
User Guide

Simon Spinner Johannes Grohmann

https://bitbucket.org/librede/librede

February 28, 2019

https://bitbucket.org/librede/librede

Contents

1 Introduction 2

2 Installation 4
2.1 System Requirements . 4
2.2 New Installation . 4
2.3 Update Existing Installation . 5

3 Step by Step Example 7

4 Building and Running LibReDE from Console 14

5 Calling LibReDE from Java source code 15

6 Approaches to Resource Demand Estimation 15
6.1 Estimation Approaches . 15
6.2 State Models . 16
6.3 Observation Models . 16
6.4 Estimation Algorithms . 17

7 Configuration 17
7.1 Workload Description . 17
7.2 Data Sources . 18
7.3 Traces . 18
7.4 Estimation . 19
7.5 Validation . 20
7.6 Output . 21

8 Extension Points 21

9 Known Issues 22

1

1 Introduction

Librede is a library that provides a set of ready-to-use implementations of approaches to
resource demand estimation. In the following, we describe the motivation behind Librede
and give an overview on how to use it.

What are resource demands? Our definition is based on classic queueing theory [6]: a
resource demand (aka. service demand) is the time a unit of work (e.g., request or transaction)
spends obtaining service from a resource (e.g., CPU or hard disk) in a system over all vis-
its. Resource demands are input parameters of widely used stochastic performance formalisms
(e.g., Queueing Networks or Queueing Petri Nets) and of architecture-level performance mod-
els (e.g., Descartes Modeling Language (DML) [4] or Palladio Component Model (PCM) [1]).
Resource demands are random variables and as such follow a certain probability distribution.
In the following, when talking of resource demands we implicitly refer to the mean of the
random variable if not explicitly noted otherwise.

Why would you use estimation approaches? In order to obtain accurate performance
predictions for a system, a performance engineer needs to determine representative values for
the resource demands during performance model construction. State-of-the-art monitoring
tools can only provide aggregate resource usage statistics on a system- or per-process-level.
However, in many applications one process may serve requests of different types with varying
resource requirements (due to different computations, caching, etc.). A very fine-grained
instrumentation of the system would be necessary to monitor resource demands directly.
For many real-world applications this fine-grained monitoring is not feasible as they lack
the required instrumentation capabilities or as the instrumentation would incur too high
overheads. Instead, we can use statistical estimation techniques to estimate resource demands
based on the readily available aggregate monitoring data (e.g., CPU utilization as measured
by the operating system, or average response time). Different approaches to resource demand
estimation using statistical techniques, e.g., linear regression [10], Kalman filtering [14, 13],
or non-linear optimization [9, 7], have been proposed in the literature.

Why should you use Librede? Existing approaches to resource demand estimation differ
in their expected input measurements, their resulting outputs and their robustness to data
anomalies. As shown in [11], the applicability of certain approaches and the expected accuracy
depends heavily on the system under study. For instance, in [11] we show that the relative
error of the estimated resource demand can vary between less than 5% and over 100% between
different estimation approaches. Therefore, the selection of a suitable estimation approach is
very important to obtain reliable performance predictions from a performance model. How-
ever, there were no publicly available implementations of the proposed estimation approaches,
making comparisons between them difficult as one would have to first implement the different
estimation approaches.

Librede provides a library of ready-to-use implementations of different estimation ap-
proaches, based on Kalman filtering, linear regression, and non-linear optimization techniques.
Performance engineers are relieved from the time-consuming and error-prone implementation
of estimation approaches. Thus, Librede simplifies the selection and application of approaches
to resource demand estimation for a given system under study. Furthermore, it provides a

2

framework reducing the effort to implement additional, novel estimation approaches through
reuse of common functionality.

What are the main features of Librede? Librede supports performance engineers with
the following features:

• It contains ready-to-use implementations of 8 estimation approaches (namely response
time approximation, service demand law [2], 2 variants of linear regression [10, 5],
2 variants of Kalman filter [13, 14], and 2 variants of nonlinear optimization [9, 8]).
Additional estimation approaches can be added through extension points.

• The measurement data which is the input of the estimation is read from standard CSV
files. It also offers an extension point to implement additional importers for custom file
formats.

• Using cross-validation, the accuracy of the estimated resource demands can be evaluated
enabling the comparison of different approaches.

• The resulting resource demands can be exported to CSV files. Additional output formats
can be added through an extension point.

