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Abstract—Performance models are used increasingly throughout the phases of the software engineering lifecycle of distributed

component-based systems. However, as systems grow in size and complexity, building models that accurately capture the different

aspects of their behavior becomes a more and more challenging task. In this paper, we present a novel case study of a realistic

distributed component-based system, showing how Queueing Petri Net models can be exploited as a powerful performance prediction

tool in the software engineering process. A detailed system model is built in a step-by-step fashion, validated, and then used to

evaluate the system performance and scalability. Along with the case study, a practical performance modeling methodology is

presented which helps to construct models that accurately reflect the system performance and scalability characteristics. Taking

advantage of the modeling power and expressiveness of Queueing Petri Nets, our approach makes it possible to model the system at

a higher degree of accuracy, providing a number of important benefits.

Index Terms—Performance modeling and prediction, software verification, performance evaluation, distributed systems.
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1 INTRODUCTION

DISTRIBUTED component-based systems (DCS) are becom-
ing increasingly ubiquitous as enabling technology for

modern enterprise applications. In the face of globalization
and ever increasing competition, Quality of Service (QoS)
requirements on such systems, like performance, availabil-
ity, and reliability, are of crucial importance. Businesses
must ensure that the systems they operate not only provide
all relevant services, but also meet the performance
expectations of their customers. To avoid the pitfalls of
inadequate QoS, it is important to analyze the expected
performance characteristics of systems during all phases of
their life cycle. The methods used to do this are part of the
discipline called Performance Engineering [1]. Performance
engineering helps to estimate the level of performance a
system can achieve and provides recommendations to
realize the optimal performance level [2]. The latter is done
by means of system models that are used to predict the
performance of the system under the expected workload.
However, building models that accurately capture the
different aspects of system behavior is an extremely
challenging task when applied to large and complex real-
world systems.

In [3] and [4], we presented two practical performance

modeling case studies which demonstrated the difficulties

that arise when trying to model a realistic DCS and predict

its performance. In the first case study, we used conven-
tional Queueing Network (QN) models to evaluate the
performance of a large J2EE1 application. While the models
were shown to capture the hardware contention aspects of
system behavior well, due to the limited expressiveness of
QNs, it was not possible to accurately model asynchronous
processing and software contention aspects. Moreover, the
available model analysis techniques failed to provide
reliable response time predictions when increasing the
workload intensity. In the second case study, we modeled a
similar J2EE application, but using Queueing Petri Net
(QPN) models instead of QNs. Exploiting the modeling
power and expressiveness of QPN models, we were able to
accurately capture both hardware and software aspects of
system behavior. However, the resulting models were by
far too large to be analyzable using the tools and techniques
for QPN analysis available at that time. Therefore, we had
to simplify the models, restricting them to a small part of
the application in order to avoid state space explosion. We
demonstrated that QPN models lend themselves very well
to modeling DCS, however, new solution techniques and
tools for QPN analysis were needed to enable us to solve
models of realistic size and complexity. In [5], we addressed
this issue by providing a scalable and reliable QPN analysis
technique, circumventing the state space explosion pro-
blem. The technique, based on discrete event simulation,
was implemented as part of a new simulation tool for
QPNs, called SimQPN. The latter was subjected to a
rigorous experimental analysis and proved to provide very
accurate and stable point and interval estimates of
performance metrics. Thus, using SimQPN, it was now
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possible to analyze QPN models of realistic size and
complexity, taking advantage of the modeling power and
expressiveness of the QPN paradigm.

In this paper, we present a novel case study of a realistic
state-of-the-art DCS, showing how the QPN modeling
formalism can be exploited to its full potential as a
performance prediction tool in the software engineering
process. Along with the case study, we present a practical
performance modeling methodology which helps to con-
struct models of DCS that accurately reflect their perfor-
mance and scalability characteristics. The methodology is
based on existing work in software performance engineer-
ing by Menascé et al. [6], [7], [8], [9], [2], Smith and Williams
[10], [11], [12], and Woodside et al. [13], [14], [15], [16], [17].
However, a major new aspect is the use of QPN models as
opposed to conventional QN models. As mentioned above,
QPN models are more sophisticated than QN models and
enjoy greater modeling power and expressiveness [18], [19],
[4]. This provides a number of important benefits since it
enables us to model the system at a higher degree of
accuracy.

The paper starts with a brief overview of the modeling
methodology and, after that, the case study is presented
which is the main contribution. The system studied is a
deployment of the industry-standard SPECjAppServer20042

benchmark for J2EE application servers. The latter imple-
ments a new enhanced workload that is substantially more
complex and comprehensive than previous versions of the
SPECjAppServer [20], [21]. It models a complete end-to-end
application that is designed to be representative of today’s
real-life DCS. The case study considers a deployment of the
benchmark application and shows how to build a detailed
QPN model of the latter, validate it, and then use it to
evaluate the system performance and scalability. The reader
is walked step-by-step through the modeling and evalua-
tion process. A number of deployment configurations and
workload scenarios are considered. In each case, the model
is analyzed by means of simulation using SimQPN—our
simulation tool for QPNs [5]. In order to validate the
approach, the model predictions are compared against
measurements on the real system. The case study comple-
ments and extends our work in [3] and [4] along the
following dimensions:

. An application, larger, more complex, and much
more representative of today’s DCS than the
applications considered previously, is studied.

. This time the system is modeled in its entirety,
resulting in a more detailed and comprehensive
model.

. Two important aspects of system behavior, not
considered previously, are now modeled expli-
citly: composite transactions and asynchronous
processing.3

. The case study introduces QPN departure disci-
plines—an easy to use yet powerful feature
allowing us to control the order in which tokens
leave a QPN place.

. The performance of the system is predicted accu-
rately for workload scenarios under realistic load
conditions with up to 540 concurrent jobs, including
scenarios with software contention.

Thanks to the increased modeling accuracy and repre-
sentativeness, the models considered in this paper demon-

strate much better predictive power and scalability than

was achieved in our previous work. The case study we
present here is the first comprehensive validation of our

modeling approach on a complete end-to-end DCS, represen-

tative of today’s real-life systems.
The paper is organized as follows: In Section 2, a brief

overview of the performance modeling methodology that is
used in the case study is given. It is shown how QPNs can

be exploited to model the different aspects of system

behavior in an accurate manner. Following this, Section 3
presents our case study of SPECjAppServer2004 showing

how each step of the modeling and evaluation process is

applied in practice. The approach is validated by comparing

model predictions against measurements on the real
system. Finally, the paper is summarized in Section 4. For

readers not familiar with Queueing Petri Nets, a brief

introduction is included in the Appendix.

