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Abstract—In warehouses, order picking is known to be the
most labor-intensive and costly task in which the employees
account for a large part of the warehouse performance. Hence,
many approaches exist, that optimize the order picking process
based on diverse economic criteria. However, most of these
approaches focus on a single economic objective at once and
disregard ergonomic criteria in their optimization. Further,
the influence of the placement of the items to be picked is
underestimated and accordingly, too little attention is paid to
the interdependence of these two problems. In this work, we
aim at optimizing the storage assignment and the order picking
problem within mezzanine warehouse with regards to their
reciprocal influence. We propose a customized version of the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) for
optimizing the storage assignment problem as well as an Ant
Colony Optimization (ACO) algorithm for optimizing the order
picking problem. Both algorithms incorporate multiple economic
and ergonomic constraints simultaneously. Furthermore, the
algorithms incorporate knowledge about the interdependence
between both problems, aiming to improve the overall warehouse
performance. Our evaluation results show that our proposed al-
gorithms return better storage assignments and order pick routes
compared to commonly used techniques for the following quality
indicators for comparing Pareto fronts: Coverage, Generational
Distance, Euclidian Distance, Pareto Front Size, and Inverted
Generational Distance. Additionally, the evaluation regarding the
interaction of both algorithms shows a better performance when
combining both proposed algorithms.

Index Terms—Storage assignment, order picking, interaction,
genetic algorithm, ant colony optimization, mezzanine warehouse

I. INTRODUCTION

Warehouses play a central role in the supply chain of
a company and contribute to its logistical success. When
employing humans, picker-to-parts and parts-to-picker meth-
ods are differentiated [1]. Experts estimate the picker-to-parts
system to be the most common in Western Europe with a share
of over 80% [2]. A well-known picker-to-parts system is the
mezzanine warehouse which we address in this work.

Working within a mezzanine warehouse consists of two
main tasks: (i) filling the storage with goods (storage as-
signment) and (ii) picking items out of the storage (order
picking). The storage assignment problem defines the task
of selecting storage locations to put a product into storage.

The order picking problem defines the task of computing a
pick route that collects the requested products of a customer
order. Finding suitable storage allocations is important, as the
allocation of products affects the travel distances during order
picking. Due to the NP-hardness and, hence, the complexity
of the storage assignment and the order picking problem,
efficient optimization algorithms are required to find satisfying
solutions within acceptable times. In the literature, many
approaches exist for optimizing both warehouse problems.
However, most approaches usually target either of the ware-
house problems; some works target both problems, however
miss to integrate the interrelation between them and view
each problem separately [3]. However, as identified by [4],
warehouse problems are strongly coupled. Thus, optimizing
each warehouse problem individually may yield suboptimal
solutions, harming the overall warehouse performance. Since
the employees spend most time traveling in such a mezzanine
warehouse [2], it is not surprising that most approaches focus
on optimizing the travel distance. Additionally, ergonomic
constraints are rarely considered, even though mezzanine
warehouses represent labor-intensive working environments.

In this paper, we propose an integrated approach for com-
bined storage assignment and order picking that simultane-
ously optimizes multiple economic and ergonomic constraints
in mezzanine warehouses. Expert interviews have shown, that
in practice the following set of economic criteria is important
and, hence, supported by our approach: products should be
spread equally among each floor, fast-moving products should
be easily accessible, correlated products should be stored in
proximity of each other, and the storage space should be used
as efficiently as possible. Further, we integrate ergonomic
constraints such as storing heavy products and fast-moving
products at grip height or reducing the requirement to switch
a mezzanine floor. In an evaluation using three simulated
mezzanine warehouses of different sizes, we analyze the
quality of the solutions returned by our algorithms compared
to commonly used techniques. Finally, we assess the quality
improvement when combining both of our algorithms com-
pared to an isolated application. Hence, the contribution of
this paper is threefold:
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1) Design of storage allocation and order picking algo-
rithms that incorporate the interdependence of both
tasks.

2) Integration of diverse economic and ergonomic con-
straints.

3) Evaluation of the approach in a use case based on real-
world data provided by our cooperation company.

The remainder of this paper is structured as follows. Sec-
tion II presents related work and delineates our paper from
existing approaches. Section V presents the meta-model and
floor layout of considered mezzanine warehouses. Afterwards,
Section VI provides an overview of the goal and a 3-
phase algorithm of our storage assignment approach, while
Section VII presents the details of the proposed Genetic
Algorithm for storage assignment. Then, Section VIII shows
our order picking approach based on an adapted Ant Colony
Optimization algorithm. Section IX presents our evaluation
methodology and discusses the results and threats to validity.
Finally, Section X concludes the paper and summarizes future
work.

