Automation and Simplification Through Declarative Performance Engineering

Jürgen Walter

Chair of Software Engineering
University of Würzburg

http://se.informatik.uni-wuerzburg.de/

Doctoral Colloquium June 14th 2016
Performance = timing behavior + resource usage

"the entire collection of software engineering activities and related analyses used throughout the software development cycle, which are directed to meeting performance requirements."
Most suitable architecture?

Response time of service S?

Utilization of server N?

Performance anti-patterns?

Performance regressions?

SLAs satisfied?

What if changes?

Performance Analyst

Performance-Relevant Concerns Spanning the Software Lifecycle
Extensive Body of Software Performance Engineering Exists

Problem Statement: Various Decisions to Apply SPE Correctly

- Which modeling language?
- Which modeling granularity?
- Granularity of instrumentation?
- Analytical solution? Simulation?
- How to reconfigure?
- Workload intensity?
- Ramp-up time? Duration?

- Modeling Languages
- Monitoring (APM)
- Load Testing
- Online Performance Management
- Performance Analyst

Performance Prediction
Problem Statement: Various Decisions to Apply SPE Correctly

Performance Concerns

Software Performance Engineering

Challenges
- Choice of solution strategy
- Parametrization of approach
- Result filtering and interpretation

Established Methods, Techniques, Tools
- Measurement-based
- Model-based

System

Performance Analyst
What would be the response times of services X, Y, and Z if the workload intensity doubles over the next week? Rough estimation is sufficient. The resulting response times are ...

The resulting response times are...

DPE Platform

Declarative Performance Engineering (DPE)

System

Context

Software Performance Engineering

Service X: 4ms
Service Y: 5ms
Service Z: 9ms
Resource A: 20%
Resource B: 50%

Analysis Model and Solution Approach

Architectural Performance Model

Knowledge Base

Declarative Language

Adapters

Language Processing

Decision Engine

Capability Model

Declarative Performance Engineering
I say/define **what** i want to know,

the **how** will be automatically derived from what
http://descartes.tools/dml
(can be an arbitrary model)
A **context** is a description of a system under test that uses and includes a (formalized) meta-model

- **Context Model** … the model instance that describes the system under test
- **Context Meta-Model** … the meta-model to specify used to interpret the context model. Offers semantics for context model
- …the formal language in which the model is defined/specified/expressed
A **Queryable Element (QE)** is an element of the meta-model for whose instances the respective a given set of queries is meaningful
- an element of a scenario model
- or the respective scenario meta-model

Queryable Element Context is a connection of one or more objects of the MM, which refines the QE (e.g., containment)
- Macht die Frage eindeutig interpretierbar
- An objekt may be reference multiple times. If a QE is not identifiable then its embedding context has to be used additionally
 - One service may be instantiated multiple times
 - Solution: SELECT AssemblyContext1.Service1 …
 - Solution: SELECT AssemblyContext2.Service1 …
Descartes Query Language

- SQL like interface for different Performance Engineering approaches

```
SELECT resource1.utilization, service1.avgResponseTime
FOR RESOURCE 'id1' AS resource1,
    SERVICE 'id2' AS service1
USING dml@'model';
```

http://descartes.tools/dql
Query Answering Process

- Performance Query
 - Choice and Composition of Solution Strategy
 - Configuration
 - Processing
 - Result Filtering and Interpretation
 - Query Results

Note: Arrows depict dependencies or drives but do not imply strict ordering.
A **Solution Strategy Expert** chooses and composes model transformations and solution approaches to solve a query == solution receipt.
Need for Solution Strategy Comparison

- Receipts can be **reused** if solution strategy is based on meta-model
- Receipts can be **formalized and implemented** in a solution strategy adapter (more on this later)
 ➔ Many possible solution strategies for one query that differ in speed, accuracy and provided statistics type
 ➔ Solution Strategies may not be able to answer questions for only a subset of queryable elements and respective metrics
 ➔ **Need for comparison** of different solution strategies
• Solution expert implements a reusable strategy and describes its capabilities in formalized **Solution Strategy Capability Model** (using a **Solution Strategy Capability Meta-Model** that points to the *scenario meta-model*)

• Then, ---for a given query---- a **decision engine** may chose a suitable solution strategy based on a set of solution stratgey capability models
Is the envisioned decision support some kind of an expert system?