2 PERFORMANCE MODELING METHODOLOGY

We begin by giving an overview of the performance

modeling methodology that is used in the case study. As

already mentioned, this methodology is based on existing
work in software performance engineering by Menascé et

al. [6], [7], [8], [9], [2], Smith and Williams [10], [11], [12],

and Woodside et al. [13], [14], [15], [16], [17]. A major new
aspect, however, is that we use QPN models as opposed to

conventional QN models. This is an important extension

since it enables us to model the system at a higher degree of
accuracy. As shown in [19], [22], QPNs have greater

expressive power than QNs, extended QNs, and stochastic

Petri nets. Taking advantage of this, our approach provides

several important benefits. First of all, QPN models allow
the integration of hardware and software aspects of system

behavior and lend themselves very well to modeling DCS

[23], [4]. In addition to hardware contention and scheduling
strategies, using QPNs one can easily model software

contention, simultaneous resource possession, synchroniza-

tion, blocking, and asynchronous processing. These aspects
of system behavior, which are typical for modern DCS, are

difficult to model accurately using conventional QN models.

Second, by restricting ourselves to QPN models, we can

exploit the knowledge of their structure and behavior for
fast and efficient analysis using simulation [5]. This enables

us to solve models of large and complex DCS and ensures

that our approach scales to realistic systems. Finally, many
efficient qualitative analysis techniques from Petri net

theory can be extended to QPNs and used to combine

qualitative and quantitative system analysis [18].
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2.1 Methodology Overview

The methodology we employ includes seven steps.

2.1.1 Establish Performance Modeling Objectives

The first step is to set some concrete goals for the

performance modeling effort. The latter should be stated

in a simple and precise manner.

2.1.2 Characterize the System in Its Current State

The product of this step is a specification that includes

detailed information on the system design and topology,

the hardware and software components it is comprised of,

the communication and network infrastructure, etc.

2.1.3 Characterize the Workload

In the third step, the workload of the system under study is

described in a qualitative and quantitative manner. This

includes five major steps [6], [24]:

1. Identify the Basic Components of the Workload. Basic
component refers to a generic unit of work that
arrives at the system from an external source, for
example, HTTP request, remote procedure call, or
database transaction [8].

2. Partition Basic Components into Workload Classes. In
order to improve the representativeness of the
workload model and increase its predictive power,
the basic components are partitioned into classes
(called workload classes) that have similar character-
istics [25], [8].

3. Identify the System Components and Resources Used by
Each Workload Class. This includes both hardware
and software components, as well as active and
passive resources [6].

4. Describe the Intercomponent Interactions and Processing
Steps. Different notations may be exploited here, for
example, Client/Server Interaction Diagrams (CSID)
[7], Communication-Processing Delay Diagrams [8],
Execution Graphs [10], as well as conventional UML
Sequence and Activity Diagrams [26].

5. Characterize Workload Classes in Terms of Service
Demands and Workload Intensity. Most techniques
for obtaining service demand parameters involve
running the system or components thereof and
taking measurements. For detailed information on
measurement techniques, refer to [2], [8], [6], [27].
Some techniques are also available that can be used
to estimate the service demands in the early stages of
development before the system is available for
testing [28].

2.1.4 Develop a Performance Model

In this step, a performance model is developed that

represents the different components of the system and its

workload and captures the main factors affecting its

performance. In our approach, we use QPN models, taking

advantage of their increased expressiveness to improve the

model representativeness and predictive power.

2.1.5 Validate, Refine, and/or Calibrate the Model

The model is said to be valid if the performance metrics
predicted by the model match the measurements on the real
system within a certain acceptable margin of error [2]. If this
is not the case, the model must be refined or calibrated to
more accurately reflect the system and workload modeled.
For a detailed discussion of model validation and calibra-
tion techniques, refer to [29], [6].

2.1.6 Use Model to Predict System Performance

In this step, the validated performance model is used to
predict the performance of the system for the deployment
configurations and workload scenarios targeted for analy-
sis. The latter are derived from the modeling objectives.

2.1.7 Analyze Results and Address Modeling Objectives

Finally, in the last step of the methodology, the results from
the model predictions are analyzed and used to address the
goals set in the beginning of the modeling study.

2.2 Modeling Using Queueing Petri Nets

Now that we have discussed the modeling methodology in
general, we briefly describe our approach for building QPN
models of DCS. The modeling process includes the
following steps:

2.2.1 Model the System Components and Resources

The first step is to map the system components and
resources (hardware and software) to respective QPN
model constructs. Active resources are usually modeled
using queueing places. Passive resources such as threads,
processes, database connections, and locks are normally
modeled using tokens inside ordinary places.

2.2.2 Model the Basic Components of the Workload

The basic components of the workload are modeled using
tokens, exploiting different colors to distinguish between
workload classes. Some additional QPN constructs are
needed to model the way transactions get started and
completed in the system or, equivalently, the way requests
arrive and depart from the system. Fig. 1 illustrates how
this is done for open and closed workload classes.

For open workload classes, two transitions, one timed
(t1) and one immediate (t2), are needed. Whenever t1 fires, it
simply creates a new transaction token and deposits it into
the system, represented in the figure using a subnet place (a
nested QPN). The firing delay is chosen according to the
desired transaction injection rate. The immediate transition
is used to destroy tokens of completed transactions. For
closed workload classes, a queueing place (Client) with IS
queue and two immediate transitions are used. Two cases
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Fig. 1. Modeling request/transaction arrivals and departures. (a) Open

classes. (b) Closed classes.



are distinguished, based on whether workload intensity is
specified as an average number of transactions being
processed concurrently or it is specified as a number of
active clients/terminals that start transactions. In the first
case, tokens in the Client place are served immediately and
its initial token population determines the number of
concurrent transactions in the system.4 In the second case,
the Client place has service time equal to the average client
think time and its initial token population determines the
number of active clients/terminals starting transactions.

2.2.3 Model the Intercomponent Interactions and

Processing Steps

The interactions between system components are normally
modeled using transitions connecting the QPN places
corresponding to the respective components. Transitions
are used to model the flow of control from one system
component to another when processing a transaction.

For composite transactions, the individual processing
steps (subtransactions) can also be modeled using tokens.
One way to do this is to use a separate token color for every
subtransaction. This is illustrated in Fig. 2 for open and
closed workload classes, respectively. An upper case X
token is used to represent a composite transaction. The
individual subtransactions of the latter are represented
using lower case x tokens, where xi stands for the
ith subtransaction. When the transaction is started (by
firing transition t1), a token x1 representing the first
subtransaction is created and deposited into the system.
After the subtransaction is completed, its token is destroyed
(by transition t3) and a token representing the next
processing step xiþ1 is created and deposited into the
system. This process continues until the last subtransaction
(modeled as token xn) has been processed.

2.2.4 Parameterize the Model

The last step of the modeling process is to provide values
for the following parameters: initial token population of
places, service times of tokens at the queues of queueing

places, firing weights of immediate transitions, and firing
delays of timed transitions.

3 CASE STUDY: MODELING

SPECJAPPSERVER2004

Now that we have discussed our modeling approach in
general, we present our case study with SPECjAppSer-
ver2004. The case study demonstrates how the QPN
modeling paradigm can be exploited to its full potential
as a performance prediction tool for DCS. An application,
larger, more complex, and much more representative of
today’s DCS than the applications considered in our
previous work ([3] and [4]), is studied. Moreover, while,
in our previous case studies, some significant simplifica-
tions had to be made in order to avoid the largeness
problem, this time the application studied is modeled in its
entirety, resulting in a much more detailed and compre-
hensive model.

