A Literature Review on Optimization Techniques for Adaptation Planning in Adaptive Systems: State of the Art and Research Directions

Elia Henrichsa, Veronika Leschb, Martin Straesserb, Samuel Kounevb, Christian Krupitzera,*

aDepartment of Food Informatics & Computational Science Lab, University of Hohenheim, Stuttgart, Germany
bSoftware Engineering Group, University of W"urzburg, W"urzburg, Germany

\textbf{Abstract}

Context: Recent developments in modern IT systems including internet of things, edge/fog computing, or cyber-physical systems support intelligent and seamless interaction between users and systems. This requires a reaction to changes in their environment or the system. Adaptive systems provide mechanisms for these reactions.

Objective: To implement this functionality, several approaches for the planning of adaptations exist that rely on rules, utility functions, or advanced techniques, such as machine learning. As the adaptation space with possible options is often extensively huge, optimization techniques might support efficient determination of the adaptation space and identify the system’s optimal configuration. With this paper, we provide a systematic review of adaptation planning as the optimization target.

Method: In this paper, we review which optimization techniques are applied for adaptation planning in adaptive systems using a systematic literature review approach.

Results: We reviewed 115 paper in detail out of an initial search set of 9,588 papers. Our analysis reveals that learning techniques and genetic algorithms are by far dominant; in total, heuristics (anytime learning) are more frequently applied as exact algorithms. We observed that around 57\% of the approaches target multi-objectiveness and around 30\% integrate distributed optimization. As last dimension, we focused on situation-awareness, which is only supported by two approaches.

Conclusion: In this paper, we provide an overview of the current state of the art of approaches that rely on optimization techniques for planning adaptations in adaptive systems and further derive open research challenges, in particular regarding the integration of distributed optimization and situation-awareness.

Keywords: Self-adaptive Systems, Adaptation Planning, Optimization, Survey

1. Introduction

Cyber-physical systems, industrial internet/industry 4.0, internet of things, smart city, smart grid, and self-driving vehicles are only a few examples showing that the world is transitioning towards integrating adaptive systems into our everyday life. Those systems inherently require interacting with the environment and reacting autonomously to changes in the environment for fulfilling service-level agreements or maintaining a sufficient Quality of Service level. Therefore, those systems must be adaptive.

Self-adaptive (software) systems are able to change their behavior at runtime as a response to changes in their environment or in the system itself [1, 2]. Those systems can work in dynamic and uncertain environments. They are often divided into a managed subsystem, i.e., software and hardware resources that interact with the users or backend systems, and a managing subsystem, which is able to control and adapt the managed subsystem. As a de facto standard, the managing subsystem implements the Monitor-Analyze-Plan-Execution (MAPE) system model [3] for

*Corresponding author: phone: +49-711-459-23664; fax: +49-711-459-24433;
Email addresses: elia.henrichs@uni-hohenheim.de (Elia Henrichs), veronika.lesch@uni-wuerzburg.de (Veronika Lesch), martin.straesser@uni-wuerzburg.de (Martin Straesser), samuel.kounev@uni-wuerzburg.de (Samuel Kounev), christian.krupitzer@uni-hohenheim.de (Christian Krupitzer)

Preprint submitted to Information and Software Technology Journal May 24, 2022
structuring the management functionality into (i) monitoring the environment and the system resources, (ii) analyzing
if an adaptation is required, (iii) planning the necessary adaptation actions, and (iv) executing those actions.

However, the planning process can be complex due to several circumstances. First, a large configuration space of
the parameters of self-adaptive systems [4] complicates describing and testing all possible adaptation options. Second,
an unpredictable number of possible environmental situations prohibits testing all adaptation options at design time
and necessitates planning at run time to identify an appropriate configuration for a given situation dynamically [5].
Classical, non-iterative machine learning techniques (e.g., for classification or clustering) can only support this insuf-
ficiently because they require a large training set. Further, learning on-the-fly might decrease the availability of the
systems because this includes that the systems come into a situation where adaptation is required because the learner
can only learn from situations. As a result, adaptation planning must rely on simple models that capture a system’s
adjustable input parameters and possible observations (output parameters). Following this idea, we proposed in [6]
planning as optimization: the use of optimization strategies to discover optimal system configurations.

This paper aims to provide a systematic overview and analysis of the current state of the art of planning as op-
timization, i.e., the application of mathematical, statistical, or nature-inspired optimization techniques for adaptation
planning. First, this work provides a general overview of the used techniques. Second, the environment of self-
adaptive systems might change frequently requiring anytime learning supported techniques [7], i.e., techniques that
constantly provide a usable solution. Hence, anytime algorithms which are able to achieve this in case of optimiza-
tion [8] should be applied. Third, adaptive systems are often composed of several sub-systems, as most adaptive
systems at least separate the adaptation logic from the managed elements as this improves maintainability [9]. Addi-
tionally, adaptive systems are often highly distributed [10] and have multiple stakeholders with (potentially conflict-
ing) objectives. This might demand integrating distributed optimization techniques in case that the adaptation control
cannot be centralized. Lastly, the “No-Free-Lunch-Theorem” [11] describes that there is no general optimization ap-
proach that performs best in all scenarios; rather the pattern of data highly influences the choice of the optimization
technique. Based on this theorem, we showed in our previous works [6, 12] the necessity to provide a situation-aware
change of the used adaptation techniques, as different situations might have other characteristic data patterns. Ac-
cordingly, we discuss the current integration of situation-awareness. In summary, this paper contributes to the body
of research by addressing:

- Overview of the application of optimization techniques for adaptation planning in adaptive systems.
- Analysis of anytime learning supported applications for adaptation planning in adaptive systems.
- Analysis of multi-objectiveness supported applications for adaptation planning in adaptive systems.
- Analysis of distributed optimization supported applications for adaptation planning in adaptive systems.
- Discussion of situation-awareness support for adaptation planning in adaptive systems.

The remainder of this paper is structured as follows. Section 2 explains several fundamentals related to optimization
in general and the specifics of self-adaptive systems. Section 3 presents the methodological approach for the literature
review. Subsequently, Section 4 provides an overview of the identified optimization techniques for answering research
question RQ1. In Section 5, we discuss the results of the literature review with respect to anytime learning [7], multi-
objectiveness, distributed optimization, and situation-awareness for answering the research questions RQ2, RQ3,
RQ4, and RQ5. Further, Section 6 discusses threats to validity. We distinguish our work against other surveys in the
field in Section 7. Finally, Section 8 concludes this paper with a summary of our results.

2. Fundamentals

In the following section, we provide a short overview of the terminology and selected methods for solving opt-
imization problems relevant for the remainder of this work. Furthermore, we provide a definition of self-adaptive
/software) systems as the targeted system domain for this study.

2.1. General Terminology of Optimization Problems

In an optimization problem, we aim to find an optimal system state \(x^* \) using a set of influenceable variables [13].
These variables \(x_1, x_2, ..., x_n \) are composed into the design vector \(X \). The set of all possible values of \(X \) is called
design space \(D \), while the subset of \(D \), where we are looking for an optimal configuration, is called search space. We
determine the quality of a state \(X \) using an objective function \(f(X) : D \to \mathbb{R} \). Depending on the actual formulation of
the problem, a state \(x^* \) is globally (locally) optimal if \(f(x^*) \) is a global (local) maximum or minimum of \(f \). Note that if
\(x^* \) is a maximum of \(f \), then \(x^* \) is a minimum of \(-f\) so that a maximization problem is transformed into a minimization
problem. For practical reasons, a minimum is usually targeted. We can state an optimization problem as:

\[
\text{Find } X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \text{ which minimizes } f(X) \tag{1}
\]

The problem denoted in (1) is called an unconstrained optimization problem. In contrast, a constrained optimization problem is present if the design variables have to fulfill several constraints \(g_1(X), g_2(X), ..., g_m(X) \). This is
often the case in practical-oriented applications. Additionally, an optimization problem with more than one objective
function or an objective function which combines several objectives is called a multi-objective optimization problem.

2.2. Self-Adaptive Systems and Related Concepts

In this paper, we mainly target the domain of self-adaptive (software) systems. However, several closely related
concepts provide similar approaches. Hence, we also included those in the literature review. In the following, we
present the basics of those different research streams.