II. RELATED WORK

In the literature, diverse storage assignment policies exist
such as the dedicated and the random storage policy [5], the
closest open location storage policy [2], rank-based storage
policies [6]. Further, class-based, golden zone, and family
grouping storage policies are introduced in the literature [2],
[7]. Additionally, diverse approaches apply optimization tech-
niques. [8] propose a particle swarm optimization algorithm
for warehouses that deploy the class-based storage policy. [9]
presents a mixed integer programming model for optimizing
the storage assignment problem for class-based assigned ware-
houses. [10] apply local search algorithms for reorganizing the
products in the warehouse to keep it operating efficiently. [11]
propose a multi-objective genetic algorithm for optimizing
the storage assignment problem in automated storage/retrieval
warehouses.

Similarly, heuristic policies exist for the order picking
problem such as the S-Shape, Return, Mid-Point, Largest Gap,
and Combined heuristic [12], [13], [14] Besides, [15] presents
an optimal algorithm using dynamic programming to find the
shortest pick route in a single-block warehouse. Additionally,
[16] propose a mathematical model in combination with con-
struction heuristics and apply Tabu Search to construct order
picking routes. [17] present an integer programming model for
optimizing the order picking problem. [18] propose an Max-
Min Ant System (MMAS) algorithm for optimizing machine
travel paths in automated storage/retrieval warehouses. [19]
propose an ACO algorithm that detects congestion situations
that arise when multiple order pickers traverse the same pick
aisle simultaneously.

Finally, related work also assess the interaction of storage
assignment and order picking approaches. [6] and [3] pro-
vide an overview of well-performing combinations of storage
assignment strategies and routing heuristics. [20] analyze
different parameters that affect the travel time in single-block

warehouses that deploy the class-based storage policy. [21]
study the effects of different parameters on the travel distance
in multi-block warehouses.

Our work delineates from these existing approaches in
diverse aspects. First of all, our work applies optimization
techniques and does not rely on a policy on how to select
fitting storage racks or shortest pick routes. Second, regarding
existing optimization approaches, our work integrates multiple
objectives at once considering economic as well as ergonomic
constraints at once while most of the other approaches focus
on a single economic goal. Finally, in contrast to existing
work that address the influence of storage assignment and
order picking tasks, we designed algorithms that optimize the
targets of both tasks. Hence, they optimize storage assignment
and order picking with regards to the interdependence of both
algorithms, while other works only provide well-performing
combinations of algorithms or perform parameter tuning.

III. FOUNDATIONS ON OPTIMIZATION

Mathematically, an optimization problem can be defined
as [22]:

Find X =


x1
x2
...
xn

 which minimizes f(X) (1)

subject to the constraints

gj(X) ≤ 0, j = 1, 2, . . . ,m (2)
lj(X) = 0, j = 1, 2, . . . , p (3)

where X is the design vector with n dimensions comprising
the variables to be determined by the optimization process.
f(X) is the objective function and gj(X) and lj(X) are
inequality and equality constraints, respectively. Constraints
limit the range of values to which the design variables can
be set, and, thus, represent functional and other requirements
on the solution. Constraints can be classified into two types:
(i) hard constraints and (ii) soft constraints. While hard con-
straints must be satisfied to find a feasible solution, the soft
constraints should be satisfied, and any failure to satisfy with
this constraint is penalized in the objective function. A feasible
solution is called locally optimal if the neighborhood of this
solutions does not contain solutions with better objective
function values. A feasible solution is called globally optimal
if all possible solutions in the design space achieve lower
objective function values. The goal of optimization processes
and optimization algorithms is to find the globally optimal so-
lution. When the complexity of an optimization problem does
not allow finding the globally optimal solution, an optimization
algorithm returns the best solution found so far. According
to [22], optimization problems can be classified into several
categories: based on the existence of constraints, based on the
nature of design variables, based on the physical structure of
the problem, based on the nature of equations involved, based
on the permissible values of the design variables, based on the



deterministic nature of variables, based on the separability of
the functions, and based on the number of objective functions.

