on parameter optimization → very time-consuming





library(forecast)

```
history <- ts(train, frequency = freq)</pre>
```

# sNaive

fc <- snaive(history, h = horizon)</pre>

# sARIMA

fit <- auto.arima(history, stepwise = TRUE)</pre>

fc <- forecast(fit, h = horizon)</pre>

#### # ETS

fit <- ets(history)

fc <- forecast(fit, h = horizon)</pre>

#### # tBATS

fit <- tbats(history)</pre>

fc <- forecast(fit, h = horizon)</pre>

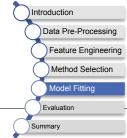
#### # ANN

fit <- nnetar(history)</pre>

fc <- forecast(fit, h = horizon)</pre>







# Model Fitting – Cont'd

# used libraries

library(xgboost)

library(randomForest)

library(e1071)

#### # setting parameters

freq <- frequency(AirPassengers)</pre>

horizon <- 14

train <- ts(AirPassengers[1:130],frequency = freq)</pre>

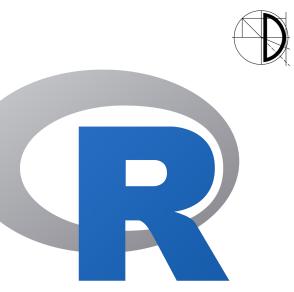
len <- length(train)

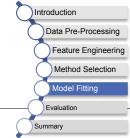
#### # used for method training and prediction

ind <- seq(1,length(train))</pre>

period <- seq(1,length(train)) >>> freq

```
covar <- as.matrix(cbind(ind, period))</pre>
```





### Model Fitting – Cont'd

ind <- seq(len+1,len+horizon)</pre>

period <- seq(len+1,len+horizon) >> freq

future <- as.matrix(cbind(ind, period))</pre>

#### # XGBoost

fit <- xgboost(label = train, data = covar, nround = 10, nthread = 2)</pre>

fc <- predict(fit, future)</pre>

# Random Forest

fit <- randomForest(y = train, x = covar)</pre>

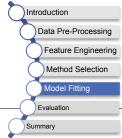
fc <- predict(fit, future)</pre>

#### # SVM

fit  $\leftarrow$  sum(y = train, x = covar)

fc <- predict(fit, future)</pre>





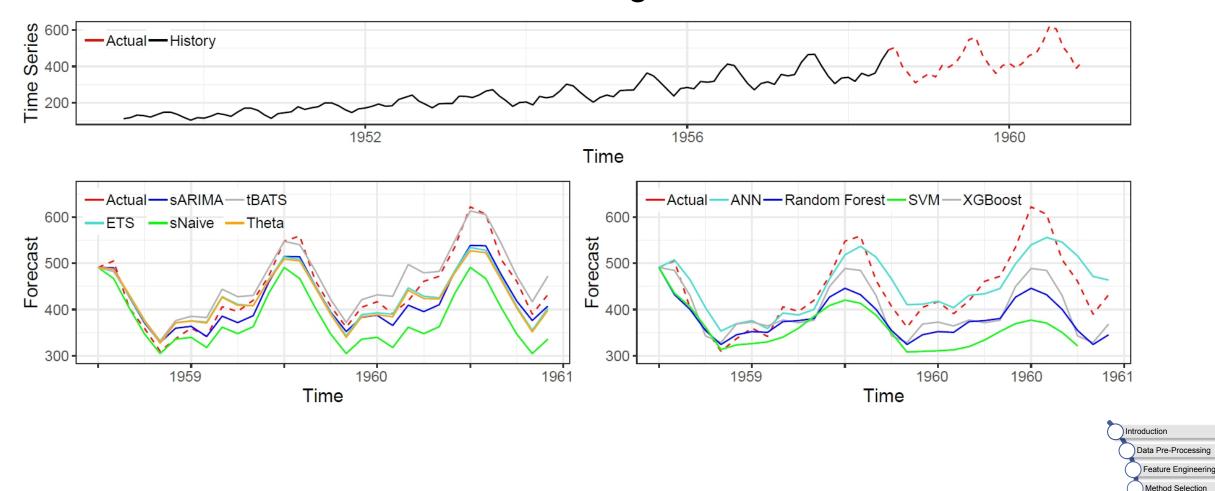




Model Fitting

Summary

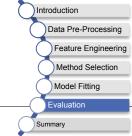
### **AirPassengers**





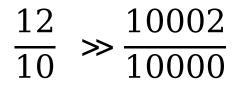


- Assessing forecast performance is a very important task
- Model error
  - Build model
  - Calculate residuals based on history
- Forecast error
  - A-posteriori
    - Comparison against the "future" values
    - Mostly not available
  - A-priori
    - Split time series into train and test set
    - Commonly 80% and 20%