3.1 The SPECjAppServer2004 Benchmark

SPECjAppServer2004 is a new industry-standard bench-
mark for measuring the performance and scalability of J2EE
hardware and software platforms. It implements a repre-
sentative workload that exercises all major services of the
J2EE platform in a complete end-to-end application scenario.
The SPECjAppServer2004 workload has been specifically
modeled after an automobile manufacturer whose main
customers are automobile dealers [30]. Dealers use a Web-
based user interface to browse an automobile catalog,
purchase automobiles, sell automobiles, and track their
inventory. As depicted in Fig. 3, SPECjAppServer2004’s
business model is comprised of five domains: the customer
domain dealing with customer orders and interactions, the
dealer domain offering Web-based interface to the services
in the customer domain, the manufacturing domain
performing “just in time” manufacturing operations, the
supplier domain handling interactions with external sup-
pliers, and the corporate domain managing all dealer,
supplier, and automobile information.

The customer domain hosts an order entry application that
provides some typical online ordering functionality. Orders
for more than 100 automobiles are called large orders. The
dealer domain hosts a Web application (called dealer
application) that provides a Web-based interface to the
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4. In fact, in this case, the Client place is not necessarily needed and one
can simplify the model by removing the Client place and transition t1 and
using transition t2 as a short-circuit.

Fig. 2. Modeling composite transactions. (a) Open classes. (b) Closed

classes.

Fig. 3. SPECjAppServer2004 business model.



services in the customer domain. The manufacturing
domain hosts a manufacturing application that models the
activity of production lines in an automobile manufacturing
plant. There are two types of production lines, planned lines
and large order lines. Planned lines run on schedule and
produce a predefined number of automobiles. Large order
lines run only when a large order is received in the
customer domain. The unit of work in the manufacturing
domain is a work order. Each work order moves along three
virtual stations, which represent distinct operations in the
manufacturing flow. In order to simulate activity at the
stations, the manufacturing application waits for a desig-
nated time (333 ms) at each station. Once the work order is
complete, it is marked as completed and inventory is
updated. When the inventory of parts gets depleted,
suppliers need to be located and purchase orders need to
be sent out. This is done by contacting the supplier domain
responsible for interactions with external suppliers.

3.2 Motivation

Consider an automobile manufacturing company that
wants to use e-business technology to support its order-
inventory, supply-chain, and manufacturing operations.
The company has decided to employ the J2EE platform and
is in the process of developing a J2EE application. Let us
assume that the first prototype of this application is
SPECjAppServer2004 and that the company is testing the
application in the deployment environment depicted in
Fig. 4. This environment uses a cluster of WebLogic servers
(WLS) as a J2EE container and an Oracle database server
(DBS) for persistence. We assume that all servers in the
WebLogic cluster are identical and that, initially, only two
servers are available. The company is now about to conduct
a performance modeling study of their system in order to
evaluate its performance and scalability.

3.3 Establish Performance Modeling Objectives

Let us assume that, under normal operating conditions, the
company expects to have 72 concurrent dealer clients
(40 Browse, 16 Purchase, and 16 Manage) and 50 planned
production lines. During peak conditions, 152 concurrent
dealer clients (100 Browse, 26 Purchase, and 26 Manage) are
expected and the number of planned production lines could
increase up to 100. Moreover, the workload is forecast to
grow by 300 percent over the next five years. The average

dealer think time is 5 seconds, i.e., the time a dealer “thinks”
after receiving a response from the system before sending a
new request. On average, 10 percent of all orders placed are
assumed to be large orders. The average delay after
completing a work order at a planned production line
before starting a new one is 10 seconds. Note that all of
these numbers were chosen arbitrarily in order to make our
motivating scenario more specific. Based on these assump-
tions, the following concrete goals are established:

. Predict the performance of the system under normal
operating conditions with four and six WebLogic
servers, respectively. What would be the average
throughput and response time of dealer transactions
and work orders? What would be the CPU utiliza-
tion of the servers?

. Determine if six WebLogic servers would be enough
to ensure that the average response times of business
transactions do not exceed half a second during peak
conditions.

. Predict how much system performance would
improve if the load balancer is upgraded with a
slightly faster CPU.

. Study the scalability of the system as the workload
increases and additional WebLogic servers are
added.

. Determine which servers would be most utilized
under heavy load and investigate if they are
potential bottlenecks.

3.4 Characterize the System in Its Current State

As shown in Fig. 4, the system we are considering has a
two-tier hardware architecture consisting of an application
server tier and a database server tier. Incoming requests are
evenly distributed across the nodes in the application server
cluster. For HTTP requests, this is achieved using a software
load balancer running on a dedicated machine. For RMI
requests, this is done transparently by the EJB client stubs.
Table 1 describes the system components in terms of the
hardware and software platforms used. This information is
enough for the purposes of our study.

3.5 Characterize the Workload

3.5.1 Identify the Basic Components of the Workload

As discussed in Section 3.1, the SPECjAppServer2004
benchmark application is made up of three major
subapplications—the dealer application, the order entry
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Fig. 4. Deployment environment.

TABLE 1
System Component Details



application, and the manufacturing application. The dealer
and order entry applications process business transactions
of three types—Browse, Purchase, and Manage. Hereafter,
the latter are referred to as dealer transactions. The
manufacturing application, on the other hand, is running
production lines which process work orders. Thus, the
SPECjAppServer2004 workload is composed of two basic
components: dealer transactions and work orders.

Each dealer transaction emulates a client session com-
prised of multiple round-trips to the server. For every
round-trip, there is a separate HTTP request, which can be
seen as a subtransaction. A more fine-grained approach to
model the workload would be to define the individual
HTTP requests as basic components. However, this would
unnecessarily complicate the workload model since we are
interested in the performance of dealer transactions as a
whole and not the performance of their individual sub-
transactions. The same reasoning applies to work orders
because each work order is comprised of multiple JTA
transactions initiated with separate RMI calls. This is a
typical example of how the level of detail in the modeling
process is decided based on the modeling objectives.

3.5.2 Partition Basic Components into Workload

Classes

There are three types of dealer transactions and, since we
are interested in their individual behavior, we model them
using separate workload classes. Work orders, on the other
hand, can be divided into two types based on whether they
are processed on a planned or large order line. Planned
lines run on schedule and complete a predefined number of
work orders per unit of time. In contrast, large order lines
run only when a large order arrives in the customer
domain. Each large order generates a separate work order
processed asynchronously on a dedicated large order line.
Thus, work orders originating from large orders are
different from ordinary work orders in terms of the way
their processing is initiated and in terms of their resource
usage. To distinguish between the two types of work
orders, they are modeled using two separate workload
classes: WorkOrder (for ordinary work orders) and
LargeOrder (for work orders generated by large orders).
Altogether, we end up with five workload classes: Browse,
Purchase, Manage, WorkOrder, and LargeOrder.