A. Multi-objective Optimization

When considering optimization problems, multiple and even
conflicting objectives must often be considered [23]. Tradi-
tionally, these objectives are integrated into a single objective
function by aggregating all objectives with predefined weights
or converting them into constraints. According to [23], this
leads to four limitations. First, defining the aggregated objec-
tive function requires a priori knowledge about the importance
of each objective. Second, aggregating the objectives into a
single function leads to a single solution. Third, this leads
to the impossibility to balance the objectives in a set of
solutions. Fourth, it is possible that a solution cannot be
obtained unless the search space is convex. Therefore, this
process of objective reduction is not feasible for complex
multi-objective optimization problems, leading to the concept
of Pareto fronts. Pareto optimality theory aims to balance
a set of possibly conflicting objectives to find a number of
solutions that perform equally well [24]: “Pareto optimality
defines dominance to compare solutions, i.e., a solution A is
said to dominate another solution B, if for all objectives, A
is no worse than B at the same time at least one objective
exists that A is better than B.” The resulting set of solutions
that cannot be dominated by other solutions is called Pareto
front. The set of all non-dominated solutions that exist in a
design space are called optimal Pareto front, while the Pareto
front determined by an optimization algorithm is called the
computed Pareto Front [24], [23].

B. Quality Indicators for Multi-objective Optimization

To assess the quality of a Pareto front, we summarize the
following performance indicators as introduced by [24]. These
metrics use the concept of a reference Pareto front (PFref )
or an optimal Pareto front. The performance indicators can be
categorized into four performance categories: (i) the Coverage
aspect evaluated using C, (ii) Convergence evaluated using
GD and ED, (iii) Diversity evaluated using PFS and GS, and
(iv) Combination evaluated by IGD and HV.

First, the C performance indicator defined in Equation (4)
quantifies the extent to which a computed Pareto front (PFc)
covers the reference Pareto front, i.e., the number of solu-
tions (s) of the computed Pareto front that are also part of the
reference Pareto front divided by the number of solutions in
the reference Pareto front. The best value for this metric is one
since this indicates that the computed Pareto front covers the
whole reference Pareto front which represents the best known
solutions.

C =
| ∪s∈PFc s ∈ PFref |

|PFref |
(4)

Second, the GD performance indicator measures the
Euclidean distance from each solution in the computed
Pareto front to the nearest solution in the reference Pareto
front (d(si, PFref )) and is defined in Equation (5). Hence,
it provides a measure to judge how much distance is present

between the computed and the best known solution. The best
possible result for this metric is zero, as it indicates that the
computed Pareto front directly covers the whole reference
Pareto front without any distances.

GD =

√∑|PFc|
i=1 d(si, PFref )2

|PFc|
(5)

Third, the ED performance indicator defined in Equa-
tion (6) measures the Euclidean distance from a refer-
ence solution to its closest solution in the computed Pareto
front (d(sref , PFc)). The reference solution is defined similar
to the reference Pareto front and selects the best known values
among all retrieved solutions for each objective and combines
them into one solution value. The best possible value for this
metric is zero, indicating that the best solution of the computed
Pareto front matches the reference solution.

ED = d(sref , PFc) (6)

Fourth, the PFS performance indicator measures the number
of solutions in the computed Pareto front as defined in Equa-
tion (7). A larger PFS value indicates a higher diversity of the
computed solutions and, hence, the user has more options to
choose from.

PFS(PFc) = |PFc| (7)

Fifth, the GS performance indicator defined in Equation (8)
measures the diversity of the solutions that exist in the com-
puted Pareto front. Therefore, we calculate a set of extreme
solutions from the reference Pareto front called e1, . . . , em
where ei has the best value for the i-th objective function (fi).
d(ek, PFc) refers to the Euclidean distance from extreme
solution ek to its nearest solution in PFc. d(s, PFc) calculates
the Euclidean distance from the solution s ∈ PFc to its nearest
solution in PFc and d̄ represents the mean of these distances
over all solutions in PFc. This performance indicator measures
how even the solutions in PFc are spread, where a lower GS
value indicates a more even distribution.

GS(PFc, PFref ) =

∑m
k=1 d(ek, PFc) +

∑
s∈PFc

∣∣d(s, PFc)− d̄
∣∣∑m

k=1 d(ek, PFc) + |PFc| · d̄
(8)

Sixth, the IGD performance indicator combines convergence
and diversity aspects of PFref and is defined in Equation (9).
Again, we use the Euclidean distance of a solution si in PFref
to its closest solution in PFc which we define as d(si, PFc)).
We set the sum over all solutions in the reference Pareto front
in the ratio to the size of the reference Pareto front. We use
this value to compare two computed Pareto fronts where the
computed Pareto front with the lowerIGD value is closer to
the reference Pareto front, and hence, we consider it better
than the other computed Pareto front.