• It offers configuration parameters to customize and optimize the estimation (e.g., step
size, window size, recursive optimization, approach-specific parameters, etc.).

• An Eclipse-based editor can be used for configuring the estimation (describe workload,
configure input data, select estimation approaches, adapt configuration parameters,
etc.). The configuration can be saved in a file for later reuse.

• It provides a Java API that allows the integration of resource demand estimation into
custom applications. The configuration is provided by an EMF model.

How can you execute Librede? There are different modes in which you can execute
Librede:

• The Eclipse editor provides a convenient way to create the estimation configuration
and execute the estimation approaches. This mode is targeted at offline analysis, when
manually for, e.g., design-time analysis or offline capacity planning purposes. The
input measurement data needs to be obtained beforehand by running experiments in a
dedicated test environment or using monitoring traces from a production system.

• The standalone console interface enables the execution of Librede outside of Eclipse
assuming an existing estimation configuration, created using the Eclipse editor.

• The Java API enables the integration of resource demand estimation in custom pro-
grams. In this mode, Librede can be used for online analysis, i.e., new measurements
are continuously coming in and the resource demands are updated recursively in a cer-
tain interval. For instance, this mode can be used to build autonomic and self-aware
systems [3] using performance models to evaluate the impact of changes in the environ-
ment on the system performance and automatically adapt their resource allocation.

3

What are the license terms? All Librede source code files are copyright by the contrib-
utors. Librede is distributed as open-source software under the terms of the Eclipse Public
License (EPL) 1.0 (see https://www.eclipse.org/legal/epl-v10.html).

The library uses open-source third-party libraries. We especially acknowledge the creators
of these libraries:

• CERN - European Organization for Nuclear Research, Colt library (http://acs.lbl.
gov/ACSSoftware/colt/).

• Bayes++ (http://bayesclasses.sourceforge.net/Bayes++.html).

• COIN-OR Ipopt [12] (https://projects.coin-or.org/Ipopt).

• NNLS (http://www.netlib.org/lawson-hanson/all)

2 Installation

2.1 System Requirements

In order to install Librede, your system needs to meet the following prerequisites:

• Operation System: Windows 7/8/10 32-bit or 64-bit, Linux 64-bit (MacOS X and Linux
32-bit are currently not supported)

• Java Runtime Environment: at least 1.6 (on Linux only 64-bit version supported)

• Eclipse: Eclipse Standard 4.4 or higher (download from http://www.eclipse.org/

downloads/)

• Other: On Linux please ensure that the library gfortran is installed. On Windows
Librede comes with its own version.

2.2 New Installation

Your can install Librede in as an Eclipse plugin with an update site. Follow these steps:
• In Eclipse go to menu ”Help → Install new Software”

4

https://www.eclipse.org/legal/epl-v10.html
http://acs.lbl.gov/ACSSoftware/colt/
http://acs.lbl.gov/ACSSoftware/colt/
http://bayesclasses.sourceforge.net/Bayes++.html
https://projects.coin-or.org/Ipopt
http://www.netlib.org/lawson-hanson/all
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/

• Add a new repository with https://se4.informatik.uni-wuerzburg.de/librede/

downloads/snapshot/ as location.

• Mark the Librede feature for installation and click next.

• Accept the license agreement.

• Confirm the security warning.

• After completion, restart Eclipse.

2.3 Update Existing Installation

To update an existing installation of the Librede Eclipse plugin follow these steps:

• In Eclipse go to menu ”Help → Check for Updates”

5

https://se4.informatik.uni-wuerzburg.de/librede/downloads/snapshot/
https://se4.informatik.uni-wuerzburg.de/librede/downloads/snapshot/

• Wait for the Eclipse operations to complete.

• IF a Librede update is available: proceed. ELSE No update is available.

• Accept the license agreement.

• Confirm the security warning.

6

• After completion, restart Eclipse.

3 Step by Step Example

This section explains the usage of Librede with a step-by-step example.

• Create a new project in your workspace.

• Download example files from https://bitbucket.org/librede/librede/downloads/

LibredeExamples.zip and extract the archive to your hard disk.

• Import the measurement traces from the downloaded ZIP archive into your project.

• Check the structure of the imported measurement traces. The traces are standard CSV
files with two or more columns. The first column contains a unix timestamp (counting
seconds from 1.1.1970), the second and any other columns contain measurements from
a system.