3.5.3 Identify the System Components and Resources

Used by Each Workload Class

The following hardware resources are used by dealer
transactions:

. The CPU of the load balancer machine (LB-C).

. The CPU of an application server in the cluster (AS-C).

. The CPUs of the database server (DB-C).

. The disk drive of the database server (DB-D).

. The Local Area Network (LAN).

WorkOrders and LargeOrders use the same resources
with the exception of the first one, since their processing is
driven through direct RMI calls to the EJBs in the WebLogic
cluster, bypassing the HTTP load balancer. As far as
software resources are concerned, all workload classes use
the WebLogic servers and the Oracle DBMS. Dealer
transactions additionally use the HTTP load balancer,
which is running on a dedicated machine.

3.5.4 Describe the Intercomponent Interactions and

Processing Steps for Each Workload Class

All five of the workload classes identified represent
composite transactions. Fig. 5 and Fig. 6 use execution
graphs to illustrate the subtransactions (processing steps) of
transactions from the different workload classes. For every
subtransaction (represented as a rectangle), multiple system
components are involved and they interact to perform the
respective operation. The intercomponent interactions and
flow of control during the processing of subtransactions are
depicted in Fig. 7 by means of client/server interaction
diagrams. Directed arcs show the flow of control from one
node to the next during execution. Depending on the path
followed, different execution scenarios are possible. For
example, for dealer subtransactions, two scenarios are
possible depending on whether the database needs to be
accessed or not. Dealer subtransactions that do not access
the database (e.g., goToHomePage) follow the path
1! 2! 3! 4, whereas dealer subtransactions that access
the database (e.g., showInventory) follow the path
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1! 2! 3! 5! 6! 7. Since most dealer subtransactions

do access the database, for simplicity, it is assumed that all

of them follow the second path.

3.5.5 Characterize Workload Classes in Terms of Their

Service Demands and Workload Intensity

Since the system is available for testing, the service

demands can be determined by injecting load into the

system and taking measurements. Note that it is enough to

have a single WebLogic server available in order to do this,

i.e., it is not required to have a realistic production-like

testing environment. For each of the five workload classes, a

separate experiment was conducted injecting transactions

from the respective class and measuring the utilization of

the various system resources. CPU utilization was mea-

sured using the vmstat utility on Linux. The disk

utilization of the database server was measured with the

help of the Oracle 9i Intelligent Agent, which proved to

have negligible overhead. Service demands were derived

using the Service Demand Law [8]. Table 2 reports the

service demand parameters for the five workload classes. It

was decided to ignore the network since all communica-

tions were taking place over 1 GBit LAN and communica-

tion times were negligible.
In order to keep the workload model simple, it is

assumed that the total service demand of a transaction at a

given system resource is spread evenly over its subtransac-

tions. Thus, the service demand of a subtransaction can be

estimated by dividing the measured total service demand of

the transaction by the number of subtransactions it has. It is

also assumed that all service demands are exponentially

distributed. Whether these simplifications are acceptable

will become clear later when the model is validated. In case

the estimation proves to be too inaccurate, one might have

to come back and refine the workload model by measuring
the service demands of subtransactions individually.

Now that the service demands of workload classes have
been quantified, the workload intensity must be specified.
For each workload class, the number of transactions that
contend for system resources must be indicated. The way
workload intensity is specified is dictated by the modeling
objectives. In our case, workload intensity was defined in
terms of the following parameters (see Section 3.3):

. the number of concurrent dealer clients of each type
and the average dealer think time and

. the number of planned production lines and the
average time they wait after processing a Work-
Order before starting a new one (manufacturing think
time or mfg think time).

With workload intensity specified in this way, all
workload classes are automatically modeled as closed.
Two scenarios of interest were indicated when discussing
the modeling objectives in Section 3.3: operation under
normal conditions and operation under peak conditions.
The values of the workload intensity parameters for these
two scenarios are shown in Table 3. However, the workload
had been forecast to grow by 300 percent and another goal
of the study was to investigate the scalability of the system
as the load increases. Therefore, scenarios with up to 3 times
higher workload intensity need to be considered as well.

3.6 Develop a Performance Model

A QPN model of the system under study is now built and
then customized to the concrete configurations of interest.
We start by discussing the way basic components of the
workload are modeled. During workload characterization,
five workload classes were identified. All of them represent
composite transactions and are modeled using the follow-
ing token types (colors): “B” for Browse, “P” for Purchase,
“M” for Manage, “W” for WorkOrder, and “L” for
LargeOrder.

The subtransactions of transactions from the different
workload classes were shown in Fig. 5 and Fig. 6. In order to
make the performance model more compact, it is assumed
that each server used during processing of a subtransaction is
visited only once and that the subtransaction receives all of its
service demands at the server’s resources during that single
visit. This simplification is typical for queueing models and
has been widely employed. Similarly, during the service of a
subtransaction at a server, for each server resource used (e.g.,
CPUs, disk drives), it is assumed that the latter is visited only
one time, receiving the whole service demand of the
subtransaction at once. These simplifications make it easier
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Fig. 7. Client/server interaction diagrams for subtransactions.
(a) Subtransactions of Browse, Purchase, and Manage. (b) Subtransac-
tions of WorkOrder and LargeOrder.

TABLE 2
Workload Service Demand Parameters

TABLE 3
Workload Intensity Parameters



to model the flow of control during processing of subtransac-
tions. While characterizing the workload service demands in
Section 3.5.5, we additionally assumed that the total
service demand of a transaction at a given system
resource is spread evenly over its subtransactions. This
allows us to consider the subtransactions of a given
workload class as equivalent in terms of processing
behavior and resource consumption. Thus, we can model
subtransactions using a single token type (color) per
workload class as follows: “b” for Browse, “p” for
Purchase, “m” for Manage, “w” for WorkOrder, and “l”
for LargeOrder. For the sake of compactness, the follow-
ing additional notation will be used:

. Symbol “D” will denote a “B,” “P,” or “M” token,
i.e., token representing a dealer transaction.

. Symbol “d” will denote a “b,” “p,” or “m” token, i.e.,
token representing a dealer subtransaction.

. Symbol “o” will denote a “b,” “p,” “m,” “w,” or “l”
token, i.e., token representing a subtransaction of
arbitrary type, hereafter called subtransaction token.

To further simplify the model, we assume that LargeOrder
transactions are executed with a single subtransaction, i.e.,
their four subtransactions are bundled into a single
subtransaction. Thus, the total service demand of a
LargeOrder transaction at a given system resource is
assumed to be received at once, during a single visit to
the resource. The effect of this simplification on the
overall system behavior is negligible because large orders
constitute only 10 percent of all orders placed, i.e., a
relatively small portion of the system workload. Following
these lines of thought, one could consider LargeOrder

transactions as noncomposite and drop the small
“l” tokens. However, in order to keep token definitions
uniform across transaction classes, we will keep the small
“l” tokens and look at LargeOrder transactions as being
composed of a single subtransaction represented by an
“l” token.

