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ABSTRACT
Serverless computing services, such as Function-as-a-Service (FaaS),
hold the attractive promise of a high level of abstraction and high
performance, combined with the minimization of operational logic.
Several large ecosystems of serverless platforms, both open- and
closed-source, aim to realize this promise. Consequently, a lucrative
market has emerged. However, the performance trade-offs of these
systems are not well-understood. Moreover, it is exactly the high
level of abstraction and the opaqueness of the operational-side that
make performance evaluation studies of serverless platforms chal-
lenging. Learning from the history of IT platforms, we argue that a
benchmark for serverless platforms could help address this chal-
lenge. We envision a comprehensive serverless benchmark, which
we contrast to the narrow focus of prior work in this area. We argue
that a comprehensive benchmark will need to take into account
more than just runtime overhead, and include notions of cost, realis-
tic workloads, more (open-source) platforms, and cloud integrations.
Finally, we show through preliminary real-world experiments how
such a benchmark can help compare the performance overhead
when running a serverless workload on state-of-the-art platforms.
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1 INTRODUCTION
Serverless computing and its ecosystem are rapidly evolving [4, 12,
14], with an increasing number of open-source and managed server-
less platforms available to cloud users. AWS, Google, Microsoft,
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and other tech giants compete in this space, and tens of open- and
closed-source serverless platforms already exist [10]. Yet the per-
formance of these systems is poorly understood. Although prior
studies target specific aspects of serverless platforms, no compre-
hensive benchmark exists. In this work, we propose our vision for
a serverless benchmark that covers all facets of serverless function
executions.

The core aim of serverless computing is to abstract away the
operational complexity of distributed systems. More concretely,
serverless computing is a form of cloud computing that allows users
to run event-driven applications with fine-grained billing, without
having to address the operational logic [11]. Within this broad
domain, we focus specifically on Function-as-a-Service (FaaS): a
form of serverless computing where the cloud provider manages the
resources, lifecycle, and event-driven execution of user-provided
functions and, more recently, function compositions (workflows).

Serverless computing and FaaS have seen rapid adoption owing
to their promise of fast time-to-market, delegated operational logic,
and autoscaling. Since the release of AWS Lambda in late 2014,
the serverless market has grown to be worth around $5 billion,
and is estimated to grow to $15 billion by 2023.1 Similarly, The
serverless ecosystem has evolved into a vast landscape of tools
and platforms [10, 14]. For the FaaS model specifically, major cloud
providers now offer their own serverless platform [14], e.g., AWS
Lambda, Microsoft Azure Functions, and Google Cloud Functions.
Simultaneously, many open-source platforms emerged from indus-
try and academia, e.g., OpenWhisk, Fission, and OpenLambda.

Despite the overall interest in the domain, the performance of
serverless platforms is not well-understood. Serverless and FaaS
raise important new performance challenges [1], and their salient
features—fine granularity of the function abstraction and the lack
of insight in the operational parts that enable lifecycle management
by the cloud operator—further make it challenging to understand
the key performance trade-offs of current platforms. As argued
recently [3], not being able to overcome these challenges could limit
system designers and hamper the progress of serverless technology.

Understanding performance is also important for users of server-
less platforms. However, it is challenging for users to evaluate the
various platforms and determine which one suits their requirements
best. Whereas in established domains users can deploy benchmarks
to improve their decision-making, performance evaluation in server-
less computing remains largely an open problem.
1https://www.marketsandmarkets.com/Market-Reports/serverless-architecture-
market-64917099.html
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Figure 1: The SPEC-RG reference architecture for FaaS platforms (reproduced from [10]).

Addressing the dearth of performance information and knowl-
edge in the field, performance-evaluation studies have started to
emerge. However, as we elaborate further on in Section 2.2, these
studies typically only focus on narrow aspects of these platforms,
such as runtime overhead or duration of cold starts, and prevalently
focus on single applications or a narrow subset of microbenchmarks
that mimic specific application-behavior.

In this work, we envision a comprehensive serverless benchmark.
Toward this end, our contribution is three-fold:

(1) We analyze the challenges of benchmarking serverless plat-
forms (Section 2).We argue that a comprehensive benchmark
will need to take into account diverse metrics and include
notions of cost, focus on more realistic workloads and thus
go far beyond mere microbenchmarks, and support more
platforms and cloud integrations. Furthermore, there is a
practical requirement that a serverless benchmark must of-
fer support for leading serverless platforms, including both
closed-source cloud platforms and open-source platforms.