2.2.1. Self-Adaptive Systems

The literature provides several definitions for the term self-adaptive (software) systems [1, 14, 15, 16, 17] as well
as different terms that are used interchangeably: Dynamically Adaptive Systems (e.g., [18]), Autonomic Systems
(e.g., [16]), Self-managing Systems (e.g., [16]), Self-adaptive Systems (e.g., [1]), or Self-adaptive Software Systems
(e.g., [15]). This paper consistently uses the term self-adaptive system and follows the definition of the first Dagstuhl
Seminar on Software Engineering for Self-Adaptive Systems:

[Self-adaptive systems] are able to adjust their behaviour in response to their perception of the environ-
ment and the system itself. The "self" prefix indicates that the systems decide autonomously (i.e., without
or with minimal interference) how to adapt or organize to accommodate changes in their contexts and
environments. ([1, p. 1];[17, p. 49])

From an architectural point of view (see Figure 1), a self-adaptive system is composed of two parts [1, 19]: a
managing system – the adaptation logic – that controls the second part, the managed resources, a set of software
and hardware resources, e.g., servers, laptops, smartphones, robots, or unmanned vehicles. Therefore, the adaptation
logic observes the environment and the managed resources, analyzes the need for adaptation, plans such adaptations
and controls the execution of the adaptation. These four steps (also called MAPE or MAPE control feedback loop)
may share and/or exploit the knowledge (becoming MAPE-K) built from the monitored environment, the analyzed
information, the planned changes, and the result of the execution of the changes. This knowledge may grow in
time, being enriched with new information about the environment and the applied adaptations. The MAPE control
feedback loop is the de facto standard for the design of the adaptation logic for self-adaptive systems [16]. Other
authors propose similar feedback structures, such as the sense-plan-act control [20], the autonomic control loop [21],
or the observer/controller architecture [22]. The authors of [2] discuss properties of self-adaptation that influence the
implementation of self-adaptive systems.

2.2.2. Related Research Streams

Other research streams focus on systems with similar properties as self-adaptive systems. The most related concept
is Autonomic Computing [3]. Researchers in the Autonomic Computing domain integrate principles from biology,
mainly from the autonomous nervous system, to equip systems with autonomic capabilities. The MAPE control loop
arose in the Autonomic Computing area.
The authors of [23] define self-aware computing systems as systems that (i) reason on the knowledge of self-awareness and (ii) act accordingly. This makes their definition of self-aware computing systems identical to this paper’s view on self-adaptive systems. One has to distinguish this concept from self-awareness as defined in [16]: There, self-awareness – capturing knowledge on itself – is seen as underlying system property for self-adaptation, i.e., acting on self-awareness and context-awareness.

Babaoglu and Shrobe [24] see self-adaptive systems as top-down systems with central control, whereas self-organizing systems are dedicated units that organize themselves bottom-up without a central instance. However, reviewing the current literature of self-adaptive systems shows that self-adaptive systems offer both centralized and decentralized system control [10, 2]. Consequently, we do not distinguish self-organizing systems and self-adaptive systems in this work as a self-organizing system can be composed of self-adaptive systems.

Organic Computing is associated with systems that use bio-inspired concepts to implement organic behavior [25]. Similar to self-adaptive systems, Organic Computing systems try to achieve self-* properties. In contrast, they focus on (i) the integration of principles from nature-inspired computing, (ii) the emergence of systems for shifting design activities to runtime, and (iii) the human-in-the-loop as a first-class entity rather than an element to avoid. Pervasive/Ubiquitous Computing [26] aims at the seamless integration of information technology and everyday devices to support humans by smart information technology. These systems are often context-aware (i.e., they react to changes in their environment; similar to situation-awareness) and adaptive. However, they target solutions in the Internet-of-Things domain rather than generic systems.

Collective Adaptive Systems (CAS) integrate evolutionary self-organization (i.e., controllability of long-term autonomy), driven forces behind evolution (i.e., coping with the complexity of “natural chemistry”), developmental drift (i.e., incorporating artificial sociality), and long-term homeostasis self-identification (i.e., the emergence of self-organization) [27]. As being a similar research stream, we also included CAS as well as the domain of multi-agent systems in our review.

3. Methodology

Our methodology for the survey adapts some methods from the guidelines of Webster and Watson [28] for a structured literature review and Petersen et al. [29] for systematic mapping studies. Our research is based on the steps shown in Figure 2. In the beginning, we framed our aim in the form of research questions and identified relevant venues. We defined exclusion and inclusion criteria and performed keyword-based searches for filtering the articles based on their titles and abstracts. After identifying the set of relevant papers, descriptions and properties of the optimization techniques as well as bibliography data have been extracted. In the following, we describe these steps.

3.1. Definition of Research Questions

The primary aim of this work is to provide an overview of optimization techniques in the context of adaptive systems. According to this goal, we derived our research questions. To get a picture of used optimization techniques, we divided the optimization approaches into categories adapted from [13] within research question RQ1. Further anytime learning techniques [7] (e.g., using anytime algorithms [8]), provide a solution for adaptation planning using...
intermediate solutions of the optimizer in contrast to exact algorithms, such as Integer Programming, which only provide a final solution. Those intermediate solutions can fasten the reaction to changes as adaptations can be applied faster compared to exact algorithms which include waiting for the final solution. Because of the dynamics of the environment and system composition of self-adaptive systems, we postulate that anytime learning might be beneficial as research question (RQ2). As self-adaptive systems, especially self-organizing systems such as self-organizing networks or autonomous vehicles that adjust their behavior, might be composed of several different subsystems with many stakeholders, multi-objective scenarios with even potentially conflicting objectives are feasible. Hence, with research question RQ3 we study to what extent multi-objective approaches are present. Additionally, adaptive systems are often distributed [10]. In combination with the mentioned various stakeholders/users, this might demand for the application of distributed optimization techniques in case that the adaptation control cannot be centralized. Accordingly, distributed optimization techniques might support the decision making in distributed adaptive systems. Hence, we formulated research question RQ4. Lastly, the "No-Free-Lunch-Theorem" [11] states that there is no general optimization approach that outperforms all other techniques in all possible use cases because the pattern of data determine the performance of an optimization technique. Based on this theorem, we have shown in [6] and [12] that a meta-adaptation of the optimization technique used for adaptation planning might be beneficial as different system situations reflect the required for different optimizers due to the different data patterns in a specific situation. Accordingly, we added this circumstance in research question RQ5. These considerations lead to the following research questions:

RQ1 - Which optimization techniques are applied for adaptation planning in adaptive systems?
RQ2 - To what extent is anytime learning supported?
RQ3 - To what extent is multi-objectiveness supported?
RQ4 - To what extent are distributed optimization techniques integrated?
RQ5 - Does the used techniques for planning as optimization support situation-awareness?

3.2. Selection Method

We investigate how optimization techniques can be used for adaptation planning in self-adaptive systems and related concepts. As the terms “optimization”, “optimize”, “adaptation planning”, and similar terms are often used in the context of self-adaptive system research, we avoided a fully open search term-based literature search as this would result in misleading result (e.g., all papers using self-optimize or self-optimization would be included). Hence, we used a focused, systematic mapping study. In the following, we describe the selection method for building our set of relevant papers. The process is similar to the one used in [30], in which the authors studied the application of learning in collective adaptive systems.

(1) Identification of Relevant Sources. To identify relevant conferences and journals, we performed some initial searches and consolidated experts in the field of study. The selected venues are shown in Table 1. Those include the
conferences AMAAS, ASE, FSE, ICAC, SASO, ACSOS, and SEAMS as well as the journals JAAMAS, IEEE Software, TAAS, TOSEM, and TSE. We focus on reviewing advanced and high-quality studies published in the leading conferences and journals in the self-adaptive systems domains and closely related research communities. Additionally, we included top venues researching autonomous and multi-agent systems (e.g., AAMAS, JAAMAS). However, we do not exhaustively search the entire multi-agent system domain. Accordingly, we used the databases DBLP, IEEEExplore, ACM DL, and SpringerLink to access the publications of the venues. We analyzed papers from January 2004, the year in which the International Conference on Autonomic Computing (ICAC) took place the first time, to December 2020. We only analyzed full research papers or articles for this survey and excluded texts such as editorials, demonstrations, short papers, workshop contributions, letters, or posters because those often report work-in-progress. Table 2 shows the initial number of articles after this filtering process.