7

https://bitbucket.org/librede/librede/downloads/LibredeExamples.zip
https://bitbucket.org/librede/librede/downloads/LibredeExamples.zip

The monitoring data must be available as time series data with associated timestamps
for each sample. The library can work on time series with individual events (e.g., arrival
times and response times of individual requests) or on fixed sampled time-aggregated
data (e.g., average response times or average throughput). If the input data consists
of time series with individual events, the library automatically computes the required
time-aggregated data.

• Create a new Librede estimation model in this project using the wizard ”Librede Esti-
mation Model” (see screenshots below). A complete estimation model can be found in
the examples ZIP archive. However, note that the configuration just serves as an ex-
ample and does not work right away (as the file-paths have to be adapted). Therefore,
we will create a new estimation model in the next steps.

8

• The estimation approaches require a description of the workload of the system un-
der study. The workload description consists of the services (also known as workload
classes), which are distinguished during estimation, and the resources for which resource
demands will be estimated. Add services WC0, WC1, WC2 and resource Host1 in the
workload description. Set number of servers to 1 and the scheduling strategy to ”Un-
kown”, as we do not want to make any assumptions on the scheduling strategy.

9

• Go to page Data Sources and add a new datasource with default values. The name
property is just for easier identification. The separator char may be changed depending
on the format of the CSV files used.

• In the next step you define the input measurement traces. Go to page Traces in the
editor and add a new measurement trace.

10

Now select the newly created trace and edit the details. Set the Metric to “response
time”. For File, select the path to ”experiment1 WC0 RESPONSE TIME.csv” in the
current project. Select the previously created data source. The measurements are given
in seconds, so for Unit, we select “s (seconds)”. Our traces are not aggregated, therefore
we set Aggregation to “NONE” and the interval to 0 seconds. This means that the ob-
servations are not aggregated over a time-interval (i.e., in our case we have the response
times of individual requests). Then, add a mapping to specify the association to service
WC0. Column index 1 refers to the first non-timestamp column. Repeat these steps for
WC1 and WC2. Make sure, that the other traces map to their corresponding entities
(WC1 and WC2, respectively).

• Next, add a fourth trace describing the CPU Utilization of Host1. Create a new trace
with metric ”Utilization” and select file ”host1 CPU UTILIZATION.csv”.

11

We use the same data source as for all other traces. Leave Unit ’ to “(no unit)” as the
utilization is given as a relative share. Our measurement traces describe the average
utilization over the last 30 seconds. Therefore, set the aggregation to “AVERAGE” and
the interval to 30 seconds. Create a mapping between resource ”host1” and column 1.

• Next, switch to page Estimation to configure the estimation approach(es) and set the
estimation interval.

The step size defines in which interval the estimates are updated. If there are traces
with aggregated measurements, the step size must be equals or larger than their aggre-
gation interval. However, the step size should not be too large as this may be result in
too few samples for estimation. Use 120 seconds for this example.

• The start date and end date needs to specified based on the timestamps in the input
measurement traces. Choose a start date of 01.06.2013 13:52:30 and an end date of
01.06.2013 14:49:00 for our example. Note that these timestamps get converted to unix
timestamps (as shown below the dates) according to your local timezone. However,
the given timestamps have to match to the timestamps in the measurement traces.
The example traces were measured in CEST (UTC+2). Therefore, make sure to adapt
the given timestamps to your timezone, or (preferably) just enter the unix timestamps
1370087550 as start and 1370090940 as end date. The date will the adapt accordingly.

• The recursive execution flag determines whether the resource demands at the end of each
estimation interval will be written to the output or only the final result. The parameter
window size can be used to control the maximum number of samples considered for
estimation. Set the window size to 60 in the example. The flag Automatic Approach
Selection automatically analyses the results and recommends the favorable approach.
Disable both flags for this example.

12

• Check that all estimation approaches are activated. Some of the estimation approaches
are configurable to optimize approach-specific parameters. Use the default values here.

• Switch to page Validation. Ensure that the k-fold Cross-Validation is enabled and set
the number of folds to 5. Also, ensure that Response Time Validator and Utilization
Law Validator (absolute) are enabled.

13

• Go to page ”Output” to configure the persistency of the results. Add a new CSV
export. The name property is just for easier identification. Set the output directory to
a directory of your choice. The value of property file name prefix will be prepended to
each created output file. Set it to ”estimates”.