# Error Measure Categories

- Scale-dependent error measures
  - Intuitively while knowing the scale
  - Not suitable for different scales
- Percentage error measures
  - Easy to interpret
  - Scale has impact



Introduction

Summary

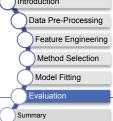
Data Pre-Processing Feature Engineerin Method Selection

- Scaled error measures
  - Normalization with baseline  $\rightarrow$  scale independent
  - Less intuitive to understand





•  $MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - x_i|$ Scale-dependent error measure •  $RMSE = \sqrt{\frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - x_i)^2}$ •  $MAPE = \frac{100\%}{n} \cdot \sum_{i=1}^{n} \left| \frac{y_i - x_i}{x_i} \right|$ Percentage error measure •  $sMAPE = \frac{200\%}{n} \cdot \sum_{i=1}^{n} \left| \frac{y_i - x_i}{y_i + x_i} \right| \int$ •  $MASE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{\frac{n}{n-f} \cdot \sum_{i=f+1}^{n} |x_i - x_{i-f}|}$ Scaled error measure Introduction





#### # used library

library(forecast)

model <- auto.arima(ts(AirPassengers[1:130],</pre>

frequency = 12)

fc  $\leftarrow$  forecast(m, h = 14)

accuracy(fc)

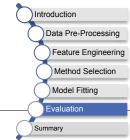
| ME                   | RMSE    | MAE     | MPE    | MAPE    | MASE    | ACF1    |
|----------------------|---------|---------|--------|---------|---------|---------|
| Training set 0.44932 | 9.87073 | 7.45597 | 0.0858 | 2.88924 | 0.24895 | 0.01638 |

accuracy(fc, AirPassengers[131:144])

|              | ME      | RMSE     | MAE      | MPE     | MAPE    | MASE    | ACF1    |
|--------------|---------|----------|----------|---------|---------|---------|---------|
| Training set | 0.44932 | 9.87073  | 7.45597  | 0.0858  | 2.88924 | 0.31360 | 0.01638 |
| Test set     | 0.73502 | 15.17562 | 11.14010 | -0.0154 | 2.45400 | 0.46856 | NA      |



46 André Bauer & Marwin Züfle - Best Practices for Time Series Forecasting



# Comparing Forecasts

Be careful when aggregating forecast error measures

Introduction

Summary

Data Pre-Processing Feature Engineerin Method Selection Model Fitting

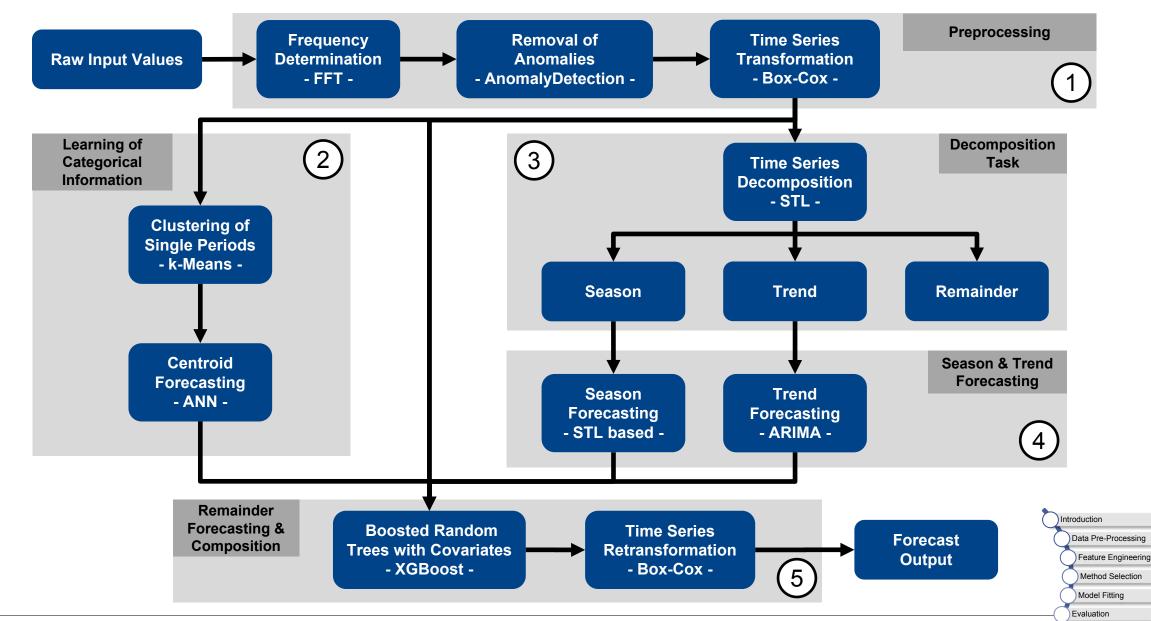
- Varying scales of different time series
- Different treatment of positive and negative errors