IGD(PFc, PFref ) =

√∑|PFref |
i=1 d(si, PFc)2

|PFref |
(9)

Finally, the HV performance indicator defined in Equa-
tion (10) also deals with the combination of convergence and



diversity aspects of the computed solutions. It measures the
volume in the objective space that the PFc covers with respect
to a given reference point. Thus, it computes the volume of the
hypercube resulting from the diagonal corners vi between the
solutions si in the PFc and the reference point Pref having the
worst objective function values. The reference point must not
overlap with the values of PFc, and can therefore be defined
outside the range of values of the objective functions—below
the value range of values for a maximization problem and
above the range for a minimization problem. A higher HV
value in general indicates a better performance of the PFc.

HV (PFc, Pref ) = volume(∪PFc
i=1 vi) (10)

C. Optimization Algorithms

Research in the field of optimization algorithms is a very
old discipline and, accordingly, has already developed a wide
range of techniques. Following the structure of [22] and [25],
optimization algorithms can be divided into the following
categories: exact algorithms, mathematical programming tech-
niques, stochastic algorithms, physical algorithms, probabilis-
tic algorithms, evolutionary algorithms, swarm algorithms,
immune algorithms and neural algorithms. For a comprehen-
sive overview of the most common algorithms from these
categories, we refer the reader to the books [22], [25]. In the
following, we limit the discussion of optimization algorithms
to those used in this thesis.

The first category of optimization algorithms are exact algo-
rithms with the most general brute-force algorithm [26]. This
algorithm does not require any domain-specific knowledge,
but operates on a set of states, starting from an initial state
and using legal operators. Breadth-first search or depth-first
search are two specific examples of brute-force algorithms.
The brute-force algorithms perform an exhaustive search and
explore the entire design space, which is the reason for their
exponential time complexity. However, the advantage of these
algorithms is that they are guaranteed to find the best solution.

LS is an example algorithm from the category of stochastic
algorithms [25], [27]. This algorithm starts from an initial con-
structed solution and explores the direct neighborhood of that
solution. Usually, the neighborhood can be found by replacing
one decision variable of the current solution. If the neighboring
solution has better objective function values, the algorithm
uses it as the next starting point. If the neighbor solutions
do not lead to better values, LS terminates and returns the
solution. If the LS examines all neighboring solutions and
selects the one that maximizes the objective function value,
this variant is called Hill Climbing.

From the category of probabilistic algorithms, we consider
Bayesian Optimization [28], [25]. This algorithm builds a
probabilistic model of the joint distribution of promising
solutions using Bayesian networks. At each iteration, the
algorithm queries one observation point from the objective
function and updates its model accordingly. An additional
acquisition function defines the most promising candidate for
the next observation point. The algorithm terminates after a

maximum amount of iterations and returns the best solution
found so far.

Simulated Annealing is one of the physical optimization
algorithms [29], [25]. It was inspired by the physical process of
annealing in metallurgy and involves heating and cooling metal
to increase the strength and durability of the material. The idea
is that as the temperature of a material increases, the degrees
of freedom within the system also increase and more changes
are possible. As the temperature decreases, the possibility of
changes to the system becomes smaller. The algorithm starts
with an initial solution and changes it iteratively. Therefore,
two functions are relevant: a temperature function and the
objective function. As long as the temperature is still high,
the objective function has less influence on the selection of
the next candidate solution. With decreasing temperature, the
objective function gets more weight and the algorithm only
considers solutions with better objective function values.

From the category of evolutionary algorithms, we consider
the GA [30], [25]. It is inspired by the process of natural
selection and the evolution of a population by recombination
and mutation of individuals representing a solution encoded
as a genome. The algorithm starts with an initial set of solu-
tions, called the population, and performs selection, crossover,
and mutation in each iteration. Selection uses the objective
function to evaluate the fitness of individuals and select the
individuals for recombination. Then, the crossover procedure
combines the genomes of the selected individuals to breed a
new individual as part of the offspring. Each new individual
is then mutated to increase the diversity of the population.
Finally, as the population increases in each iteration, the
individuals with the lowest fitness value are discarded in each
iteration to achieve the predefined population size. A multi-
objective version of the GA is the NSGA-II, which computes
a Pareto front and aims at a good distribution of solutions by
considering the crowding distance as density estimate of the
solutions in the front [31].

Finally, ACO is a representative of swarm algorithms [32],
[25]. ACO is inspired by the behavior of ants in search of food
and uses the concept of pheromones that ants leave on a good
path between their colony and food sources. The algorithm
first simulates a random movement of ants in the environment.
Once an ant discovers a good food source, it begins emitting
pheromones along the path back to the colony. When other
ants notice the pheromone trail, they follow it and increase the
concentration of pheromones along the way. However, some
of the ants do not follow the path and keep exploring new
paths to find better routes and create new pheromone trails.
As the pheromone in the environment decreases, the shortest
path receives the highest pheromone concentration during the
optimization process. After a predefined period of time, the
algorithm terminates with the shortest path represented by the
pheromone trail with the highest concentration.