(2) We present a route towards the design of a comprehensive
serverless benchmark (Section 3). The route defines and
limits the scope of the benchmark, an overview of its key
features, implementation details, and ideas for the longer-
term future. The key feature of the current design is that it
addresses the aspects raised by our first contribution.

(3) We present real-world experimental results (Section 4). The
experiments cover some basic performance aspects of plat-
forms of AWS, Google, and Microsoft, and of an open-source
platform, Fission. Although preliminary, these results indi-
cate a comprehensive serverless benchmark can help with
comparing the performance of serverless platforms. The
results of Fission further indicate that benchmarking open-
source platforms can lead to a better understanding than
benchmarking closed-source platforms.

2 WHAT ARE THE NEEDS OF SERVERLESS
BENCHMARKS? WHAT HAS BEEN DONE?

There have been attempts to address the need for a serverless bench-
mark. Although prior studies provide useful insights,2 we argue
that a comprehensive serverless benchmark is still unavailable.
2In future work, we plan to give an extensive and systematic survey of existing
serverless benchmarks. The topic is too complex and technical to be introduced here.

2.1 What are the challenges specific to
benchmarking serverless platforms?

With the large and dynamic serverless ecosystem, proper bench-
marks are sorely needed. The heterogeneous architectures of these
platforms and their implications are poorly understood, especially
for the proprietary serverless platforms of major cloud vendors.

Although benchmarks exist for other cloudmodels (e.g., IaaS), we
argue that benchmarks are needed that specifically target serverless
platforms. The reason for this is that there are challenges specific
to benchmarking the performance of these platforms, of which we
describe the following five:

(1) Performance requirements.Compared to traditional cloud
models (such as scheduling VM-based workloads), serverless
computing workloads have more stringent performance re-
quirements. Instead of overheads of minutes, for user-facing
functions in FaaS, the deployment, and execution overheads
are measured in milliseconds. Moreover, not only have per-
formance requirements for the individual serverless services
become detailed and increasingly more sophisticated, the
workloads are far more fine-grained in nature—leading to
more pressure on the scheduler’s performance.

(2) System opaqueness. Serverless platforms are opaque by
design, attempting to abstract away from the cloud user as
much of the operational logic as possible. Despite the benefits
of this model, the higher level of abstraction impedes our
understanding of what and how internal and external factors
influence the performance and other characteristics.

(3) System heterogeneity. The ecosystem consists of widely
heterogeneous systems, which have different approaches to
how functions are built, deployed, scaled, upgraded, and ex-
ecuted. Although we proposed a reference architecture (see
Figure 1) for these platforms, we found that the reference
architecture had to be formulated on a high-level, to capture
the heterogeneity of the systems. Similarly, an ecosystem-
wide benchmark must consider this constraint as well.

(4) Complex ecosystems. Serverless platforms are, in most
cases, not intended as standalone systems. Instead, they pro-
vide deep integrations with other cloud services, such as
integrations with event sources. To comprehensively evalu-
ate a serverless platform, the performance and implications
of these integrations need to be taken into account.
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(5) Multi-tenancy and dynamic deployments. The short-
lived and ephemeral nature of serverless services enables
cloud providers to dynamically schedule and consolidate the
workloads on multiplexed resources. The performance of
serverless platforms varies [13] due to co-located workloads
and overall resource demands. These time- and location-
related variances need to be considered by a sound serverless
benchmarking methodology.

2.2 What do existing benchmarks provide?
Most existingwork focuses on performance requirements (point 1 in
Section 2.1), while the remaining four challenges receive limited at-
tention. In the following, we summarize what existing FaaS-specific
benchmarks primarily focus on:

(1) Hardware resourcemicrobenchmarking.Classicmicrobench-
marking of underlying hardware resource is the most studied
aspect; especially CPU performance and, to a lesser extent,
memory, disk and network performance.

(2) Startup latency. The serverless-specific aspects of cold vs
warm starts for varying configurations (e.g., different run-
times, function sizes, package sizes) receive quite some at-
tention from industrial3 and academic studies [2, 13]

(3) Concurrency and elasticity. Some studies investigate how
well providers fulfill the promise of fast elasticity and dis-
covered profound differences in scaling behavior [7].

(4) Trigger latency. Little work exists that examines the propa-
gation delay of triggers and it is partially limited because spe-
cific trigger types are unavailable acrossmultiple providers [5].