Is it kind of an expert system but

- Usually expert systems are just a type of database that directly map answers to a questions. Here, it is more complex
Influencing the strategy processing

- Users want to influence **costs** and **accuracy** of the query processing
 - If user requests a fast response, then the solution strategy shall adapt to this (usually to the cost of accuracy)
 - If user requests an accurate response, then the solution strategy shall adapt to this (usually to the cost of costs/time)

- Tradeoff example:
 - Reduce simulation/analysis/measurement time
 - Reduced warm-up period/Initialization bias
 - Switch analysis techniques: use analytical solvers or simulation
Quantitative case studies
Comparisons of Performance and Accuracy

⇒ No automation

Decision Support Performance Engineering

- Koziolek [Koz10]
- Banks et al. [BCN00]
- Balsamo et al. [BMIS04]

Tree-based decision support

⇒ Vage consideration of query and context

- Bolch et al. [BGdMT00]
- Brosig et al. [KHSB14]
Decision support should consider
- model properties (model size, modeling deepness, number of users, …)
- query properties (fast, accurate, system perturbation, …)

How to compare solution strategies?
- Split into decision engine and meta-model
Solution Strategy Capability Meta-Model
Will my analysis start and terminate for a given model/input?

Limitation Repository that contains set of PredefinedStrategyLimitation for a certain meta-model to solve, e.g
- Support for loops
- Support for open workloads
Queryable Element

Is solution approach able to solve a given question?
Is solution approach capable to solve a given question?

→ Cost functions
Example Trees

Source model contains loops? no →

Source model contains forks with synchronization barrier? no →

Approximated loop iteration numbers lead to significant inaccuracies? no →

Use SimCom

yes

yes

Response time distributions or response time percentiles required? no →

Source model contains flexible parameter characterizations? no →

Source model contains blocking behavior? no →

Approximation with exponential distribution leads to significant inaccuracies? no →

Use SimQPN

yes

yes

Use SimQPN-MV

yes

Use LQNS

Source model contains forks with synchronization barrier? yes →

Approximated fork-join behavior leads to significant inaccuracies? yes →

Use SimCom

no

yes

Approximated parameter propagation leads to significant inaccuracies? yes →

Use SimCom

no

Performance Problem

Transient

N

Queueing Problem

Discrete Event Simulation

Chapter: 11

Chapter 5

Transient

Single Station

Chapter 8

Y

Y

Y

Y

Y

Chapter 10

Chapter 9

Chapter 8

Chapter 12

Applications: Chapter: 13

Chapter 8

Chapter 13

Chapter 11

Chapter 5

Chapter 3

Chapter 8

Chapter 10

Chapter 9

Chapter 8
Advantages of our Approach

- Reduced Decision Logic
 - All Analysis approaches ➞ Check Limitations
 - For remaining analysis approaches ➞ Check support for the right queryable element
 - For remaining analysis approaches ➞ Estimate costs and choose cheapest

➤ Capability Meta-Model provides a methodology for the comparison of solution strategies

➤ Simple addition of new comparisons attributes

➤ Simple addition of new solution strategies (as one does not rely on the knowledge of all other approaches)
Work in Progress

• What if queries ➔ query all changes and then do result filtering
• Extension and extendability to other query targets ➔ System.bottlenecks
• Navigate through scenario model(e.g., affected subservices)
• Result presentation according to query
• Cost estimation for analysis approaches (machine learning techniques)
• Integration of goals to the DQL
 • Strategies Tactics Actions) (S/T/A) framework as one solution approach (applied for adaptation at runtime)
Project PIs
- Dr.-Ing. André van Hoorn (Prof.-Vertr.), University of Stuttgart
- Prof. Dr.-Ing. Samuel Kounев, University of Würzburg

Members
- Dr.-Ing. Dušan Okanović, University of Stuttgart
- Dipl.-Inform. Jürgen Walter, University of Würzburg

Associated Partners
- Capgemini Deutschland GmbH, Stuttgart, Germany

Collaborators
- Research Group of the Standard Performance Evaluation Corporation (SPEC RG)
Local Student Team
A **Scenario Model Builder** creates a scenario model that depicts a real world system.

PMX

http://descartes.tools/pmx

CAN BE DONE MANUALLY OR AUTOMATE USING
PMX Approach

1. \(f (M, D, G) \rightarrow M' \) components + deployment
2. \(f' (M', D, G) \rightarrow M'' \) control flow/interaction
3. \(f'' (M'', D, G) \rightarrow M''' \) resource demands
4. \(f'''(M''', G) \rightarrow \) target model

- \(M \subset M' \subset M'' \subset M''' = PCM/DML \)
- D … trace data / code /resource utilization
- G … goal specification (currently fixed and DQL in the future)
Declarative Performance Engineering

I say/define **what** I want to know,

the **how** will be automatically derived from what