Following the guidelines for modeling the system
components, resources, and intercomponent interactions
presented in Section 2.2, we arrive at the model depicted in
Fig. 8. We use the notation “Afxg ! Bfyg” to denote a
firing mode in which an “x” token is removed from place A
and a “y” token is deposited in place B. Similarly,
“Afxg ! fg” means that an “x” token is removed from
place A and destroyed without depositing tokens any-
where. Table 4 provides some details on the places used in
the model.

All token service times at the queues of the model are
assumed to be exponentially distributed. We now examine
in detail the life-cycle of tokens in the QPN model. As
already discussed, upper case tokens represent transactions,
whereas lower case tokens represent subtransactions. In the
initial marking, tokens exist only in the depositories of
places C1 and C2. The initial number of “D” tokens (“B,”
“P,” or “M”) in the depository of the former determines the
number of concurrent dealer clients, whereas the initial
number of “W” tokens in the depository of the latter
determines the number of planned production lines run-
ning in the manufacturing domain. When a dealer client
starts a dealer transaction, transition t1 is fired, destroying a
“D” token from the depository of place C1 and creating a
“d” token in place G, which corresponds to starting the first
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Fig. 8. QPN model of the system.



subtransaction. The flow of control during the processing of
subtransactions in the system is modeled by moving their
respective subtransaction tokens across the different places
of the QPN. Starting at place G, a dealer subtransaction
token (“d”) is first sent to place L, where it receives service
at the CPU of the load balancer. After that, it is moved to
place E and, from there, it is routed to one of the
N application server CPUs represented by places A1 to
AN . Transitions t11; t13; . . . ; t10þN have equal firing prob-
abilities (weights) so that subtransactions are probabilisti-
cally load-balanced across the N application servers. This
approximates the round-robin mechanism used by the load-
balancer to distribute incoming requests among the servers.
Having completed its service at the application server CPU,
the dealer subtransaction token is moved to place F from
where it is sent to one of the two database server CPUs with
equal probability (transitions t4 and t5 have equal firing
weights). After completing its service at the CPU, the dealer
subtransaction token is moved to place H, where it receives
service from the database disk subsystem. Once this is
completed, the dealer subtransaction token is destroyed by
transition t8 and there are two possible scenarios:

1. A new “d” token is created in place G, which starts
the next dealer subtransaction.

2. If there are no more subtransactions to be executed,
the “D” token removed from place C1 in the
beginning of the transaction is returned. If the
completed transaction is of type Purchase and it
has generated a large order, additionally, a token “l”
is created in place E.

Note that, since LargeOrder transactions are assumed to
be executed with a single subtransaction, to simplify the
model, we create the subtransaction token (“l”) directly
instead of first creating a transaction token (“L”). So, in
practice, “L” tokens are not used explicitly in the model.
After a “D” token of a completed transaction returns back to
place C1, it spends some time at the IS queue of the latter.
This corresponds to the dealer think time. Once the dealer

think time has elapsed, the “D” token is moved to the
depository and the next transaction is started.

When a WorkOrder transaction is started on a planned
line in the manufacturing domain, transition t0 is fired
destroying a “W” token from the depository of place C2 and
creating a “w” token in place E, which corresponds to
starting the first subtransaction. Since WorkOrder subtran-
saction requests are load-balanced transparently (by the EJB
client stubs) without using a load balancer, the WorkOrder
subtransaction token (“w”) is routed directly to the
application server CPUs—places A1 to AN . It then moves
along the places representing the application server and
database server resources in exactly the same way as dealer
subtransaction tokens. After it completes its service at
place H, the following two scenarios are possible:

1. The “w” token is sent to place P whose IS queue
delays it for 333 ms, corresponding to the delay at a
virtual production line station. After that, the token
is destroyed by transition t10 and a new “w” token is
created in place E, representing the next WorkOrder
subtransaction.

2. If there are no more subtransactions to be executed,
the “w” token is destroyed by transition t9 and the
“W” token removed from place C2 in the beginning
of the transaction is returned.

After a “W” token of a completed transaction returns
back to place C2, it spends some time at the IS queue of the
latter. This corresponds to the time waited after completing
a work order at a production line before starting the next
one. Once this time has elapsed, the “W” token is moved to
the depository and the next transaction is started.

All transitions of the model are immediate and their
firing modes, except for transitions t8 and t9, are shown in
Table 5. The symbols In and Out are used here to refer to
the input and output places of transitions, respectively. We
assign the same firing weight (more specifically 1) to all
modes of these transitions so that they have the same
probability of being fired when multiples of them are
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TABLE 4
Places Used in the QPN Model



enabled at the same time. The definition of the firing modes
of transitions t8 and t9 is a little more complicated. The
firing modes are described in Table 6 and Table 7,

respectively. The assignment of weights to the modes of
these transitions is critical to achieving the desired behavior

of transactions in the model. Weights must be assigned in
such a way that transactions are terminated only after all of
their subtransactions have been completed. We will now

explain how this is done, starting with transition t9 since
this is the simpler case. According to Section 3.5.4 (Fig. 6),
WorkOrder transactions are comprised of four subtransac-

tions. This means that, for every WorkOrder transaction,
four subtransactions have to be executed before the
transaction is completed. To model this behavior, the firing

weights (probabilities) of modes 1 and 2 are set to 3=4 and
1=4, respectively. Thus, out of every four times a “w” token

arrives in place H and enables transition t9, on average, the
latter will be fired three times in mode 1 and one time in
mode 2, completing a WorkOrder transaction. Even though

the order of these firings is not guaranteed, the resulting
model closely approximates the real system in terms of
resource consumption and queueing behavior.

Transition t8, on the other hand, has eight firing modes,

as shown in Table 6. According to Section 3.5.4 (Fig. 5 and

Fig. 6), Browse transactions have 17 subtransactions,
whereas Purchase and Manage have only five. This means
that, for every Browse transaction, 17 subtransactions have
to be executed before the transaction is completed, i.e., out
of every 17 times a “b” token arrives in place H and enables
transition t8, the latter has to be fired 16 times in mode 1 and
one time in mode 2, completing a Browse transaction.
Similarly, out of every five times an “m” token arrives in
place H and enables transition t8, the latter has to be fired
four times in mode 6 and one time in mode 7, completing a
Manage transaction. Out of every five times a “p” token
arrives in place H and enables transition t8, the latter has to
be fired four times in mode 3 and one time in mode 4 or
mode 5, depending on whether a large order has been
generated. On average, 10 percent of all completed
Purchase transactions generate large orders. Modeling these
conditions probabilistically leads to a system of simulta-
neous equations that the firing weights (probabilities) of
transition t8 need to fulfill. One possible solution is the
following: wð1Þ ¼ 16, wð2Þ ¼ 1, wð3Þ ¼ 13:6, wð4Þ ¼ 3:06,
wð5Þ ¼ 0:34, wð6Þ ¼ 13:6, wð7Þ ¼ 3:4, wð8Þ ¼ 17.