3 TOWARD A COMPREHENSIVE
SERVERLESS BENCHMARK DESIGN

We describe the current design of a comprehensive serverless bench-
mark, as created by the authors and the SPEC-RG Cloud group.4

3.1 Goal and key insight
Our goal is to create a comprehensive serverless benchmark.

The key insight that started our design is an understanding of
what elements should be part of a benchmark to enable it to be
comprehensive. Based on our prior work of surveying existing
serverless platforms [12], we mapped the lifecycle of a function
execution to multiple aspects, grouped in three operational layers—
the Resource Orchestration, Function Management, and Workflow
Composition layers in Figure 1.Wewant to capture and characterize
the interplay between the various components depicted in the figure.
For example, besides the function runtime overhead itself, there are
other aspects that influence the performance of the overall function
execution: event-trigger propagation, function configuration, code
propagation, and the overhead of function deployment.

3https://mikhail.io/serverless/coldstarts/big3/
4Established in 2011, the Cloud Group of the SPEC Research Group focuses on the
general and specific performance issues associated with cloud operation, from tra-
ditional to new performance metrics, from workload characterization to modeling,
from concepts to tools, from performance measurement processes to benchmarks. The
work presented here is part of a large activity within this group, focusing on serverless
and FaaS. The activity has started in 2017 and has resulted in several publications,
which are available online and as open science artifacts. The group agrees with the
publication of this article under the current co-authorship.

3.2 Scope of the serverless benchmark
Although the scope of this benchmark is limited to FaaS platforms,
we explicitly extend its scope to include all major facets influencing
performance in FaaS. Concretely, we aim to include the following:

(1) Function runtime. Although the runtime performance of
functions has been evaluated by several studies (see Sec-
tion 2), we do plan to also include this in this benchmark.
The motivation for this is two-fold: (1) being able to compare
our results to existing work, to help validate our approach;
and (2) our exact set of target platforms and configurations
have not been evaluated by prior work.

(2) Event propagation. Besides focusing on the function run-
time, preliminary experiments (see Section 4) show that the
propagation time of events from their source to the FaaS plat-
form can vary widely. Since the performance of the event
propagation affects the overall function execution overhead,
we argue it is a key aspect to incorporate into the benchmark.

(3) Cost. Serverless computing is inherently about balancing
the cost-performance trade-off. For this reason, a comprehen-
sive serverless benchmark should not only take performance
into account, but also the associated cost. During the prelim-
inary results (Section 4) we found that both the performance
and the cost can vary widely among the evaluated cloud
providers.

(4) Software flow. A consequence of the granular nature of
serverless functions is that larger numbers of functions are
needed to represent a traditional monolithic application.
Each of these must be deployed, upgraded, and scaled on a
regular basis, which requires the function code to be trans-
ferred in and across data centers. With serverless, the perfor-
mance of orchestrating this software flow can significantly
impact the overall performance of the function execution.

(5) Realistic Applications. Although the benchmark will also
consist of microbenchmarks, these typically do not consider
the interplay between the components of a serverless plat-
form.Moreover, it is non-trivial for cloud users to extrapolate
the results of microbenchmarks to the performance of their
full applications. We argue that there is a need to go beyond
microbenchmarks and evaluate realistic applications.

(6) Support for open-source platforms.A consistent absence
in most existing benchmarks is the lack of support for, and
consequently, the evaluation of, open-source serverless plat-
forms. Although a more complex benchmark is needed to
manage the deployment, configuration, and cleanup of such
platforms, exactly these open-source, self-deployed systems
can provide us with a deeper insight into the performance
of serverless architectures.

3.3 Overview of the preliminary design
The (preliminary) design of the benchmark is depicted in Figure 2.
Based on the observation that each FaaS platform and each cloud
require mostly similar components but use significantly different
logic for their inter-operation, the design starts from the principle
of a small core to contain the main benchmark workflow, augmented
with drivers for each platform.

https://mikhail.io/serverless/coldstarts/big3/
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Figure 2: Overviewof the serverless benchmark architecture. The rectangular green boxes indicate the static artifacts necessary
for and generated by the benchmark, and the blue rounded boxes indicate the platform-specific components.

Each benchmark is represented by a benchmark description, which
consists of a workload, function deployment, and infrastructure de-
scription. Based on this description, first the infrastructure deployer
uses the infrastructure description and the function definitions to
configure the cloud infrastructure and (optionally) orchestrate the
deployment of a self-managed FaaS platform. Once the infrastruc-
ture is ready, the workload generator and driver pushes workload to
the system according to the workload description. After the bench-
mark has been completed, the benchmark GC will ensure that the
benchmark resources are pruned from the cloud environment.