Note: It is not necessary to configure a file output. If you are fine with console output,
you can skip this step.

• Start the estimation by clicking the green arrow in the upper right corner of the editor.

• The results of the estimation and the cross-validation are printed to the console and the
output files.

Note that your results are probably not identical to the ones shown here. Execution
result can differ slightly for every execution. This is due to random selections of the k
validation folds and random states of some individual estimators.

And the generated output-files should be in the folder that you configured previously.

4 Building and Running LibReDE from Console

It is also possible to run LibReDE from console. For this, you have to first download and
compile the source files it using Maven. This can be done by the following steps:

1. Clone the git repository from Bitbucket: “git clone https://bitbucket.org/librede/librede.git”

2. (Optional) Checkout the development branch: “git checkout develop”

3. Switch to the “tools.descartes.librede.releng” directory inside the downloaded “librede”
directory.

4. Execute the maven packaging: “mvn clean install -DskipTests”.

5. Switch to the “tools.descartes.librede.releng.standalone/target/standalone/console” di-
rectory and execute “librede.bat” or “librede.sh”. You need to provide a valid librede
configuration file to be executed.

14

5 Calling LibReDE from Java source code

The main functionality is encapsulated inside the Librede class in the tools.descartes.librede
package. Here, you have different methods for executing LibReDE. The easiest one would be
the static method execute(LibredeConfiguration conf). It accepts a LibredeConfiguration
as created by the GUI editor. However, this is just an XML-file that has to match the defined
EMF-structure and can therefore also manipulated with any standard text editor. After termi-
nation, execute(LibredeConfiguration conf) will return an instance of LibredeResults,
containing the estimates along with the error values in the different validation folds.

Any appropriate file can be loaded using the static method loadConfiguration(Path

path). This method tries to load the file on the given path and returns a LibredeConfiguration,
if valid. The configuration implements a normal object structure. Therefore, it is also possi-
ble to modify or create LibredeConfiguration objects using normal Java commands, since
EMF (Eclipse Modeling Framework) was used here. Its meta-model definition can be found
in tools.descartes.librede.model

6 Approaches to Resource Demand Estimation

An estimation approach in Librede consists of the following three separate building blocks:
state model, observation model, and estimation alogrithm. In the following we describe these
components in more detail and document the currently available implementations.

6.1 Estimation Approaches

Table 6.1 shows for each estimation approach currently implemented by Librede which imple-
mentations of the state model, observation model and estimation algorithm are used. Details
on the implementations can be found in the following sections.

Table 1: The table shows which implementations of state model, observation model and
estimation algorithm are used by an estimation approach.

Estimation Approach State Model Observation
Model

Estimation
Algorithm

Service Demand Law Constant Service De-
mand Law

Simple approximation

Approximation with Response
Times

Constant Response time
approximation

Simple approximation

Least-squares Regression using
Utilization Law

Constant Utilization Law Nonneg. least squares
regression

Least-squares Regression using
Queue Lengths and Response
Times

Constant Response time
equation

Nonneg. least squares
regression

Kalman Filter using Utiliza-
tion law

Constant Utilization Law Kalman Filter

Kalman Filter using Response
times and Utilization

Constant Response time
equation, Uti-
lization Law

Kalman Filter

Recursive Optimization using
Response Times

Constant Response time
equation

Interior-point,
non-linear, constrained
optimization

Recursive Optimization using
Response Times and Utiliza-
tion

Constant Response time
equation, Uti-
lization Law

Interior-point,
non-linear, constrained
optimization

15

6.2 State Models

The state model contains information about the hidden state vector x that should be esti-
mated. In our case the hidden state are the resource demands. The state model contains the
following information:

• The size of the vector of resource demands to be estimated. The size is usually set to
M ·N where M denotes the number of resources and N the number of services.

• A set of constraints encoding additional knowledge of the value of certain resource
demands. For example, it is possible to specify certain upper and lower bounds on the
resource demands.

• Initial values for the resource demand estimates. This is used by Kalman filter tech-
niques and nonlinear optimization technique as starting point.

• A function xn+1 = f(xn) that returns the expected next state vector xn+1 based on the
current estimated state vector xn. This can be used to encode additional knowledge
about changes in the resource demands. Currently, only the Kalman filter techniques
can exploit such knowledge.