Table 1: Selected Venues for the Survey.

<table>
<thead>
<tr>
<th>Type</th>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conference</td>
<td>AAMAS</td>
<td>International Conference of Autonomous Agents and Multi-Agent Systems</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>International Conference on Automated Software Engineering</td>
</tr>
<tr>
<td></td>
<td>FSE</td>
<td>ACM SIGSOFT International Symposium on the Foundations of Software Engineering</td>
</tr>
<tr>
<td></td>
<td>ICAC</td>
<td>IEEE International Conference on Autonomic Computing</td>
</tr>
<tr>
<td></td>
<td>SASO</td>
<td>IEEE International Conference on Self-Adaptive and Self-Organizing Systems</td>
</tr>
<tr>
<td></td>
<td>ACSOS</td>
<td>IEEE International Conference on Autonomic Computing and Self-Organizing Systems</td>
</tr>
<tr>
<td></td>
<td>SEAMS</td>
<td>ICSE Symposium on Software Engineering for Adaptive and Self-Managing Systems</td>
</tr>
<tr>
<td>Journal</td>
<td>JAAMAS</td>
<td>Springer Autonomous Agents and Multi-Agent Systems</td>
</tr>
<tr>
<td></td>
<td>Softw.</td>
<td>IEEE Software</td>
</tr>
<tr>
<td></td>
<td>TAAS</td>
<td>ACM Transactions on Autonomous and Adaptive Systems</td>
</tr>
<tr>
<td></td>
<td>TOSEM</td>
<td>ACM Transactions on Software Engineering and Methodology</td>
</tr>
<tr>
<td></td>
<td>TSE</td>
<td>IEEE Transactions on Software Engineering</td>
</tr>
</tbody>
</table>

(2) Definition of Coarse-Grained Exclusion and Inclusion Criteria. First, a set of keywords was defined for an initial screening. This set was continuously updated with further relevant keywords found during this screening. The set contained two groups of keywords: The first group concerned the term “optimization” consisting of the keywords with prefixes opti-, max-, min- and best-. The second group providing the relation to adaptive systems is captured with prefixes including adapt-, self-, aware, transform- and autonom- among others, caused by the variety of terms. However, even if we detected no match with this second group of search targets, we included the paper in our analysis in case we observed a high match with the specified terms. Consequently, we excluded (i) papers without a hit of a keyword, (ii) works focusing on self-optimization or (iii) that did not explicitly address the adaptation planning.

(3) Study Selection Procedure. Based on the mentioned criteria, we performed a rough filtering of the articles considering their titles, abstracts, and, if applicable, linked keywords. For each paper fitting the scope of the inclusion criteria, we conducted a full-text filtering. Two reviewers conducted the paper selection and analyzed the sampled studies to confirm their relevance. In case of doubt, advice from the other co-authors was taken into account.

3.3. Analysis Method

For each remaining article, we extracted the used optimization technique as well as the specific method/algorithm for planning as optimization in the adaptation planning step based on the categories for optimization techniques from [13]. These categories were convex programming as classic optimization technique; nonlinear programming in general and heuristic methods in particular as nonlinear optimization techniques; integer programming optimization techniques; stochastic programming and Markov processes as stochastic optimization techniques; and genetic algorithms and learning techniques as further optimization techniques. This information is used to answer research question RQ1 (see Section 4). Additionally, we extracted the following categories (see Section 5):

• Anytime Algorithm (RQ2): Does an approach support anytime learning?
Table 2: Overview of analyzed and included publications per year and venue. Gray cells mean that the venue was not available. Note that in 2020 the gray cells indicate the ACSOS, which is a merge of ICAC and SASO and replaces them.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AAMAS</td>
<td>273</td>
<td>130</td>
<td>250</td>
<td>254</td>
<td>256</td>
<td>163</td>
<td>125</td>
<td>282</td>
<td>140</td>
<td>167</td>
<td>166</td>
<td>146</td>
<td>160</td>
<td>194</td>
<td>193</td>
<td>194</td>
<td>3223</td>
</tr>
<tr>
<td></td>
<td>ASE</td>
<td>25</td>
<td>28</td>
<td>22</td>
<td>36</td>
<td>36</td>
<td>38</td>
<td>37</td>
<td>21</td>
<td>73</td>
<td>82</td>
<td>76</td>
<td>71</td>
<td>83</td>
<td>76</td>
<td>91</td>
<td>93</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>FSE</td>
<td>26</td>
<td>29</td>
<td>25</td>
<td>49</td>
<td>32</td>
<td>35</td>
<td>33</td>
<td>45</td>
<td>46</td>
<td>72</td>
<td>61</td>
<td>97</td>
<td>74</td>
<td>99</td>
<td>104</td>
<td>95</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>ICAC</td>
<td>31</td>
<td>25</td>
<td>26</td>
<td>15</td>
<td>18</td>
<td>15</td>
<td>23</td>
<td>20</td>
<td>18</td>
<td>35</td>
<td>29</td>
<td>37</td>
<td>23</td>
<td>27</td>
<td>15</td>
<td>16</td>
<td>391</td>
</tr>
<tr>
<td></td>
<td>SASO</td>
<td>28</td>
<td>42</td>
<td>27</td>
<td>25</td>
<td>21</td>
<td>26</td>
<td>26</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>12</td>
<td>280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEAMS</td>
<td>13</td>
<td>18</td>
<td>17</td>
<td>13</td>
<td>26</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>21</td>
<td>29</td>
<td>23</td>
<td>26</td>
<td>296</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JAAMAS</td>
<td>16</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>29</td>
<td>31</td>
<td>30</td>
<td>32</td>
<td>32</td>
<td>30</td>
<td>36</td>
<td>38</td>
<td>39</td>
<td>48</td>
<td>25</td>
<td>55</td>
<td>532</td>
</tr>
<tr>
<td></td>
<td>Softw.</td>
<td>76</td>
<td>74</td>
<td>74</td>
<td>63</td>
<td>60</td>
<td>69</td>
<td>64</td>
<td>69</td>
<td>66</td>
<td>61</td>
<td>78</td>
<td>68</td>
<td>77</td>
<td>74</td>
<td>78</td>
<td>81</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>TAAS</td>
<td>8</td>
<td>14</td>
<td>19</td>
<td>21</td>
<td>14</td>
<td>27</td>
<td>39</td>
<td>14</td>
<td>25</td>
<td>19</td>
<td>26</td>
<td>20</td>
<td>19</td>
<td>16</td>
<td>7</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TOSEM</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>15</td>
<td>20</td>
<td>13</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>35</td>
<td>44</td>
<td>22</td>
<td>16</td>
<td>12</td>
<td>23</td>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>TSE</td>
<td>71</td>
<td>73</td>
<td>58</td>
<td>53</td>
<td>52</td>
<td>51</td>
<td>49</td>
<td>48</td>
<td>80</td>
<td>95</td>
<td>63</td>
<td>67</td>
<td>60</td>
<td>60</td>
<td>58</td>
<td>58</td>
<td>62</td>
</tr>
</tbody>
</table>

3.4. Selected Studies

As mentioned, we focus on seven conferences and five journals (see Table 1) as those provide high-quality publications in the research field. The publication range spanned works from 2004 to 2020. In total, we analyzed 9,588 publications, from which we included 115 after the application of the inclusion and exclusion criteria. From the selected publications, around 70% were originally published at conferences (see Figure 3). Having only very few articles in the main software engineering journals might be surprising at first. However, we think that this is not too surprising as those journals cover a broad range of topics besides adaptive systems engineering. In contrast, the conference are more focused to either adaptive systems or optimization procedures in general, which can explain the higher amount of relevant publications.

Many approaches apply optimization techniques in self-adaptive systems to generate new system configurations or adaptation plans, mainly within the planning procedure. To provide an overview of the applied techniques, we performed an analysis of these techniques based on approaches published since 2004 in highly rated conferences and journals related to the research communities of adaptive systems (see Table 1). The techniques were classified into:

- **Single/Multi-objectiveness** (RQ3): Does an approach support single- or multi-objectiveness?
- **Distributed Optimization** (RQ4): Is the optimization technique distributed on several subsystems, i.e., for distributed adaptive systems?
- **Situation-awareness** (RQ5): Is the approach situation-aware, i.e., is it possible to switch or adjust the optimization algorithm depending on the environment/system situation?
RQ1 - Which optimization techniques are applied for adaptation planning in adaptive systems?