IV. FOUNDATIONS ON MEZZANINE WAREHOUSES

Warehouses play a central role in the supply chain of
a company and contribute to its logistical success. When



employing humans, picker-to-parts and parts-to-picker meth-
ods are differentiated [1]. Experts estimate the picker-to-
parts system to be the most common in Western Europe
with a share of over 80% [2]. A well-known picker-to-parts
system is the mezzanine warehouse which we address in this
work. Working within a mezzanine warehouse consists of
two main tasks: (i) filling the storage with goods (storage
assignment) and (ii) picking items out of the storage (order
picking). The storage assignment problem defines the task
of selecting storage locations to put a product into storage.
The order picking problem defines the task of computing a
pick route that collects the requested products of a customer
order. Finding suitable storage allocations is important, as the
allocation of products affects the travel distances during order
picking. Due to the NP-hardness and, hence, the complexity
of the storage assignment and the order picking problem,
efficient optimization algorithms are required to find satisfying
solutions within acceptable times. This section first introduces
the mezzanine warehouse layout in Section IV-A and presents
state-of-the-art mechanisms for storage assignment and order
picking in Section IV-B and Section IV-C, respectively.

A. Warehouse Layout

Mezzanine warehouses usually store small-sized products
that need to be picked by employees traveling through the
warehouse. This type of warehouse consists of one or mul-
tiple floors to store goods using racks. Roodbergen and De
Koster [13] provide a general layout of such a mezzanine
warehouse floor in their work from top-down view from which
the following illustration in 1 is derived.

Each floor consists of a predefined number of storage racks
illustrated as white squares arranged in blocks, each consisting
of three storage racks. The racks can be identified by their rack
id depicted as the top number inside the rack, while the bottom
number indicates the bay number. While the rack id uniquely
identifies a rack within a floor, the bay number indicates the
ordering of the racks within each block and, hence, is unique
solely within a block. The blocks are separated by aisles of
different sizes and directions: (i) horizontal cross aisles and (ii)
pick aisles. While the horizontal cross aisles do not provide
access to the racks, these are used to change the pick aisles
from which the employee can access the racks. The cross aisles
are wide enough to travel using picking carts. The pick aisles
can be grouped into two types: narrow and wide pick aisles.
Picking carts can be carried only in wide pick aisles and the
employee needs to park the cart at a wide aisle to pick goods
within narrow pick aisles. The part of an aisle within a block
is called sub aisle of the according block, and, hence, a pick
aisle consists of multiple sub aisles. The black dot at the left
bottom of the figure indicates a p/d-point where employees
need to deliver the picked goods or pickup the next set of
goods to be stored in the warehouse. Finally, the employees
are able to change the floor of the warehouse by using stairs
or lifts.

The considered racks are identical in terms of their height,
width, and depth within the warehouse. However, each rack

can be configured individually with respect to the needs of the
currently stored goods. Figure 2 shows possible configurations
of the considered racks in this work depicted from the front.
The rack configuration determines the number of shelves, that
is, number of levels within a rack, and the number of com-
partments per shelf. Configuration 1 in the figure depicts three
shelves each divided into two parts that represent compart-
ments. Hence, this configuration offers six storage locations.
Configuration 2 offers twelve storage locations by applying
six shelves with two compartments each, and Configuration 3
offers 24 storage locations by dividing the six shelves into
four compartments each.

B. Storage Assignment

The storage assignment problem defines the task of selecting
storage locations to put a product into storage. Since mezza-
nine warehouses usually provide a large number of storage
racks, it is difficult to find the optimum storage allocation
that fulfills all custom constraints as well as ergonomic and
economic objectives defined for the problem. The following
sections introduce a subset of the most common storage
assignment strategies present in the literature and applied in
real-world warehouses.

The simplest storage policy is called dedicated storage
policy [5] in which each product is assigned to a dedicated
and exclusive storage location. Using this policy, no changes
in the warehouse need to be made and employees get to know
the locations over time. However, the warehouse utilization is
comparably low with a value of half of the storage capacity
on average.

The random storage policy [5] does not exclusively reserve
locations for specific products but assigns incoming products
randomly to unoccupied racks. This policy usually achieves
better utilization values but comes with a higher administrative
effort since the product locations change over time.