Librede currently provides one implementation of a Constant State Model, where xn+1 =
xn is assumed.

6.3 Observation Models

The observation model describes the function yn = h(xn) between the current state vector
xn and the current observations vector yn. The observations vector yn consists of values
observed at the system of interest (e.g., average response time or CPU utilization). The
function h is is the combination of different output functions. The following output equations
are currently provided by Librede:

• Response time approximation: approximates the resource demand Di,c of workload class
c at resource i with the observed response time Ri,c of workload class c at resource i.
This is only valid if queueing delays are insignificant.

• Service Demand Law: the resource demand Di,c of workload class c at resource i)

is Di,c =
Ui,c

Xi,c
(Ui,c: utilization due to workload class i, and Xi,c is the throughput

of workload class c at resource i). The utilization Ui,c is derived from the aggregate
utilization Ui using the apportionment scheme used in [2].

• Utilization Law: the relationship between the average utilization Ui of resource i and
the resource demands is Ui =

∑C
c=1Xi,c · Di,c (C: is the number of workload classes,

Xi,c is the throughput of workload class c at resource i, and Di,c: resource demand of
workload class c at resource i).

• Response time equation: the relationship between the end-to-end response time Rc of
workload class c and the resource demands is Rc =

∑I
j=1

Dj,c

1−
∑C

k=1 λi,k·Di,k
(I: number

of resources, C: number of workload classes, λi, c: arrival rate of workload class c at
resource i, and Di,c: resource demand of workload class c at resource i).

16

6.4 Estimation Algorithms

The estimation algorithm takes the state model and the observation models and then estimates
the resource demands using statistical techniques. Librede currently provides the following
estimation algorithms:

• Simple approximation: approximates the resource demand with the average, maximum,
minimum or sum of the output of the observation model.

• Nonnegative least squares regression: only applicable to observation models with a single
output.

• Kalman filter: applicable to all non-linear observation models with no state constraints.
Uses the Bayes++ library.

• Interior-point, non-linear, constrained optimization: applicable to all kinds of state and
observation models. Uses the Ipopt library.

7 Configuration

This section describes all configuration parameters that can be changed with the editor. The
editor (and the corresponding configuration file) consists of multiple pages. In total there are
six configuration pages:

1. Workload Description

2. Data Sources

3. Traces

4. Estimation

5. Validation

6. Output

In the following, we will elaborate on each of those.

7.1 Workload Description

The workload description contains information about the workload that is estimated here.
This includes information about which services exist, how these service are connected, what
resources exist (type and number of servers), and which services are executed on which re-
sources. Parameters are listed in the following table.

Parameter Description

Services
Name A human-readable identifier for the service.
Background Service Whether or not this service runs in the background.

Resources

17

Parameter Description

Name A human-readable identifier for the resource.
Number of Servers The number of servers processing requests in parallel (e.g., number

of cores of a CPU).
Scheduling Strategy A scheduling strategy that best models the processing at the re-

source. This information may be exploited by some of the estima-
tion approaches. If set to unkown, the estimation approaches do not
make any assumptions on the scheduling.

7.2 Data Sources

The data sources describe the type of data source that will be used for this estimation.
Detailed configuration parameters for each data source are listed in the following table.

Parameter Description

CSV Data Source
Name A human-readable identifier for the data source. Only for the display

on the user interface.
Separators A Java regular expression for matching the separator chars in the

CSV file.
Skip First Line Determines whether the first non-comment line in the CSV file is

interpreted as data values. Comments are expected to start with
“#”.

Timestamp Format The format of the timestamp of all traces of this data source.
The timestamp format can be either a pattern as expected by
java.util.SimpleDataFormat, or if it is a numerical timestamp, a spec-
ifier of the form [xx] where xx specifies the time unit, e.g., [ms].

Number Locale The locale of the number as to be interpreted by Java. Default value
is “en US”.

Other (custom) data source types might support more and/or different parameter sets.

7.3 Traces

This page describes single data source instances (e.g., files), what data types and aggregations
each trace contains as well as which service or resource (as specified in the workload descrip-
tion) it is referring to. For each trace, you have to specify different parameters as defined in
the following table.

Parameter Description

Measurement Trace
Metric Specifies the metric of the measurements in the trace.
File A path to a file containing measurement data. Only for the display

on the user interface.