Depending on the types of the objective function, design variables, and constraints, multiple variants of optimization problems emerge. There is no known method which produces solutions for all those variants efficiently. In adaptive systems, we often have to deal with limited computational power and bounded reaction times. Thus, an optimization technique, which suits the application context and requirements, has to be found. As shown in Figure 4, we classified the techniques into 11 categories: Learning Techniques, Genetic Algorithms, Integer Programming, Markov Decision Process Planning, Greedy Algorithms, Heuristic Algorithms, Stochastic Optimization, Convex Optimization, Metaheuristic Algorithms, Nonlinear Programming and Miscellaneous Approaches (Others), which could not be assigned to the categories previously mentioned.

Next, we summarize the findings of the literature review w.r.t. the identified optimization techniques. The classification of optimization techniques is often not disjoint as many approaches use techniques from several categories. We classified them according to their primary technique used. Nevertheless, we assigned some publications in multiple categories because they were using several optimization techniques (e.g., [6]) or combining several of the mentioned techniques, such as [31], in which the authors proposed a hybrid approach combining Learning Techniques and Markov Decision Process Planning. In other publications, the optimization technique depends on the specific concerns targeted for planning or the system design integrates different optimization techniques on different layers of the adaptation (e.g., for global versus local optimization) [32, 33, 34, 35]. Further, optimization techniques for adaptation planning are often influenced by dynamic environment handling theories as game theory [36], control theory [37], and graph theory [38]. A reason for this could be that adaptive systems have to react on changes in their environment. Accordingly, those systems must take the influence of activities of other systems in the shared environment into account for an optimal adaptation decision. The mentioned dynamic environment handling theories supports this.

Figure 4 provides an overview of the absolute frequency of papers per optimization technique. The investigations have shown that Learning Techniques and Genetic Algorithms are the most frequently used optimization techniques accounting for 19.5% and 17.9%, respectively, and as a result, the authors of this work conclude that these are the most important types of optimization techniques for adaptive systems. Further important techniques are Integer Programming (8.1%), Markov Decision Process Planning (8.1%), Greedy Algorithms (7.3%), Heuristic Algorithms (7.3%), Stochastic Optimization (7.3%), Convex Optimization (6.5%), Metaheuristic Algorithms (4.9%) and Nonlinear Programming (8.9%). Miscellaneous techniques that could not be assigned to one of those categories were summarized as “Others” accounting for 8.9%.

Additionally, Figure 5 provides a detailed overview of optimization techniques in application domains. We observed that cloud computing (22.50%), web services (14.63%), multi-robot systems (10.83%), autonomous vehicles (8.33%), energy provision (6.67%), commerce (6.67%), and intelligent traffic management (5.83%) are the most
Figure 4: Results of the literature review – Frequency of optimization techniques found in 115 papers. As there were a few publications (namely [6, 31, 32, 33, 34, 35, 39, 40]) which we categorized into several techniques, the total number of counts is 123.

- Learning Techniques: 24 (19.5%)
- Genetic Algorithms: 22 (17.9%)
- Integer Programming: 10 (8.1%)
- Markov Decision Process Planning: 10 (8.1%)
- Greedy Algorithms: 9 (7.3%)
- Heuristic Algorithms: 9 (7.3%)
- Stochastic Optimization: 9 (7.3%)
- Convex Optimization: 8 (6.5%)
- Metaheuristic Algorithms: 6 (4.9%)
- Nonlinear Programming: 5 (4.1%)
- Others: 11 (8.9%)

Figure 4 shows the distribution of optimization techniques in 115 papers from the literature review. The dominant applications areas. These are typical domains for adaptive systems due to their dynamic environments. Further, we clustered several less present applications: (i) energy provision includes smart grids (5.83%) and device power management (0.83%); (ii) commerce subsumes e-commerce (4.17%), a travel reservation system, and task allocations in supply chains and within social networks (0.83% each); (iii) health services composed of remote health services and regional emergency management (1.67% each); (iv) security services represented by mobile application reconfiguration and security management (0.83% each); and (v) smart city includes smart cities in general and shared mobility (0.83% each). Further, some use cases have not been described in detail; hence, these approaches were counted as abstract domains. In [45], the authors present a solution for the optimization/coordination of adaptations in multi-agent systems; however, the authors do not describe a specific application. Additional, in three publications authors apply there approaches within service-oriented architecture, but also abstract service definition rather than a specific service-oriented system [42, 46, 47].

However, it is not possible to determine or identify the over-proportional use of an optimization technique in a specific domain. Additionally, as the number of approaches is in general rather small and having a diverse distribution for the application domains we will discuss details of the application domains only for Learning Techniques (see Section 4.1) and Genetic Algorithms (see Section 4.2) and rather focus in this paper on an analysis of the details of the approaches for planning as optimization. In this section, we present the publications of these categories and name important fields of application and optimization targets. The first two subsections (Section 4.1 and Section 4.2) cover the most two relevant optimization techniques – Learning Techniques and Genetic Algorithms – including a more detailed description of the application domains, while Section 4.3 covers all other techniques.

4.1. Learning Techniques

Although machine learning is actually not an optimization technique, we include the Learning Technique approaches Reinforcement Learning (RL) and Learning Classifier Systems (LCS) since those target optimization [48]. For that reason, we observed that Learning Techniques are the most applied optimization techniques used for planning in adaptive systems (see Figure 4). Our analysis reveals that approximately 70% of the identified approaches that use learning-based optimization apply RL techniques. This seems not to be surprising, as those approaches can cope with the dynamics in the environment of adaptive systems due to their iterative nature. 5 approaches (approx. 22%) apply statistical / machine learning techniques, mainly artificial neural networks; 2 approaches (approx. 8%) use LCS. Still, one has to keep in mind, that we target in this paper planning as optimization for adaptation planning, not learning itself. We identified the presence of the following application domains in our literature review: cloud computing (30.8%), multi-robot systems (23.1%), intelligent traffic management (11.5%), web services (11.5%), e-commerce (7.7%), games (7.7%), intelligent workflow management (3.8%), and smart grids (3.8%). On the one hand, those are typical system domains for adaptive systems. On the other hand, the application of the mentioned learning techniques, especially RL, was often successfully applied in those domains. Reasons for that are that the domains can be easily simulated (e.g., gaming, traffic management, or robots) or those support a clear mapping of adjustments in the system to the resulting performance (e.g., cloud computing, web services, or e-commerce).
RL methods, such as Q-Learning [49], are rather an universal optimization technique but suitable in adaptive systems to achieve (near-)optimal control. The system learns optimal actions for each environment state using feedback and the action history. Convergence for this technique can be shown for many domains, but not for all real-world applications [50]. The concept of Markov Decision Processes is a foundation for decision-making in adaptive systems. RL can be understood as a solution to problems modeled as such processes. Therefore, some RL approaches make use of Markov Decision Processes. Moreover, this theoretical framework can be extended to more practical cases using (Decentralized) Partially Observable Markov Decision Processes [51].

As primary optimization targets, organization procedures in distributed systems (e.g., task allocation [52, 53] and coalition formation [34, 54, 55]), as well as the handling of environment changes [56, 57, 58], evolved. Distributed systems or applications are characterized by the fact that adaptations or performed actions influence the environment or surrounding systems. These effects are often hard to predict at design time. Hence, RL is suitable in such cases because runtime feedback for performed actions is used to derive future actions. For instance, Wang et al. [56] present an RL-based approach, how a service-oriented and adaptive web application can handle changes in the Quality of Service of connected services. More general machine learning approaches address the control of workload distribution [59] and fault detection and diagnosis in distributed systems [60].

Examples for applying RL for planning and decision-making in adaptive systems are [36, 51, 61, 62, 41]. At this point, the works [61] and [31] are particularly worth mentioning. Kim and Park [61] focus on online planning, where relationships between system configuration and environment settings are learned at runtime, while Pandey et al. [31] propose a hybrid planning approach using a LCS to decide whether a quick reactive adaption or a deliberative adaption is to be preferred. In general, LCS or Learning Techniques are suitable for generating and maintaining adaptation
rules at runtime, as shown in the works of Kramer and Karl [63], Zeppenfeld and Herkersdorf [64], and Zhao et al. [65], respectively. Moreover, Learning Techniques can also be used in the fields of policy-focused systems [66], practical applications like auto-configuration of virtual machines [67], and resource allocation in data centers [68].