- How to aggregate forecast error measures?
  - Keep the forecast horizon equally long
  - Use scaled error measures
  - Normalize the range of time series

### **Putting it together**



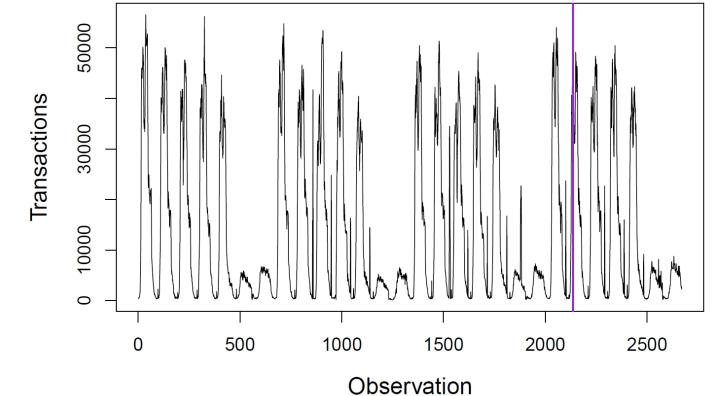
Summary



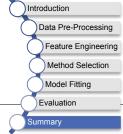
48 André Bauer & Marwin Züfle - Best Practices for Time Series Forecasting







Actual values Left of purple line used for learning right of purple line to be predicted



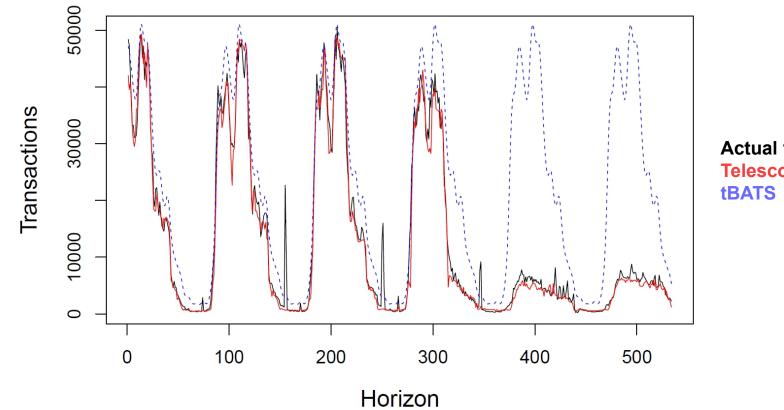




Introduction

Summary

Data Pre-Processing Feature Engineering Method Selection Model Fitting Evaluation



Actual values Telescope

André Bauer & Marwin Züfle - Best Practices for Time Series Forecasting 50



install.packages("devtools")
devtools::install\_github("DescartesResearch/telescope")

#### # Alternative:

```
install.packages("remotes")
```

remotes::install\_url(url="https://github.com/DescartesResearch/

telescope/archive/master.zip",
INSTALL\_opt= "--no-multiarch")

# Loading the library

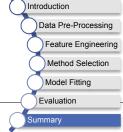
library(telescope)

# Example execution

forecast <- telescope.forecast(AirPassengers, horizon = 10)</pre>











ntroduction

Data Pre-Processing Feature Engineerin Method Selection Model Fitting Evaluation

- Forecasting is an important task for many autonomic systems
- Many existing libraries providing easy-to-use functions
- Preprocessing is always needed
- Feature engineering is essential for achieving accurate forecasts
- The error measure should be carefully selected, taking into account the properties of the aggregation