18

Parameter Description

Data Source Reference to a data source that is used to load the contents of the
file.

Unit The unit of the data of the trace. Available options are usually
dependent on the chosen metric.

Aggregation The measurement data is often provided as aggregated values over a
fixed sampling interval. The interval specifies the time duration over
which the data in the file is aggregated. If set to NONE, the data
is assumed to be non-aggregated, i.e., the values represent measure-
ments of individual requests (e.g., in the case of response time).

Interval The time interval of one aggregated and reported metric (amount
and unit). This is ignored, if Aggregation is set to NONE.

Mapping The mapping specifies the associated entity of the workload descrip-
tion (service or resource) for each column in the trace. A mapping
indicates that the observations in the measurement trace correspond
to the specified resource or service.

7.4 Estimation

This page is for specifying the actual estimation. Here you can specify several parameters
concerning the estimation approaches, next to selecting which approaches to execute. Some
settings apply for all algorithms, while some parameters are specific to certain estimation
algorithm types. The description of all available parameters can be found in the following
table.

Parameter Description

Interval Settings
Step Size The step size specifies the time interval in which the es-

timates are updated. If an estimation approach is based
on time-aggregated measurements, this parameter also de-
termines the aggregation interval of its input data. This
aggregation interval can be changed independently from
the aggregation interval of the input measurement traces.
If both intervals are different, the input data will be con-
verted accordingly. However, the step size must be greater
or equal to the aggregation interval of the input measure-
ments and should ideally be a multiple of it in order to
avoid inaccuracies.

Start Date Any measurements before that date will not be included in
the estimation. The time here refers to the timestamps in
the input time series. There exists a button to automati-
cally detect the start time from the input files.

19

Parameter Description

End Time Any measurements after that date will not be included in
the estimation. The time here refers to the timestamps in
the input time series. There exists a button to automat-
ically detect the start time from the input files. You can
also configure the end time to be in the future. This is es-
pecially important, when online and continuous execution
is targeted.

Recursive Estimation If this flag is set, all transient resource demands estimates
will be output. Otherwise only the end result will be given.

Approach Selection Enables automatic approach selection. If set to true, all
estimation approaches will be executed and the best one
chosen based on cross-validation.

Window Size Defines the size of the sliding window on the input mea-
surements for recursive estimation. The size is specified in
number of step (i.e., the product of window size and step
size gives the actual sliding time window). Smaller values
will improve the adaptivity of the estimator if the resource
demands change over time. However, it may result in lower
accuracy, if the window is too small.

Kalman Filter
State Noise Covariance A constant value used to fill the state noise covariance vec-

tor qk. This is an internal parameter of Bayes++ for the
prediction of the next state xk|k−1 = xk−1|k−2 +Gkwk. The
vector qk is the covariance of wk.

State Noise Coupling A constant value used to fill the state noise coupling ma-
trix Gk. This is an internal parameter of Bayes++ for the
prediction of the next state xk|k−1 = xk−1|k−2 +Gkwk.

Observe Noise Covariance A constant value used to fill the diagonal of the observe
noise covariance matrix. This is an internal parameter of
Bayes++.

Recursive Optimization
Solution Tolerance Desired convergence tolerance of the solution.
Upper Bounds Infinity Value Values greater than this value are considered as infinity.
Lower Bounds Infinity Value Values smaller than this value are considered as negative

infinity.
Log verbosity Sets the default verbosity level for console output. The

larger this value the more detailed is the output. The valid
range for this integer option is 0 ≤ print level ≤ 12 and
its default value is 5.

7.5 Validation

On the validation page, different options for validating the acquired estimates are configurable.
Next to selecting the different validators to apply, the following options are possible.

20

Parameter Description

Cross-Validation Settings
k-fold Cross-Validation If enabled, a k-fold cross validation is executed after estimation.
Number of Folds Specifies k, the number of folds for the cross-validation. The

cross-validation splits the input time series into k randomly
chosen, equally sized folds and uses each fold once for valida-
tion.

Additional (custom) validators might offer further parameter settings.

7.6 Output

In the last section, you can specify type and location of the output (apart from logging to
console).

Parameter Description

CSV Export
Name A human-readable identifier for the exporter. This is only relevant for

the user interface.
Output Directory The directory where the output files should be stored.
File Name Prefix A prefix that is prepended to the name of all generated files.

Other (custom) exporters might offer further parameter settings.