RL techniques are also a natural choice for multi-agent or multi-robot navigation [69] or collaboration [58, 70], as interactions and useful behavior can be learned at runtime.

4.2. Genetic Algorithms

Genetic Algorithms (GA), introduced by Holland [71], are suited in cases when some of the design variables are continuous and others are discrete, as well as when the design space is discontinuous and non-convex [13]. Genetic or more general evolutionary algorithms or programming techniques can be used to optimize the planning of adaptive systems. Like Learning Techniques, they are in particular present in self-organization and coordination in distributed systems [72, 73, 74, 75]. Genetic Algorithms are applied in cloud computing (26.1%), data diffusion (17.4%), multi-robot systems (17.4%), autonomous vehicles (8.7%), e-commerce, intelligent traffic management, mobile application reconfiguration, regional emergency management, remote health service, smart city, and an abstract service-oriented architecture (4.4%). Especially, to illustrate autonomous organization based on Genetic Algorithms, different authors select network operation as an example application [76, 77, 78]. This finding is in line with the “traditional” optimization approaches, e.g., vehicular routing or graph-based network optimization, such as in manufacturing. Approaches concerning the planning, decision-making, and reconfiguration of adaptive systems as main targets are given by several examples [79, 80, 81, 82, 83, 84, 85]. Both application scenarios are characterized by a large design space and a complex optimization process. Genetic Algorithms are an excellent choice in these areas, as traditional mathematical optimization techniques would need a lot of computing resources and time for the solution process. They are able to deliver near-optimal solutions in these application scenarios while consuming much fewer resources.

Further usages of Genetic Algorithms include runtime testing [86] and workflow optimization [87]. The works [6] and [88] are focused on the reaction of an adaptive system to sudden changes in its environment. Kinneer et al. [89] propose an approach using reusable repertoires of adaption strategies to improve planning effectiveness. The paper of Andrade et al. [90] examines architectural design aspects with regard to feedback loop control. Therefore, NSGA-II, a commonly used evolutionary algorithm, is used. Caldas et al. [33] use NSGA-II to optimize a strategy manager and a strategy enactor by finding the optimal configuration. Another widely used algorithm of this type is SPEA2, which has been applied to adaptive systems by Kinneer et al. [84]. We identified that most approaches (37.04%) implemented their own version of a genetic algorithm. From the available “out-of-the-box” algorithms/ implementations, the already mentioned approaches NSGA-II (14.81%) and SPEA2 (7.41%) are most commonly used together with novelty search (7.41%). Besides, several approaches are used once: clonal plasticity, D-STM, IBEA, GPM, ISL, 1+1 ONLINE EA, fish schools, Bayesian optimization, and artificial bee colony. As one can see, around one third of the approaches integrate an individual version of a Genetic Algorithm. There are arguments for and against such an individual implementation. It seems to be a rational choice as it provides the possibility to adjust the optimization procedure to the specifics of the underlying use case, e.g., omit mutations and highlight cross-overs if those are more applicable. However, this comes with the likelihood that implementations errors might occur. “Out-of-the-box” approaches provide the advantage to use an existing algorithm or even an implementation (e.g., provided as a specific library), which simplifies the integration of the approach but also facilitates the mapping of the specific components and parameters of the use case system to the task of optimization as planning.

4.3. Further Optimization Approaches

In this section, we describe the remaining categories shown in Figure 4. Some of the mentioned categories might often be included in others (e.g., Markov Decision Process as part of Stochastic Optimization [6]), but we want to point out the intensified number of use cases.

Integer Programming. An optimization problem where all components of the design vector are restricted to discrete (integer) values can be solved with Integer Programming (IP) techniques. If some of the design variables are discrete, other continuous, Mixed Integer Programming can be applied. In adaptive systems and their applications, some problems may be formulated roughly as “How many?”-questions, e.g., “How many servers do I have to provide?”, which have only integer answers and thus, might be solved with IP. As a standard form, an Integer Programming problem can be expressed as a constrained optimization problem: Find x, which maximizes $f(x) = c^T x$,

$$
\min f(x) = c^T x \\
\text{s.t. } \sum_{i=1}^{n} m_i x_i \leq b
$$
subject to $g_1(x) = Ax \leq b$ and $g_2(x) = x \geq 0$, where $x \in \mathbb{Z}^n$, $c^T \in \mathbb{R}^{m \times 1}$, $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. In practical applications, the IBM ILOG CPLEX\(^1\) optimization framework or similar tools are often used to solve this category’s problems. For instance, we find approaches of this type in service or feature selection [91, 92] and load balancing or distributing applications [37, 40]. Moreover, the works of Wu et al. [93, 94] use Mixed Integer Programming for optimal resource allocation in multi-agent systems and show how tasks can be decomposed into phases. Feo Flushing et al. [95] focus on optimal decentralized task allocation in multi-robot systems and use Mixed Integer Programming for adaptive replanning at runtime. Other usages of IP can be found in the fields of resource scheduling [96] and item assignment in general [97] in adaptive or multi-agent systems.

Markov Decision Process Planning. Markov Decision Processes (MDP) are commonly used for modeling decision-making and planning tasks in adaptive systems. In general, they describe discrete-time stochastic control processes. In the fields of adaptive systems, they are used to model and optimize decision-making with probabilistic environment behavior and/or uncertainty [98, 99, 100, 101, 102]. As an advantage of this approach, Markov Decision Processes can be used as offline planning support tools and might be combined with other strategies (e.g., deterministic [98] or learning-based planning [31]). To solve optimization problems based on Markov Decision Processes, often dynamic programming techniques are suitable. For example, Angelidakis and Chalkiadakis [103] use a dynamic programming algorithm based on value iteration for an optimization problem in power distribution networks. Other applications take place in the field of autonomous vehicles. Basich et al. [104] optimize the decision-making through human feedback, while Bouton et al. [34] address the decision-making in pedestrian collision avoidance. Scheer et al. [105] focus on validating adaptation strategies at design time to ensure system performance.

Greedy Algorithms. Greedy Algorithms have numerous applications in different fields of computer science. Many Greedy Algorithms appear in graph-theoretic problems, e.g., the algorithms of Kruskal [106] and Prim [107] for solving the minimum spanning tree problem. In general, they follow the heuristic to select the (locally) optimal solution out of a candidate set at each iteration. As an advantage, Greedy Algorithms terminate after a reasonable number of steps and approximate at least a local optimum in most cases, especially if a global optimum is hard to compute. Hence, they often reach an acceptable solution with limited resource consumption. However, the quality of the result and convergence speed often depends on the starting value. Often, a supporting heuristic is used to determine a suitable initialization. Distributed systems are generally an application area with these characteristics. Especially relevant for practical or industrial use cases are hereby optimization algorithms in the fields of task allocation [108, 109] and resource allocation [110, 111]. Further applications of Greedy Algorithms can be found in the areas of computing clusters [112] and web databases [113]. Fritsch et al. [114] show that Greedy Algorithms can also be used for scheduling adaptations in cases when these adaptations are time-bounded or underlying other constraints. As mentioned before, Greedy Algorithms are often used for solving graph-theoretic problems. Escoffier et al. [45] present greedy solutions based on graph theory, which can be applied in the fields of adaptive systems.

Heuristic Algorithms. Heuristics try to guide a way through the search space to find an optimal solution faster than classical mathematical optimization methods. In contrast to Metaheuristics, they are domain-specific. Therefore, the concrete appearance is highly dependent on the application scenario. We use Heuristic Algorithms as a generic term in this work to indicate that the optimization process is based on a domain-specific heuristic. In some cases, a Heuristic Algorithm does not guarantee to find a globally optimal solution. This is often caused by the use of random variables, non-deterministic behaviors, or the choice of starting values. However, Heuristic Algorithms are suited for problems when a globally optimal solution is expensive to compute and/or a solution is required within a bounded time interval. Our investigation has revealed that Heuristic Algorithms are mostly used in the fields of resource provisioning, allocation, and planning [32, 115, 116, 117, 118] as well as coalition formation [119]. In these scenarios, the reason for this is that application-specific characteristics can be added to the algorithm and improve or accelerate the optimization process. Further practical use cases of Heuristic Algorithms can be found in the fields of supply chains [120] and web search engines [121]. Cooray et al. [122] introduce a Heuristic Algorithm for self-adaptation to increase the reliability of an adaptive mobile emergency response system.