The workload intensity and service demand parameters
from Section 3.5.5 (Table 2 and Table 3) are used to provide
values for the service times of tokens at the various queues
of the model. A separate set of parameter values is specified
for each workload scenario considered. The service times of
subtransactions at the queues of the model are estimated by
dividing the total service demands of the respective
transactions by the number of subtransactions they have.

3.7 Validate, Refine, and/or Calibrate the Model

The model developed in the previous sections is now
validated by comparing its predictions against measure-
ments on the real system. Two application server nodes are
available for the validation experiments. The model
predictions are verified for a number of different scenarios
under different transaction mixes and workload intensities.
The model input parameters for two specific scenarios
considered here are shown in Table 8.

The model was analyzed by means of simulation
using SimQPN—our QPN analysis tool. The method of
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Firing Modes of Transitions t0; t1; . . . ; t7 and t10; t11; . . . ; t11þN

TABLE 7
Firing Modes of Transition t9

TABLE 6
Firing Modes of Transition t8



nonoverlapping batch means was used for steady state
analysis. Both the variation of point estimates from
multiple runs of the simulation and the variation of
measured performance metrics from multiple tests were
negligible. For all metrics, the standard deviation of
estimates was less than 2 percent of the respective mean
value. Table 9 compares the model predictions against
measurements on the real system. The metrics considered
are transaction throughput (Xi), transaction response time
(Ri), and server utilization (ULB for the load balancer, UAS
for the application servers, and UDB for the database
server). The maximum modeling error for throughput is
9.3 percent, for utilization, 9.1 percent, and, for response
time, 12.9 percent. Varying the transaction mix and work-
load intensity led to predictions of similar accuracy. Since
these results are reasonable, the model is considered valid.
However, even though the model is deemed valid at this

point of the study, as we will see later, the model might lose
its validity when it is modified in order to reflect changes in
the system.

3.8 Use Model to Predict System Performance

In Section 3.3, some concrete goals were set for the
performance study. The system model is now used to
predict the performance of the system for the deployment
configurations and workload scenarios of interest. In order
to validate our approach, for each scenario considered, we
will compare the model predictions against measurements
on the real system. Note that this validation is not part of
the methodology itself and normally it does not have to be
done. Indeed, if we would have to validate the model
results for every scenario considered, there would be no
point in using the model in the first place. The reason we
validate the model results here is to demonstrate the
effectiveness of our modeling approach and showcase the
predictive power of the QPN models it is based on.

As in the validation experiments, for all scenarios
considered in this section, the model is analyzed by means
of simulation using SimQPN and the method of nonover-
lapping batch means is used for steady state analysis. Both
the variation of point estimates from multiple runs of the
simulation and the variation of measured performance
metrics from multiple tests are negligible. For all metrics,
the standard deviation of estimates is less than 2 percent of
the respective mean value. Table 10 reports the analysis
results for the scenarios under normal operating conditions
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Input Parameters for Validation Scenarios

TABLE 10
Analysis Results for Scenarios under Normal Conditions with Four and Six Application Server Nodes

TABLE 9
Validation Results



with four and six application server nodes. In both cases,
the model predictions are very close to the measurements
on the real system. Even for response time, the metric with
highest variation, the modeling error, does not exceed
10.9 percent.

Table 12 shows the model predictions for two scenarios

under peak conditions with six application server nodes.

The first one uses the original load balancer, while the

second one uses an upgraded load balancer with a faster

CPU. The faster CPU results in lower service demands, as

shown in Table 11. With the original load balancer, six

application server nodes turned out to be insufficient to

guarantee average response times of business transactions

below half a second. However, with the upgraded load

balancer, this was achieved. In the rest of the scenarios

considered, the upgraded load balancer will be used.
We now consider the behavior of the system as the

workload intensity increases beyond peak conditions and

further application server nodes are added. Table 13 shows

the model predictions for two scenarios with an increased

number of concurrent Browse clients, i.e., 150 in the first

one and 200 in the second one. In both scenarios, the

number of application server nodes is eight. As evident

from the results, the load balancer is completely saturated

when increasing the workload intensity and it becomes a

bottleneck, limiting the overall system performance. There-

fore, adding further application server nodes would not

bring any benefit, unless the load balancer is replaced with

a faster one.

3.9 Modeling Thread Contention

Since the load balancer is the bottleneck resource, it is

interesting to investigate its behavior a little further. Until

now, it was assumed that, when a request arrives at the load

balancer, there is always a free thread which can start

processing it immediately. However, if one keeps increasing

the workload intensity, the number of concurrent requests

at the load balancer will eventually exceed the number of

available threads. The latter would lead to thread conten-

tion, resulting in additional delays at the load balancer, not

captured by our system model. This is a typical example of

how a valid model may lose its validity as the workload

evolves. We will now show how the model can be refined to

capture the thread contention at the load balancer.
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3.9.1 Extending the System Model

As discussed in Section 2.2, passive system resources such
as threads can be modeled as tokens inside ordinary places.
In Fig. 9, an extended version of our system model is shown
which includes an ordinary place, T , representing the load
balancer thread pool. Before a dealer request is scheduled
for processing at the load balancer CPU, a token “t”
representing a thread is allocated from the thread pool.
After the dealer request has been served at the load balancer
CPU, the token is returned back to the pool. Thus, if an
arriving request finds no available thread, it will have to
wait in place G until a thread is released. The initial
population of place T determines the number of threads in
the thread pool.

At first sight, this appears to be the right approach to
model the thread contention at the load balancer. However,
an attempt to validate the extended model reveals a
significant discrepancy between the model predictions
and measurements on the real system. In particular, it
stands out that predicted response times are much lower
than measured response times for dealer transactions with
low workload intensities. A closer investigation shows that
the problem is in the way dealer subtransaction tokens
arriving in place G are scheduled for processing at the load
balancer CPU. Dealer subtransaction tokens become avail-
able for firing of transition t2 immediately upon their arrival
at place G. Thus, whenever arriving tokens are blocked in
place G, their order of arrival is lost. After a thread is
released, transition t2 fires in one of its enabled modes with
equal probability. Therefore, the order in which waiting
subtransaction tokens are scheduled for processing does not
match the order of their arrival at place G. This obviously

does not reflect the way the real system works and renders
the model unrepresentative.