8 Extension Points

Librede provides a set of interfaces that can be implemented to extend its functionality. The
following extensions are currently supported:

• tools.descartes.librede.repository.IMetric: Provide additional metrics that are
supported as input data.

• tools.descartes.librede.datasource.IDataSource: Support additional file formats
for the input measurement traces.

• tools.descartes.librede.approaches.IEstimationApproach: Create new estima-
tion approaches.

• tools.descartes.librede.validation.IValidator: Create new validators to evalu-
ate the accuracy of the resource demand estimates.

• tools.descartes.librede.export.IExporter: Support additional file formats for the
output.

The class tools.descartes.librede.registry.Registry can be used to register new
extensions. For more details see source code and javadocs.

21

9 Known Issues

This section contains a list of known bugs and issues that might be addressed in further
releases. If you encounter any problems or bugs, not yet listed here, please contact the
maintainers of LibReDE (see http://descartes.tools/librede).

• Approaches based on “Recursive Optimization” can not be executed in parallel.

References

[1] S. Becker, H. Koziolek, and R. Reussner. The palladio component model for model-driven
performance prediction. Journal of Systems and Software, 82:3–22, Jan 2009.

[2] F. Brosig, N. Huber, and S. Kounev. Automated extraction of architecture-level perfor-
mance models of distributed component-based systems. In 26th IEEE/ACM Intl. Conf.
On Automated Software Engineering, Nov 2011.

[3] Samuel Kounev, Fabian Brosig, Nikolaus Huber, and Ralf Reussner. Towards self-aware
performance and resource management in modern service-oriented systems. In Proceed-
ings of the 7th IEEE International Conference on Services Computing (SCC 2010), July
5-10, Miami, Florida, USA. IEEE Computer Society, July 2010.

[4] Samuel Kounev, Brosig Fabian, and Huber Nikolaus. Descartes meta-model (dmm).

[5] Stephan Kraft, Sergio Pacheco-Sanchez, Giuliano Casale, and Stephen Dawson. Estimat-
ing service resource consumption from response time measurements. In VALUETOOLS
’09, pages 1–10, 2009.

[6] Edward D Lazowska, John Zahorjan, G Scott Graham, and Kenneth C Sevcik. Quan-
titative system performance: computer system analysis using queueing network models.
Prentice-Hall, Inc., 1984.

[7] Z. Liu, L. Wynter, C. Xia, and F. Zhang. Parameter inference of queueing models for it
systems using end-to-end measurements. Perf. Eval., 63(1):36–60, 2006.

[8] Zhen Liu, Laura Wynter, Cathy H. Xia, and Fan Zhang. Parameter inference of queueing
models for IT systems using end-to-end measurements. Perform. Evaluation, 63(1):36–
60, 2006.

[9] D. Menascé. Computing missing service demand parameters for performance models.
In Proc. of the 2008 Computer Measurement Group (CMG) Conference, pages 241–248,
2008.

[10] J. Rolia and V. Vetland. Parameter estimation for performance models of distributed
application systems. In Proc. of the 1995 conf. of the Centre for Advanced Studies on
Collaborative research, page 54. IBM Press, 1995.

[11] Simon Spinner. Evaluating approaches to resource demand estimation. Master’s the-
sis, Karlsruhe Institute of Technology (KIT), Am Fasanengarten 5, 76131 Karlsruhe,
Germany, 7 2011.

22

http://descartes.tools/librede

[12] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical Programming,
106(1):25–57, 2006.

[13] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong. Application-level cpu con-
sumption estimation: Towards performance isolation of multi-tenancy web applications.
In 2012 IEEE 5th Intl. Conf. on Cloud Computing, pages 439–446, Jun 2012.

[14] T. Zheng, M. Woodside, and M. Litoiu. Performance model estimation and tracking
using optimal filters. IEEE Trans. on Soft. Eng., 34(3):391–406, 2008.

23

	Introduction
	Installation
	System Requirements
	New Installation
	Update Existing Installation

	Step by Step Example
	Building and Running LibReDE from Console
	Calling LibReDE from Java source code
	Approaches to Resource Demand Estimation
	Estimation Approaches
	State Models
	Observation Models
	Estimation Algorithms

	Configuration
	Workload Description
	Data Sources
	Traces
	Estimation
	Validation
	Output

	Extension Points
	Known Issues