Stochastic Optimization. In real-world applications, adaptive systems often deal with non-deterministic quantities, like environment variables or even internal parameters. Stochastic Optimization techniques deal with such cases, where the use of random or stochastic variables is mandatory, and uncertainty is present and not negligible. In general, adaptive systems might use stochastic programming or often Bayesian optimization for decision-making and

\(^1\)https://www.ibm.com/analytics/cplex-optimizer
control [6, 123, 124, 125, 126, 127]. For instance, Esfahani et al. [128] focus on decision-making for self-adaptive software in the presence of uncertainty, as the work of Mikic-Rakic and Medvidovic [35] describes a way of handling downtimes of dependent software components. Palmerino et al. [129] consider tactic volatility using multiple regression analysis and autoregressive integrated moving average.

Convex Optimization. Convex Optimization approaches target problems where the objective function is a convex function, and the design space is a convex set. Many solution methods for these problems are based on linear or quadratic programming. In the fields of adaptive systems, Convex Optimization techniques are often used in general control mechanisms [121, 130, 43, 131]. They have applications in cloud environments [132] and service-oriented architectures [46]. Javed and Arshad [40] use a linear programming based algorithm and case-based reasoning for self-optimization and evaluate their framework on an electricity distribution system.

Metaheuristic Algorithms. In contrast to Heuristics, Metaheuristics are domain-independent. Metaheuristic Algorithms often perform a local or neighborhood search, which means using a given solution \(X_1 \), a better solution \(X_2 \) in the neighborhood of \(X_1 \) is searched. This limits the computational effort, but the algorithm might not guarantee to find a globally optimal solution. Similar to Greedy Algorithms, these approaches are suitable in applications where time-bounded reactivity or limited computational resources are challenges. For instance, Zhang et al. [133] use simulated annealing for task allocation in a distributed system. Other variants of local search found in adaptive systems literature include hillclimbing [134], neighborhood search [38, 135], and tabu search [136, 137].

Nonlinear Programming. In general, Nonlinear Programming (NLP) techniques are suitable if the solution of an optimization problem cannot be determined analytically. Therefore NLP techniques are applied in constrained optimization problems, where the constraints are not explicit functions of the design vector [13]. Lama and Zhou [138] use complex, non-differentiable objective functions solved by a pattern search algorithm for optimizing automated resource allocation in cloud environments. Jung et al. [139] use offline gradient-based optimization as a basis of adaptation policy generation. Other applications of nonlinear optimization approaches can be found in the fields of power management [140], decentralized planning [44], and web services [141].

Miscellaneous Approaches. In this category, we describe approaches, which cannot be assigned clearly to one of the categories above. For instance, Chuang et al. [142] use hierarchical fuzzy systems to optimize the Quality of Service of mobile adaptive software. Lee and Fortes [32] use fuzzy logic to control the number of concurrent jobs in big-data analytics. Control theory principles and techniques are utilized in the work of Caldas et al. [33] for adaptive performance control. Wang et al. [143] expand this utilization to power management. Other optimization approaches include combinatorial optimization [144, 145, 146], weighted sum search [147], and distributed constraint optimization [148, 149, 150], which is a general problem representation framework widely used for multi-agent systems. As we are interested in providing a complete picture of the landscape rather than a detailed discussion of each approach, we do not discuss these approaches that do not fit in one of the optimization categories.

5. Planning Optimization in Dynamic, Competitive, and Distributed Environments

As presented in Section 3, we included 115 papers from our initial set of 9,588 papers. In the previous section, we presented the set of identified optimization techniques that are applied for adaptation planning in self-adaptive systems. In this section, we detail our discussion and focus on the specific aspects: anytime learning (see Section 5.1), multi-objectiveness (see Section 5.2), distributed optimization (see Section 5.3), and situation-awareness for switching optimization techniques (see Section 5.4). This answers the research questions RQ2, RQ3, RQ4, and RQ5. Figure 6 provides an overview of the presence of papers concerning the topics anytime learning and distributed optimization over the relevant time frame.

5.1. Anytime Learning

The possibly rapid and frequent changes in the environment of a self-adaptive system might significantly decrease the available time for an optimization technique for adaptation planning. This means that those techniques sometimes

\[f(x) : D \rightarrow \mathbb{R} \]

\[f(\alpha x_1 + (1 - \alpha)x_2) \leq \alpha f(x_1) + (1 - \alpha)f(x_2) \]

\[||x_2 - x_1|| < \epsilon \]
need to focus on searching for fast and “good enough” solutions rather than for “optimal” ones. Hence, self-adaptive systems need to focus on anytime learning algorithms that can provide intermediate solutions and do not have to wait until the optimization process finally reaches a (successful) end [7]. From an implementation point of view, this can be achieved using anytime algorithms for optimization [8]. Accordingly, the second research question addresses the presence of anytime learning in the identified set of literature:

RQ2 - To what extent is anytime learning supported?

When investigating the existing literature regarding anytime learning in self-adaptive systems, we identified that 56.1% of the studied works (69 publications) integrated approaches that support anytime learning. The papers show a diverse set of used optimization techniques. The most common techniques that support anytime learning include Genetic Algorithms (21 papers), Learning Techniques (16 papers), and (Meta)Heuristics (12 papers). Applied techniques include (but are not limited to) SPEA2, Stochastic Search, NSGA-II, Q-Learning, Markov Chains, Multi-agent RL, and Greedy Algorithms. Table 3 shows an overview of the application of anytime learning.

Table 3: Overview of anytime learning used within optimization techniques.

<table>
<thead>
<tr>
<th>Optimization Technique</th>
<th>No. of publications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Techniques</td>
<td>24</td>
<td>[31][34][36][51][52][54][56][57][59][61][63][65][66][67][69][70]</td>
</tr>
<tr>
<td>Genetic Algorithms</td>
<td>22</td>
<td>[33][72][73][74][75][76][77][78][79][80][81][82][83][84][85][86][87][88][89][90][42]</td>
</tr>
<tr>
<td>Integer Programming</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Markov Decision Process Planning</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Heuristic Algorithms</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>Stochastic Optimization</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>Convex Optimization</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Metaheuristic Algorithms</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Others</td>
<td>11</td>
<td>6</td>
</tr>
</tbody>
</table>

We already argued that anytime learning [7] techniques might be beneficial as those techniques constantly provide a solution for adaptation planning in contrast to exact algorithms, such as Integer Programming. Consequently, anytime learning can increase the robustness of the system as those techniques provide intermediate solutions which can fasten the reaction to changes rather than waiting until the final solution is found, which is the case for exact solutions.

On the other hand, anytime learning techniques might have disadvantages that system designers and developers have to take into account. As those techniques do not explicitly search for an exact solution, hence, the globally
Table 4: Overview of optimization techniques supporting multi-objectiveness. All approaches not supporting multiple objectives are single-objective approaches.