3.9.2 Introducing QPN Departure Disciplines

The above situation describes a common drawback of Petri
net models, i.e., tokens inside ordinary places are not
distinguished in terms of their order of arrival. One
approach to address the problem would be to replace the
ordinary place G with an immediate queueing place
containing an FCFS queue. However, simply using an FCFS
queue would not resolve the problem since arriving tokens
would be served immediately and moved to the depository,
where their order of arrival will still be lost. To address this,
we could exploit the generalized queue definition in [22] to
define the scheduling strategy of place G’s queue in such a
way that tokens are served immediately according to FCFS,
but only if the depository is empty. If there is a token in the
depository, all tokens are blocked in their current position
until the depository becomes free. Even though this would
theoretically address the issue with the token order, it
would create another problem. The available tools and
techniques for QPN analysis, including SimQPN, do not
support queues with scheduling strategy dependent on the
state of the depository. Indeed, the generalized queue
definition given in [22], while theoretically powerful, is
impractical to implement, so, in practice, it is rarely used
and queues in QPNs are usually treated as conventional
queues from queueing network theory. The way we address
the problem is by introducing departure disciplines, which are
a simple yet powerful feature we have added to SimQPN.
The departure discipline of an ordinary place or depository
determines the order in which arriving tokens become
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Fig. 9. Extended QPN model of the system (capturing thread contention at the load balancer).



available for output transitions. We define two departure
disciplines, Normal (used by default) and First-In-First-Out
(FIFO). The former implies that tokens become available for
output transitions immediately upon arrival, just like in
conventional QPN models. The latter implies that tokens
become available for output transitions in the order of their
arrival, i.e., a token can leave the place/depository only
after all tokens that have arrived before it have left, hence
the term FIFO.

Coming back to the problem above with the way thread
contention is modeled, we now change place G to use the
FIFO departure discipline. This ensures that subtransaction
tokens waiting at place G are scheduled for processing in
the order in which they arrive. After this change, the model
passes the validation tests and can be used for performance
prediction.

3.9.3 Performance Prediction

We consider two additional heavy load scenarios with an
increased number of concurrent dealer clients leading to
thread contention in the load balancer. The workload
intensity parameters for the two scenarios are shown in
Table 14.

The first scenario has a total of 360 concurrent dealer
clients, the second 420. Table 15 compares the model
predictions for the first scenario in two configurations with
eight application servers and 15 and 30 load balancer
threads, respectively. In addition to response times,
throughput, and utilization, the average length of the load
balancer thread queue (NLBTQ) is considered. As evident

from the results, the model predictions are very close to the

measurements and, even for response times, the modeling

error does not exceed 16.4 percent. The results for the

second scenario look very similar. The CPU utilization of

the WebLogic servers and the database server increase to

63 percent and 52 percent, respectively, leading to slightly

higher response times and lower throughput. The modeling

error does not exceed 15.2 percent. For lack of space, we do

not include the detailed results. Repeating the analysis for a

number of variations of the model input parameters led to

results of similar accuracy.

3.10 Analyze Results and Address Modeling
Objectives

We can now use the results from the performance analysis

to address the goals established in Section 3.3. By means of

the developed QPN model, we were able to predict the

performance of the system under normal operating condi-

tions with four and six WebLogic servers. It turned out that,

using the original load balancer, six WebLogic servers were

insufficient to guarantee average response times of business

transactions below half a second. Upgrading the load

balancer with a slightly faster CPU led to the CPU

utilization of the load balancer dropping by a good

20 percent. As a result, the response times of dealer

transactions improved by 14 to 26 percent, meeting the

“half a second” requirement. However, increasing the

workload intensity beyond peak conditions revealed that

the load balancer was a bottleneck resource, preventing us

from scaling the system by adding additional WebLogic

servers (see Fig. 10). Therefore, in light of the expected

workload growth, the company should either replace the

load balancer machine with a faster one or consider using a

more efficient load balancing method. After this is done, the

performance analysis should be repeated with the new load

balancer to make sure that there are no other system

bottlenecks. It should also be ensured that the load balancer

is configured with enough threads to prevent thread

contention.
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4 SUMMARY

In this paper, we presented a novel case study of a realistic
DCS, showing how enhanced QPN models can be exploited
as a powerful performance prediction tool in the software
engineering process. Along with the case study, we
presented a practical performance modeling methodology
which helps to construct models that accurately reflect the
system performance and scalability characteristics. The
paper started with an overview of the methodology which
is based on existing work in software performance
engineering. We described the main steps that are normally
followed, concentrating on the aspects which are specific to
our approach. After that, we presented the case study
which is the main contribution of the paper. A deployment
of the industry-standard SPECjAppServer2004 benchmark
was studied, a large and complex application designed to
be representative of today’s real-world DCS. It was shown
in a step-by-step fashion how to build a detailed QPN
model of the system, validate it, and then use it to evaluate
the system performance and scalability. In addition to CPU
and I/O contention, it was demonstrated how some
complex aspects of system behavior, such as composite
transactions, software contention, and asynchronous pro-
cessing, can be modeled. The developed QPN model was
analyzed for a number of different deployment configura-
tions and workload scenarios. The models demonstrated
much better scalability and predictive power than what was
achieved in our previous work. Even for the largest and
most complex scenarios, the modeling error for transaction
response time did not exceed 20.6 percent and was much
lower for transaction throughput and resource utilization.

APPENDIX

INTRODUCTION TO QUEUING PETRI NETS

Queueing Petri nets can be seen as a combination of a
number of different extensions to conventional Petri nets
(PNs) along several different dimensions. In this section, we
include some basic definitions and briefly discuss how
queueing Petri nets have evolved. A more detailed
treatment of the subject can be found in [18], [22]. An
ordinary Petri net is a bipartite directed graph composed of
places, drawn as circles, and transitions, drawn as bars. A
formal definition follows [18]:

Definition 1. An ordinary Petri Net (PN) is a 5-tuple
PN ¼ ðP; T ; I�; Iþ;M0Þ, where:

1. P ¼ fp1; p2; . . . ; png is a finite and nonempty set of
places,

2. T ¼ ft1; t2; . . . ; tmg is a finite and nonempty set of
transitions, P \ T ¼ ;,

3. I�; Iþ : P � T ! IN0 are called backward and for-
ward incidence functions, respectively,

4. M0 : P ! IN0 is called initial marking.

Different extensions to ordinary PNs have been devel-
oped in order to increase the modeling convenience and/or
the modeling power. Colored PNs (CPNs), introduced by
Jensen [31], are one such extension. The latter allow a type
(color) to be attached to a token. A color function C assigns
a set of colors to each place, specifying the types of tokens
that can reside in the place. In addition to introducing token
colors, CPNs also allow transitions to fire in different modes
(transition colors). The color function C assigns a set of
modes to each transition and incidence functions are
defined on a per mode basis. A formal definition of a
CPN follows [18]:

Definition 2. A Colored PN (CPN) is a 6-tuple

CPN ¼ ðP; T ; C; I�; Iþ;M0Þ, where:

1. P ¼ fp1; p2; . . . ; png is a finite and nonempty set of
places,

2. T ¼ ft1; t2; . . . ; tmg is a finite and nonempty set of
transitions, P \ T ¼ ;,

3. C is a color function that assigns a finite and
nonempty set of colors to each place and a finite and
nonempty set of modes to each transition,

4. I� and Iþ are the backward and forward incidence
functions defined on P � T such that

I�ðp; tÞ; Iþðp; tÞ 2 ½CðtÞ ! CðpÞMS�;