The closest open location storage policy [2] reduces the
randomness of the random storage policy by letting the em-
ployees select the storage location which results in selecting
the first empty location the employee encounters. This leads
to a higher utilization in the neighborhood of the p/d-points
while racks that are farther tend to be empty.

The rank-based storage policy removes the randomness
completely and ranks each incoming product based on a
predefined rule set. These rules could contain but are not
limited to [7], [33], [34]: popularity, turnover, that is, the
requested quantity by customers, the volume, the pick density,
or the cube-per-order index.

Figure 3 illustrates four additional rank-based storage as-
signment policies introduced by [35]. This policy assigns
storage locations based on the best- and worst-ranked products
illustrated by black and white squares in the figure deter-
mined by their distance to the next p/d-point. The diagonal
strategy (1) assigns incoming products according to their
Euclidean distance to the next p/d-point, best ranked close and
worst ranked further away from the p/d-point. The within-aisle
strategy (2) assigns the best-ranked incoming products within



Fig. 1: Example floor layout of a mezzanine warehouse (c.f. [13]) consisting of blocks, storage racks, cross and pick aisles,
and p/d-points.

the same aisle of the p/d-point. The across-aisle strategy (3)
assigns the best-ranked incoming products to the entrance of
all aisles that is nearest to the p/d-point. Finally, the perimeter
strategy (4) assigns the best-ranked incoming products around
the perimeter of the warehouse assuming that these are the
most traveled aisles of the floor.

Class-based storage assignment strategies [2] are a combi-
nation of the previously mentioned strategies as they include
the following three tasks: (i) grouping of products into classes,
(ii) definition of class regions within the warehouse, (iii) assign
products to the defined region. Usually, the grouping is done
using three classes (A-, B-, and C-class) that distinguish
between fast- and slow-moving products.

Further, De Koster et al. [2] take another factor into account
for determining the optimal storage locations for products in
their family grouping strategy. They include the correlation
of products into account and propose to store products close
to each other that often need to be picked in combination.
They differentiate two types of strategies: complimentary-
based and contact-based, which measure joint demand or
contact frequencies of the correlated products, respectively.

Besides the assignment of products to racks, the golden zone
assignment strategies [7] focus on the assignment of products
into compartments. With golden zone these strategies refer to
compartments located at grip height, that is between waist and
shoulders of the picker. These strategies assign fast-moving
products exclusively to the golden zones of racks and disregard

the travel distance to the according rack.

C. Order Picking

The order picking problem defines the task of constructing
pick routes within a warehouse that include all products
of a pick list derived by a customer order. State-of-the-art
routing heuristics are able to construct these routes fast and
try to minimize the travel distance per route. They model the
problem as TSP and start and end the route at a specific p/d-
point.

Petersen [12] proposes five routing strategies applicable for
mezzanine warehouses and which are illustrated in Figure 4.
The S-Shape strategy defines the route inside the warehouse to
completely traverse all aisles that contain required products.
It alternates the traversing direction so that a shape similar
to the letter S is created as depicted in the figure. When
applying the Return strategy, the picker enters the pick aisles
in which required products are stored but always returns to
the entrance of this aisle. Hence, in the worst case, an aisle
might be traversed two times in case the product to be picked
is stored in the last rack. In the Mid-Point strategy, the picker
passes through each aisle at most to the middle of the aisle
and then returns to the entrance through which he entered the
aisle. In case a product is located further within the aisle, that
is, behind the mid-point, the picker needs to enter the pick
aisle from the other entrance again. The Largest Gap strategy
adapts the idea of the Mid-Point strategy but dynamically



Fig. 2: Example rack configurations that can be individualized with respect to the requirements of the stored goods.

Fig. 3: Illustration of rank-based storage assignment strategies (c.f. [35]).

Fig. 4: Illustration of five state-of-the-art order picking strategies and the optimal strategy based on dynamic programming
(c.f. [12], [15]).

sets the point that should not be traversed based on the
largest gap between two products in the aisle. In this way,
this strategy attempts to minimize travel distance by avoiding
passing shelves that are not needed. Finally, the Combined
strategy combines the S-Shape and Return strategies. It selects
the pick aisle entry based on the current location of the picker
and after all products are picked, the strategy decides to either
complete this aisle and use the other entrance or to return to
the initial entrance. In addition to these five strategies, Ratliff
and Rosenthal [15] present another strategy called Optimal
strategy where they apply dynamic programming to find the

shortest route. For small problem instances, this method can
be used to determine the optimum solution that can be used
as gold-standard.

V. META-MODEL OF CONSIDERED MEZZANINE
WAREHOUSES

The storage assignment and order picking algorithm require
information on the warehouse layout, the product assortment,
the products’ storage locations, and the current state of the
warehouse. Figure 5 illustrates our proposed meta-model.