<table>
<thead>
<tr>
<th>Optimization Technique</th>
<th>No. of publications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>total multi-obj.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Techniques</td>
<td>24</td>
<td>[31][34][36][51][52][54][55][56][57][62][64][65][66][67][69][70]</td>
</tr>
<tr>
<td>Genetic Algorithms</td>
<td>22</td>
<td>[6][76][77][78][79][80][82][83][84][86][87][88][89][90][42]</td>
</tr>
<tr>
<td>Integer Programming</td>
<td>10</td>
<td>[37][92][94][95][97][153]</td>
</tr>
<tr>
<td>Markov Decision Process Planning</td>
<td>10</td>
<td>[31][34][99][100][101][102][103][105]</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>9</td>
<td>[108][110][112][113][45]</td>
</tr>
<tr>
<td>Heuristic Algorithms</td>
<td>9</td>
<td>[117][118][119][121][122]</td>
</tr>
<tr>
<td>Stochastic Optimization</td>
<td>9</td>
<td>[6][123][125]</td>
</tr>
<tr>
<td>Convex Optimization</td>
<td>8</td>
<td>[130][43][131][46][47]</td>
</tr>
<tr>
<td>Metaheuristic Algorithms</td>
<td>6</td>
<td>[136]</td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>5</td>
<td>[44]</td>
</tr>
<tr>
<td>Others</td>
<td>11</td>
<td>[142][143][146][147]</td>
</tr>
</tbody>
</table>

In general, objective functions can be single- or multi-objective. Regarding multi-objectiveness, Pareto optimality is a highly relevant concept. Pareto optimality is defined as “analytic tool for assessing social welfare and resource allocation [where an] allocation is considered Pareto optimal if no alternative allocation could make someone better off without making someone else worse off” [152]. Transferred to the optimization of adaptive systems, this means that it is not possible to achieve a globally optimal setting through increasing the utility of one objective if the utility of one or several of the other objectives gets decreased. For a self-adaptive system with its large amount of subsystems and heterogeneous user groups, multi-objective settings are highly relevant, especially to find cost-benefit trade-offs regarding the system performance. Hence, we formulated a third research question:

RQ3 - To what extent is multi-objectiveness supported?

Table 4 shows the results of our analysis for RQ3. We observed that around 57% of the identified approaches (71 approaches) target multi-objectiveness. This seems natural for the characteristics of self-adaptive systems. Especially for Learning Techniques (17 papers) and Genetic Algorithms (15 papers), multi-objective approaches are frequently present. However, the results show that with the exception of Stochastic, Metaheuristic, and Nonlinear Programming approaches, more than half of the identified approaches are multi-objective in all other categories.
Table 5: Overview of the usage of distributed optimization techniques.

<table>
<thead>
<tr>
<th>Optimization Technique</th>
<th>No. of publications</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Techniques</td>
<td>24</td>
<td>[34][36][51][52][53][56][57][58][66][69][70]</td>
</tr>
<tr>
<td>Genetic Algorithms</td>
<td>22</td>
<td>[72][74][77][78][42]</td>
</tr>
<tr>
<td>Integer Programming</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Markov Decision Process Planning</td>
<td>10</td>
<td>[34]</td>
</tr>
<tr>
<td>Greedy Algorithms</td>
<td>9</td>
<td>[108][109][111]</td>
</tr>
<tr>
<td>Heuristic Algorithms</td>
<td>9</td>
<td>[32][117][119][120]</td>
</tr>
<tr>
<td>Stochastic Optimization</td>
<td>9</td>
<td>[129]</td>
</tr>
<tr>
<td>Convex Optimization</td>
<td>8</td>
<td>[47]</td>
</tr>
<tr>
<td>Metaheuristic Algorithms</td>
<td>6</td>
<td>[133][136][137]</td>
</tr>
<tr>
<td>Nonlinear Programming</td>
<td>5</td>
<td>[44][141]</td>
</tr>
<tr>
<td>Others</td>
<td>11</td>
<td>[143][145][148][149][150]</td>
</tr>
</tbody>
</table>

As mentioned, multi-objectiveness is especially relevant for evaluating possible adaptations, i.e., system setting, with regard to their cost-performance ratio. However, as those optimizations often return Pareto optimal solutions, potentially many different solutions might have the same impact with regard to the global utility. This complicates the choice of the system configuration. Further, sometimes single-objectiveness is achieved as the relation of different important parameters, which might represent objectives, are expressed differently, e.g., by a weighted utility function. The definition of such a utility function is highly complicated and requires a lot of domain knowledge. Especially, the definition of the weights might be challenging and use case-specific. Additionally, the definition of objectives requires the definition of usable metrics to operationalize those objectives. Optimization functions will use those metrics to calculate the utility of an identified solution. The definition of those metrics can be another challenge.

Multi-objectiveness requires a trade-off of different objectives. Often, this leads to Pareto optimal solutions, as it is often not possible to optimize several goals simultaneously. One solution can be approaches that focus on many-objectiveness – which refers to the optimization tasks involving several (conflicting) objectives to be optimized concurrently [154]. Such approaches enable also to integrate user-specific, differing goals. Further, such approaches might also support situation-awareness, as depending on the situation one or another objective can be favored.

5.3. Distributed Optimization

Many self-adaptive systems are distributed [10]. First of all, mostly the adaptation logic which controls adaptation is encapsulated from the managed subsystem [9]. Additionally, many adaptive systems are often integrated into a composition of different (sub)systems. Such system are naturally acting in a distributed fashion, either cooperatively or competitively, e.g., if they are (maybe implicitly) competing for resources in a shared environment. In such settings, particularly in cooperative settings, a distributed optimization might be beneficial. This can be achieved by either distributing the decision-making or achieving a global optimization through a central planner. However, such a central planner has to achieve a trade-off between local objectives and needs to take local constraints into account. Hence, we formulated the following research question which especially targets those adaptive system from our identified literature that are distributed:

RQ4 - To what extent are distributed optimization techniques integrated?

In our literature analysis, approximately 30% of the identified papers rely on distributed optimization (36 papers). One has to note that distributed optimization approaches are only present for distributed adaptive systems, e.g., CAS. This includes local (non-coordinated) adaptation planning, decentralized optimization techniques, i.e., multi-agent RL, as well as hybrid planning, e.g., combining a central optimization with local adjustments through the application of a local optimizer or a learning mechanism. Table 5 shows that the large amount of distributed optimization uses Learning Techniques (11 papers). Further, Genetic Algorithms (5 papers), (Meta-) Heuristic Algorithms (7 papers), or Greedy Algorithms (3 papers) were frequently used for distributed adaptation planning as optimization.
Furthermore, central optimization could deliver a global optimal solution. Such central decision-making would be also possible in distributed adaptive systems. However, it comes with the costs for collecting the required data from the local subsystems. Additionally, it might introduce a single point of failure and, especially in large systems, the decision-making can be complex. The mentioned decentralized optimization techniques help to distribute the workload for adaptation control. This local decision-making also takes local constraints into account.

Related to local constraints is the achievement of fairness. When focusing on global concerns only, it might be possible that single instances are disadvantaged for the sake of global utility. Accordingly, mechanisms for achieving fairness and concerning local constraints might be important. Alternatively, it is possible to have degrees of freedom that the instances can locally optimize. This results in a hybrid optimization approach which integrates macro-level planning under longer time requirements with micro-level (local) decisions that obey local objectives and constraints. Such an approach would result in (i) increased robustness as adaptation decision can obey local constraints, (ii) an improved utility of both the autonomous subsystems and the overall system, (iii) and a fast adaptation to changes in the characteristics of the optimization problem (e.g., in terms of concept drift/shift). However, implementations of such approaches cannot be found in literature yet.

5.4. Situation-awareness

In [6, 12], we showed that (i) different optimization techniques might be superior depending on the characteristics of the situational characteristic or that (ii) different algorithms might deliver the same quality with respect to the objectives but might have different performance implication (e.g., faster computation or less required memory). This conforms to other observations: It will not be feasible to define the best-fitting strategy for each situation [155] as those situations are determined by various parameters, each having at minimum two possible manifestation (in case of binary value) up to an incredible large number (e.g., in case of 64 bit numbers). Testing all those configuration options is not possible [4]. Additionally, according to the “No-Free-Lunch-Theorem” from 1997 [156], there is no general optimization method that performs best in all scenarios. Instead, expert knowledge is needed to decide which optimization method to choose for a specific situation with its own (data pattern) characteristics. Accordingly, in such systems it seems beneficial to link the choice of the optimization technique to the current situation, i.e., switching the adaptation technique and/or adjusting the parameters of a technique (e.g., through hyper-parameter tuning). Hence, we further address with our literature study the following research question:

RQ5 - Does the used techniques for planning as optimization support situation-awareness?

However, we identified only two approaches that provide a situation-aware switch of the optimization technique. AdOpt [40] provides “an adaptive self-optimization approach which uses multiple optimization techniques to incorporate a resilient self-optimization in a given system”. Instead of directly planning the adaptation, the planner in AdOpt first identifies the appropriate optimization technique for the given system state and then generates a runtime model for adaptation planning as optimization. The authors of [31] provide a hybrid planning approach that “can combine reactive planning (to provide an emergency response quickly) with deliberative planning that takes time but determine a higher-quality plan”. As fast, reactive planning might also deliver adaptation plans to potentially decrease the quality of the system’s performance, the challenge in this approach lies in deciding when to use which planning approach. In the paper, the authors present several learning-based strategies for this decision.