The monitoring & logging component collects metrics during a
benchmark run. This component is also platform-specific, as the
way monitoring data is stored and retrieved differs widely between
platforms. Alongside, the cost calculator retrieves and calculates
the cost that has been incurred during the benchmark execution.
Together the monitoring and cost data are post-processed by a
result processor and stored as the final benchmark results.

3.4 Implementation
The development of the benchmark remains an ongoing process.
However, we can already share highlights on the current status of
the implementation of the benchmark.

We use Go for the framework, due to its focus on networking and
its popularity within the (distributed) systems community. For most
experiments, we use NodeJS or Python for the serverless functions,
as they are widely supported by existing serverless platforms [10].

The field of serverless computing evolves rapidly, so—without
updates—benchmark results become outdated quickly. For this rea-
son, we focus on the implementation of reproducibility and work-
flow automation. This will allow us to routinely rerun the bench-
mark and maintain an overview of up-to-date results.

Our goal is to make the benchmark, experiments, and results
open-source.5 Moreover, beyond making the project open-source,
we specifically aim for developer experience; it should be straight-
forward to deploy and run the benchmark, as well as easy to

5Due to the prototype state of the benchmark, it is currently closed source.

contribute to. With these aims, we hope to foster a long-lived,
community-wide serverless benchmark.

3.5 Ideas for the longer-term future
Finally, there are several topics which we deem interesting yet
out-of-scope for the near-future of the current project.

First, we expect that privacy and other data regulations, such
as GDPR,6 will increasingly affect the performance characteristics
of cloud computing. For serverless computing specifically, the dy-
namic and ephemeral nature makes it an appropriate model for
privacy-sensitive workloads, allowing platforms to schedule the
execution on a granular level.

Second, as serverless computing becomes increasingly relevant
for data-intensive workloads—e.g., in graph processing [9] and ob-
ject storage [8]—additional experiments targeting these kinds work-
loads will be needed. A benchmark will need to evaluate the (pos-
sible) interplay between the storage and execution platforms, and
explore how data-intensive serverless applications are designed.

4 PRELIMINARY RESULTS
We have run preliminary experiments before and during the devel-
opment of our work-in-progress benchmark. The results of these
experiments serve as an initial validation of the benchmark design.

We describe the results of two real-world experiments we have
performed on closed- and open-source serverless platforms: (1)
a basic evaluation of event propagation using a state-of-the-art
message queue as proxy for a event management system in a cloud,
and (2) an evaluation of the performance and cost of several FaaS
platforms running the same workload.

4.1 Event propagation
The goal of the preliminary evaluation of the event propagation was
to explore the performance difference between event management
system configurations and to serve as a reference for the results of
the different cloud providers.

6https://eur-lex.europa.eu/eli/reg/2016/679/oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Figure 3: The impact of different event-queue configura-
tions on the delay of event propagation.

For the event management system, we chose to evaluate config-
urations of an open-source, state-of-the-art message queue. These
systems are typically used for event management throughout com-
plex ecosystems (such as clouds), and can therefore be viewed as a
reasonable proxy. We settled on evaluating configurations of NATS
Streaming,7 which is comparable in functionality and performance
to other state-of-the-art alternatives, such as RabbitMQ and Kafka.
The configurations we evaluate are the modes of persistence, which
specify how the messages (or events) are persisted. We choose
this parameter because it is unknown what persistence model is
used within the major clouds, and it was technically feasible for a
time-constrained preliminary experiment.

For this real-world experiment, we used a setup of a single driver
VM (8 Intel Xeon CPUs, 32 GB RAM, 512 GB SSD) submitting a
workload to a single VM (4 Intel Xeon CPUs, 16 GB RAM, 256 GB
SSD) operating aNATS Streaming server. The VMswere deployed in
the same datacenter, connected to each other by a 1 Gbit/s Ethernet
link. The event propagation delay is the duration between the driver
sending the message and the driver receiving the same message
while subscribed to the message queue.

For the workload we used the 10-minute Chronos trace [6]. This
workload trace is an ETL workload, which originates from an indus-
trial process use case. It consists of submissions of a 3-task workflow,
with on average 5.4 tasks being submitted per second with peaks
of 22 events per second. For the event propagation experiment, we
assumed that each task maps to one event.