The blue box describes the floor layout defining the ar-
rangement of racks within one floor of the mezzanine ware-



Fig. 5: The meta-model describes the structure and state of mezzanine warehouses.

house (FloorLayout). Each floor consists of the classes,
P/D-Point, WidePickAisle, and Rack. A p/d-point
is the pickup and delivery point where personal needs to
collect items to be stored in the warehouse or deliver items
of a customer order that were collected. Regard the class
WidePickAisle, two types of pick aisles exist: wide and
narrow pick aisles. In wide pick aisles, pickers can take along
their pick cart to cross the aisle while it needs to be parked at
the aisle entry for narrow pick aisles. A floor can be illustrated
as a two-dimensional map as depicted in Figure 6: The racks
with their unique identifiers r3 and r4 are assigned the floor
coordinates x = 1 and y = 2 since their access points are
both located at (1|2). The vertical aisles located at x = 0 and
x = 4, as well as the horizontal cross aisles at y = 0, y = 4,
and y = 7, form the periphery of the floor. Periphery aisles
usually contain the p/d-points (e.g. at (2|0)). A wide pick aisle
is depicted at x-coordinate two and two narrow pick aisles are
shown at x-coordinates one and three, where the picker needs
to park his pick cart. Real-world mezzanine warehouses may
apply different layouts on each floor; however, we assume
that each floor in the mezzanine warehouse applies the same
layout.

Since diagonal movements are not possible in this layout,
the Manhattan distance function is applied to calculate the
distance between two locations p and q:

distance(p, q) =

n∑
i=1

|pi − qi| (11)

The classes inside the yellow box (Compartment and
RackConfiguration) define the configuration of a rack,
referring to its size, the number of shelf levels, and the
number of compartments per shelf level. The Compartment
class includes an identifier and a three-dimensional vector
specifying the compartment’s dimensions. The shelf level and

the shelf level position defines the compartment’s location
within the rack. The class Product defines the products
using five properties: product number, size, weight, rank,
and order frequency. The rank (≥ 1) allows identifying fast
and slow-moving products by the frequency at which the
product appears in recent customer orders. The product of
rank 1 represents the most frequently ordered product. The
order frequency describes the frequency to which a product
is usually ordered using a gaussian distribution. Both proper-
ties are derived from recent customer orders and represent
redundant information which prevents the algorithms from
recalculating this information each time they need it. Further,
these properties are later used in the storage assignment
optimization to find better racks regarding their frequency
and usual ordered amount. The class ProductAssignment
specifies the quantity of which a product is assigned to a
specific compartment. The classes Order and OrderLine
of the orange package define the structure of a customer order
consisting of a unique order number and multiple order lines.
An order line specifies the quantity to which a product is
ordered. The class AssociationRule defines association
rules derived by the Apriori algorithm [36]. The confidence
ranges from 0 to 1 and expresses the strength of the correlation
between the left-sided and the right-sided set of products.
These rules are used in the storage assignment algorithm later
on to store correlated products close to each other which may
increase the order picking performance.

VI. STORAGE ASSIGNMENT

The overall goal of the storage assignment algorithm is to
select a set of compartments for storing an incoming product
by considering multiple economic and ergonomic constraints
simultaneously.



Fig. 6: Example mezzanine floor layout from top-down view.

A. Constraints and Assumptions

In expert interviews, we identified multiple hard constraints
that should be covered in our approaches. These hard con-
straints specify whether a storage allocation is considered
feasible and a feasible solution never violates any of these con-
straints: Each incoming item must be assigned to a compart-
ment (HC1). The selected compartment must either be empty
or partially occupied by items of the same product (HC2).
Each item has to fit in the remaining free space if its compart-
ment (HC3). Furthermore, we define multiple soft constraints
that measure the extent to which a storage allocation fulfills
economic criteria: The products should be evenly spread on
each floor (SC1). Fast-moving products should be assigned
close to a p/d-point (SC2). The mean ordered quantity of a
product should be locally available (SC3). Correlated products
should be stored close to each other (SC4). The storage space
should be used as efficiently as possible (SC5). Finally, we
define two ergonomic soft constraints: Heavy products should
be stored at grip height (SC6). Fast-moving products should
be assigned to compartments at grip height (SC7).