8ðp; tÞ 2 P � T ,5

5. M0 is a function defined on P describing the initial
marking such that M0ðpÞ 2 CðpÞMS .

Other extensions to ordinary PNs allow temporal
(timing) aspects to be integrated into the net description
[18]. In particular, Stochastic PNs (SPNs) attach an exponen-
tially distributed firing delay to each transition, which
specifies the time the transition waits after being enabled
before it fires. Generalized Stochastic PNs (GSPNs) allow two
types of transitions to be used: immediate and timed. Once
enabled, immediate transitions fire in zero time. If several
immediate transitions are enabled at the same time, the next
transition to fire is chosen based on firing weights (prob-
abilities) assigned to the transitions. Timed transitions fire
after a random exponentially distributed firing delay as in
the case of SPNs. The firing of immediate transitions always
has priority over that of timed transitions. A formal
definition of a GSPN follows [18]:

Definition 3. A Generalized SPN (GSPN) is a 4-tuple

GSPN ¼ ðPN; T1; T2;W Þ, where:

1. PN ¼ ðP; T ; I�; Iþ;M0Þ is the underlying ordinary
PN,

2. T1 � T is the set of timed transitions, T1 6¼ ;,

500 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32, NO. 7, JULY 2006

5. The subscript MS denotes multisets. CðpÞMS denotes the set of all finite
multisets of CðpÞ.

Fig. 10. Predicted server CPU utilization in considered scenarios.



3. T2 � T is the set of immediate transitions,
T1 \ T2 ¼ ;, T1 [ T2 ¼ T ,

4. W ¼ ðw1; . . . ; wjT jÞ is an array whose entry wi 2 IRþ

is a rate of a negative exponential distribution
specifying the firing delay, if ti 2 T1 or is a firing
weight specifying the relative firing frequency, if
ti 2 T2.

Combining Definitions 2 and 3 leads to Colored GSPNs

(CGSPNs) [18]:

Definition 4. A Colored GSPN (CGSPN) is a 4-tuple

CGSPN ¼ ðCPN; T1; T2;W Þ, where:

1. CPN ¼ ðP; T; C; I�; Iþ;M0Þ is the underlying CPN,
2. T1 � T is the set of timed transitions, T1 6¼ ;,
3. T2 � T is the set of immediate transitions,

T1 \ T2 ¼ ;, T1 [ T2 ¼ T ,
4. W ¼ ðw1; . . . ; wjT jÞ is an array with wi 2
½CðtiÞ 7�! IRþ� such that 8c 2 CðtiÞ : wiðcÞ 2 IRþ is
a rate of a negative exponential distribution specifying
the firing delay due to color c, if ti 2 T1 or is a firing
weight specifying the relative firing frequency due to c,
if ti 2 T2.

While CGSPNs have proven to be a very powerful
modeling formalism, they do not provide any means for
direct representation of queueing disciplines. The attempts
to eliminate this disadvantage have led to the emergence of
Queueing PNs (QPNs). The main idea behind the QPN
modeling paradigm was to add queueing and timing
aspects to the places of CGSPNs. This is done by allowing
queues (service stations) to be integrated into places of
CGSPNs. A place of a CGSPN that has an integrated queue
is called a queueing place and consists of two components,
the queue and a depository for tokens which have completed
their service at the queue. This is depicted in Fig. 11.

The behavior of the net is as follows: Tokens, when fired
into a queueing place by any of its input transitions, are
inserted into the queue according to the queue’s scheduling
strategy. Tokens in the queue are not available for output
transitions of the place. After completion of its service, a
token is immediately moved to the depository, where it
becomes available for output transitions of the place. This
type of queueing place is called a timed queueing place. In
addition to timed queueing places, QPNs also introduce
immediate queueing places, which allow pure scheduling
aspects to be described. Tokens in immediate queueing
places can be viewed as being served immediately.
Scheduling in such places has priority over scheduling/
service in timed queueing places and firing of timed

transitions. The rest of the net behaves like a normal

CGSPN. A formal definition of a QPN follows:

Definition 5. A Queueing PN (QPN) is an 8-tuple

QPN ¼ ðP; T ; C; I�; Iþ;M0; Q;W Þ, where:

1. CPN ¼ ðP; T ; C; I�; Iþ;M0Þ is the underlying
Colored PN,

2. Q ¼ ð ~Q1; ~Q2; ðq1; . . . ; qjP jÞÞ, where

. ~Q1 � P is the set of timed queueing places,

. ~Q2 � P is the set of immediate queueing places,
~Q1 \ ~Q2 ¼ ;, and

. qi denotes the description of a queue6 taking all
colors of CðpiÞ into consideration, if pi is a
queueing place or equals the keyword “null” if pi
is an ordinary place.

3. W ¼ ð ~W1; ~W2; ðw1; . . . ; wjT jÞÞ, where

. ~W1 � T is the set of timed transitions,

. ~W2 � T is the set of immediate transitions,
~W1 \ ~W2 ¼ ;, ~W1 [ ~W2 ¼ T , and

. wi 2 ½CðtiÞ 7�! IRþ� such tha t 8c 2 CðtiÞ :
wiðcÞ 2 IRþ is interpreted as a rate of a negative
exponential distribution specifying the firing
delay due to color c, if ti 2 ~W1 or a firing weight
specifying the relative firing frequency due to
color c, if ti 2 ~W2.

Example 1 (QPN). Fig. 12 shows an example of a QPN

model of a central server system with memory

constraints based on [18]. Place p2 represents several

terminals where users start jobs (modeled with tokens

of color “o”) after a certain thinking time. These jobs

request service at the CPU (represented by a G/C/1/

PS queue, where C stands for Coxian distribution) and

two disk subsystems (represented by G/C/1/FCFS

queues). To enter the system, each job has to allocate a

certain amount of memory. The amount of memory

needed by each job is assumed to be the same, which

is represented by a token of color “m” on place p1.
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Fig. 11. A queueing place and its shorthand notation.

6. In the most general definition of QPNs, queues are defined in a very
generic way, allowing the specification of arbitrarily complex scheduling
strategies taking into account the state of both the queue and the depository
of the queueing place [22]. For the purposes of this paper, it is enough to use
conventional queues as defined in queueing network theory.

Fig. 12. A QPN model of a central server with memory constraints

(reprinted from [18]).



According to Definition 5, we have the following:

QPN ¼ ðP; T ; C; I�; Iþ;M0; Q;WÞ, where

. CPN ¼ ðP; T; C; I�; Iþ;M0Þ is the underlying
Colored PN, as depicted in Fig. 12,

.

Q ¼ ð ~Q1; ~Q2; ðnull;G=C=1=IS;G=C=1=PS; null;

G=C=1=FCFS;G=C=1=FCFSÞÞ;
~Q1 ¼ fp2; p3; p5; p6g; ~Q2 ¼ ;,

. W ¼ ð ~W1; ~W2; ðw1; . . . ; wjT jÞÞ, w h e r e ~W1 ¼ ;,
~W2 ¼ T , and 8c 2 CðtiÞ : wiðcÞ :¼ 1 so that all

transition firings are equally likely.
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