Figure 3 shows the impact of the configurations of the message
queue on the event propagation. As a baseline, in-memory skips
the entire message queue and immediately returns the result to
the subscriber. The NATS configuration is the default configuration
of the system, which stores messages solely in-memory. NATS-file
stores the messages on the local filesystem (SSD). The NATS-DB
uses a SQL database—Postgres in this case—to persist the messages.

7https://github.com/nats-io/nats-streaming-server

In the context of serverless functions, the difference between
these delays would likely have a significant impact on the per-
formance (see Figure 4). Since there are numerous parameters to
configure for these types of systems, these results hint that the
internally-built event management systems in the major clouds will
differ in performance.

4.2 Function runtime overhead
In the second experiment, our goal was to perform an initial evalua-
tion of the overall runtime overhead of several serverless platforms.
Although this type of experiment has been included in some existing
benchmarks, we additionally focused on exploring the evaluation of
an open-source FaaS platform and workflow orchestration systems.

We evaluated the serverless platforms of the three major cloud
providers (Azure, AWS, and Google), and a state-of-the-art, open-
source FaaS platform, called Fission.8 As a baseline, we additionally
include SimFaaS,9 which is a simple FaaS simulator.

For the managed FaaS platform, we evaluated AWS Lambda,
Google Cloud Functions, and Azure Functions. For each of the
platforms, we used similar configurations (e.g., 128 MB RAM) and
deployed the driver machine (1 CPU, 4 GB RAM) in the same region
as the functions. For this experiment we again used the Chronos
workload, described in the event propagation experiment. We used
the function execution runtimes reported by the FaaS platforms
themselves to eliminate network latency impact—although this
does require us to trust the self-reported metrics of the platforms.
The costs of the workloads are calculated post facto, ignoring any
promotional pricing. The costs are separated into costs directly
attributable to the FaaS function (function execution costs) and costs
related to the orchestration of the Chronos workflows (workflow
orchestration costs). For the self-deployed platform (Fission), we
calculated the costs (self-management costs) by amortizing the total
machine costs incurred during the experiment over the Chronos
runs. The runtime overhead is calculated by subtracting the min-
imum task runtime from the actual time spend on the executing
task. We deployed Fission on a cluster of 3 small VMs (1 CPU, 3.75
GB RAM), and SimFaaS on a larger VM (1 CPU, 8 GB RAM).

In Figure 4 the boxplots show that from the managed server-
less platforms, Google has the lowest overhead in this experiment,
achieving overheads between 50 ms and 18 ms. AWS Lambda and
Azure functions have slightly higher overheads, but lower perfor-
mance variability.

Despite the preliminary nature of these results, we observe that
there are cases in which the performance of the serverless platforms
of major clouds can differ wildly for the same workload. The costs
show similar variability in the costs per platform (see Figure 5).
The results also highlight the challenge of comparing self-deployed
serverless platforms to managed serverless platforms; although Fis-
sion technically costs significantly less than the managed platforms
for equal performance, it does not account for the cost of operat-
ing these self-deployed platforms. We consider exploring how to
compare these approaches fairly a key part of our future work.

8https://github.com/fission/fission
9https://github.com/erwinvaneyk/simfaas

https://github.com/nats-io/nats-streaming-server
https://github.com/fission/fission
https://github.com/erwinvaneyk/simfaas
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Figure 4: The performance overhead of FaaS platforms when executing the Chronos workload.

Figure 5: The cost of running the same workload, Chronos
(see text), on different serverless platforms.

5 CONCLUSION
The increasingly popular serverless industry, and especially its
function-based approach (FaaS), is based on emerging technology.
Learning from history, we argued for the need to develop compre-
hensive benchmarking tools for serverless and FaaS technology.

We envisioned a benchmark designed with a structured, princi-
pled approach, aiming to evaluate the performance of the typical
components of serverless platforms. Going beyond microbench-
marks, the benchmark evaluates the broader serverless ecosystem,
the events that trigger functions, the overhead introduced by fetch-
ing function code, and how realistic serverless applications use the
platforms. We also presented preliminary, real-world, experimental
results across several closed- and open-source serverless platforms.

Our future work consists broadly of two stages. The first stage
is to complete the benchmark implementation and perform a com-
prehensive investigation of managed serverless platforms. In the
second stage, we will iterate on the existing benchmark, further
analyze self-deployed serverless platforms, and evaluate the per-
formance of more complex applications in more data-intensive
domains—such as machine learning, and graph processing.

Finally, we want to end this vision with a call to action: this
benchmark already is a collaborative effort of universities across
the globe, and we invite the community to join this effort.
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