We want to stress that we focus on the switch of the optimization technique or its parameters within this section. Additionally, several works (e.g., [61], [63], [118], or [121]) combine different optimization techniques in hybrid approaches. This might be beneficial for fine-grade planning or combinations of different time horizons for planning, e.g., proactive planning with reactive planning as a backup. Further, it might be used for situation-aware planning as optimization as well. However, none of the identified publications do so. Hence, we did not include this perspective when we talk about situation-awareness.

6. Threats to Validity

We used a well-structured approach for our literature review to provide a structured analysis and eliminate bias in the process. However, some threats to validity still exist, which we discuss in the following. Each paper was analyzed
by one of the authors of this publication. As humans are involved, the presence of subjective bias cannot be entirely excluded. To limit this risk, we double-checked each analysis by at least a second reviewer for each paper.

The choice of the venues might be biased. We rely on discussion with experts to identify the relevant venues. Still, it might be possible that other conferences and journals provide relevant work that we did not take into account. However, as mentioned in Section 3, the application of a term-based literature search is complicated as the term “optimization” is often used in another context. Thus, to achieve high quality and still following a structured search process, we limit the set of possible papers to the list of venues.

Even if the number of included works from IEEE Software and TOSEM is very low, we think that it is still necessary to consider those journals as several publications of the field of self-adaptive systems originate in those journals, even if the actual number of publications that target optimization as planning is very low. We decided to not include additional general purpose journals (such as IEEE Access) as we do not want to widen the scope too much for keeping the focus on the important venues of our targeted system domains. We acknowledge that this can be a threat to validity, but we act in line with other review papers in the field (e.g., [30]).

Similarly, through reducing the search to a defined list of venues, we also have implicitly covered a set of concepts that are related to self-adaptive systems. This coverage is rather extensive. However, it might be possible that a specific system domain is not taken into account.

Further, we focused on optimization techniques for adaptation planning. However, we included techniques based on RL and LCS as those are optimization-based, iterative approaches following the taxonomy from [13]. Accordingly, some might argue that the border towards techniques that fall into the category of machine learning might be blurred here. Others might argue that machine learning techniques also support planning as an optimization idea. However, we clearly focus on the mathematical and stochastic optimization procedures in this paper and clearly distinguish them from the classical application of machine learning with classification and clustering, which is mainly used in self-adaptive systems for analyzing.

Additionally, we omit search-based software engineering (SBSE) approaches used in adaptive systems for adaptation planning. SBSE [157] aims at applying search-based Metaheuristic techniques to software engineering. Search techniques such as genetic programming examine large search spaces of candidate solutions to find a (near) optimal solution to problems concerning requirements, design, or testing [158]. Traditionally, SBSE is used at design time. Contrary to the traditional approach, dynamic SBSE applies the principle of SBSE at runtime to determine the most suitable system configuration during the planning phase of self-adaptation [159, 160]. Approaches that use dynamic SBSE in self-adaptive systems can be found in the literature (e.g., [130, 134, 161, 162, 163, 164]). However, as we follow the classification of optimization from [13], we did not include SBSE as a specific category.

7. Related Work

This survey connects methods from optimization processes with the application areas of adaptive systems and studies the use of optimization techniques in self-adaptive systems. To the best of our knowledge, there is no survey, which discusses this combination of issues explicitly and to the full extent. In this section, we provide an overview of related surveys from the area of adaptive systems.

There are many literature reviews and summaries in the research field of adaptive systems, which focus on either the general topic or special system aspects. Salehie and Tahvildari [16] broach the issue of self-adaptive systems as such, provide a taxonomy and describe possible realizations of adaptation actions. Further introduction material and reference work in the area of adaptive systems is provided by Krupitzer et al. [2], Macias-Escriva et al. [165], or more recently by Wong et al. [166].

The work of Weyns [167] provides an overview of adaptive systems with a focus on software engineering aspects. Findings in the fields of task automation, architecture-based adaptation, runtime models, goal-driven adaptation, uncertainty management, and control-based adaptation are summarized. It is concluded that control theory can act as a theoretical foundation for adaptations and decision-making. The surveys of Patikirikorala et al. [168] and Shevtsov et al. [169] take a closer look at this issue.

More closely to the topic of this paper, Saputri et al. [170] presented an overview on the application of machine learning in self-adaptive systems, which is used to handle self-adaptation, but also for analyzing the requirement for adaptation. As an outcome of the 2018 GI-Dagstuhl Seminar “Software Engineering for Intelligent and Autonomous
This article investigated the use of optimization techniques for adaptation planning in self-adaptive systems. For this, we looked at 115 publications out of 12 selected venues with 9,588 publications in total. Next, we briefly summarize our results of the literature analysis. Afterwards, we present identified research challenges.

As a first result of our literature review, we found optimization methods belonging to 11 categories according to \cite{13}. We found that Learning Techniques and Genetic Algorithms are the most applied techniques for optimization in adaptation planning (RQ1). Additionally, we hypothesized that anytime learning can be helpful for adaptive systems, as anytime learning returns intermediate solutions (in contrast to exact algorithms). This better fits the dynamics of the environment and the requirement for fast adaptations. The results comply with our hypothesis: Heuristics (corresponding to anytime learning, e.g., using anytime algorithms for optimization \cite{8}) are more frequently applied than exact algorithms (see RQ2). Multi-objective optimization helps to incorporate various objectives (but also constraints), and also supports the process of adaptation planning in large, distributed adaptive systems. We observed that around 57\% of the approaches support multi-objectiveness (see RQ3). As adaptive systems often are distributed \cite{10}, we further investigated the presence of distributed optimization. Regardless the benefits of distributed optimization (e.g., the integration of local constraints), distributed optimization can be highly complex, as it might result in local optima which are conflicting. Hence, it is not surprising that distributed optimization are only present in around a third of the approaches (see RQ4). According to the “No-Free-Lunch-Theorem” \cite{11} there is no general optimization method that performs best in all scenarios. In the context of adaptive systems this requires to potentially switch the optimizer after a change in the context as this triggers a change in the data pattern \cite{6, 12}. Consequently, we focused on situation-awareness as last dimension, which is only supported by two approaches (see RQ5).

Based on our results, we derive several research challenges related to anytime learning, many-/multi-objectiveness, distributed optimization, and situation-awareness that have potential for further research. We identified many anytime learning approaches are present in the literature (see RQ2) as those approaches fit the dynamic nature of self-adaptive systems and their environment. However, as those approaches might also deliver system configurations that have a negative impact of system performance, we propose to work on approaches that combine exact optimization techniques with anytime learning. Most of the identified approaches support multi-objectiveness (see RQ3). We further propose to apply \textit{many-objectiveness} \cite{154} — which refers to the optimization tasks involving several (conflicting) objectives to be optimized concurrently — to support a user-specific, system-specific, or situation-aware choice of the specific objective technique. Additionally, around one third of the approaches support distributed optimization (see RQ4). We expect that system models for hybrid optimization for adaptation planning—which combine global optimized planning with degrees of freedom with local decision-making—will result in (i) an increased robustness against intentionally wrong or even faulty behavior, (ii) an improved utility, (iii) and a fast adaptation to changes in the characteristics of the optimization problem. However, due to the distribution of the relevant data, those approaches are highly complex. Still, the study of those distributed optimization approaches might be beneficial. In \cite{6} and \cite{12}, we showed that different optimization techniques might be superior depending on the characteristics of the situation or maybe be more efficient in terms of computation. Accordingly, switching the adaptation technique and/or adjusting the parameters of a technique depending on the current situation (see RQ5), e.g., through hyper-parameter tuning, might be desirable. However, this is not well presented yet in literature. We recommend for the future to study such approaches for providing the best optimization technique for a specific situation (which comes with a specific data pattern). In the past, we presented such studies in the area of intelligent traffic management systems \cite{6, 12} and smart health \cite{172} which might be an inspiration.
Acknowledgements

This work is funded by the Vector Stiftung within the chain “The smart, digitized food supply chain” (P2021-0093).

References