Further, we state the following assumptions for our ap-
proach: The state of the warehouse does not change while the
storage assignment algorithm is running. Thus, the products
are not repositioned nor removed, and the racks’ configurations
do not change. Further, the algorithm allocates only one
product at a time. The storage racks may apply different
rack configurations and products may only be assigned to
fitting compartments. A compartment is allowed to store
multiple items of the same product but may not store two
different products at the same time. Finally, product ranks and
association rules are derived from recent customer orders.

B. 3-Phase Storage Assignment Algorithm

Our storage assignment algorithm consists of three phases
that intend to reduce the complexity of the optimization
problem: (i) assignment of products to floors, (ii) assignment
to racks w.r.t. economic criteria, and (iii) assignment to com-
partments w.r.t. ergonomic criteria.

In the first phase, the incoming product quantity is split
among the mezzanine floors (SC1) so that each floor provides
the same quantity of the product. This way, we try to reduce
the required floor changes during a pick route to a minimum.
Thus, we first determine the total quantity of the incoming
product that is already available in each floor, calculate the
ideal quantity for each floor after storage assignment, and
assign the missing quantity to each floor. Remaining items,
due to rounded results, are allocated to a random floor.

The second phase addresses the economic soft constraints
SC2 to SC5 and aims to reduce travel distances during order
picking. This phase assigns the incoming products to racks on
a specific floor. Since this phase requires optimizing a set of
constraints, we apply a multi-objective optimization algorithm
that is described in Section VII.

The third phase aims to satisfy the ergonomic soft con-
straints SC6 and SC7. We classify a product p into three
weight classes: light (up to 3 kg), medium (between 3 kg
and 7 kg), and heavy (over 7 kg). We set the grip height
to be between 0.75 m to 1.25 m and refer to compartments
below/above the grip height as low/high zone compartments.
Additionally, we distinguish fast-moving, moderately-moving,
and slow-moving products by their relative rank. The relative
rank of a product p calculates as rankp/|P |, where rankp
denotes the rank of product p, and |P | the size of the product
assortment. In the first step, the incoming items are assigned to
the rack’s compartments that already provide items of the same



product. In the second step, the remaining incoming items
are assigned to the rack’s unoccupied compartments based on
predefined penalty values. The penalty values range from zero
to three and the more a compartment c is unsuited for storing
the product p, the more penalty points are given (see Tables I
and II).

TABLE I: Penalties for assigning a product to a specific
compartment with regards to the product weight.

Zone Weight Penalty

high light 0
high medium 2
high heavy 3
grip height light 1
grip height medium 0
grip height heavy 0
low light 0
low medium 1
low heavy 1

TABLE II: Penalties for assigning a product to a specific
compartment with regards to the product rank.

Zone Rank Penalty

high slow 0
high moderate 0
high fast 2
grip height slow 3
grip height moderate 1
grip height fast 0
low slow 0
low moderate 0
low fast 2

VII. GENETIC ALGORITHM FOR STORAGE ASSIGNMENT

This section presents our custom version of the NSGA-II
algorithm that was proposed by [37]. The algorithm receives
the current state of a floor and assigns the incoming items to
a set of racks on this floor. Note that the NSGA-II is executed
for each floor individually.

A. Chromosome Encoding
Since the NSGA-II algorithm is a genetic algorithm, we

propose the chromosome encoding depicted in Figure 7. The
figure illustrates an example allocation task where ten items
of product p1 must be assigned to the racks on floor1. The
black numbers indicate the existing items of product p1, while
the red numbers indicate the incoming items of product p1.
The right side shows the chromosome that encodes the storage
allocation depicted on the left side by specifying the racks
selected for storing each incoming item. Since ten items of
product p1 are assigned, the chromosome’s length equals 10.

B. Objective Functions
A set of objective functions guide the NSGA-II algorithm to

find good storage allocations. We propose four domain specific
objective functions for our maximization problem: (i) spread
score, (ii) distance score, (iii) quantity score, (iv) correlation
score.

1) Spread Score: This score addresses constraint SC1 and
aims to equally spread the incoming quality of product p across
the entire floor. Hence, we divide the floor fj into multiple
areas A of equal size. To calculate the spread score, we use
the total (totalQ) and ideal quantity (idealQ) of a product
in an area of a floor. The totalQ is the sum of the existing
and incoming items in an area, while the idealQ is calculated
by dividing the sum of the existing and incoming quantity of
product p on the floor by the number of defined areas. The
final spread score for chromosome C is calculated as the sum
of differences between the total and the ideal quantity for all
areas (see Equation 12).

spreadScorep,fj ,C = (−1)

A∑
o=1

|idealQp,fj ,j − totalQp,fj ,j |

(12)
2) Distance Score: This score addresses constraint SC2 and

aims to allocate slow-moving products to racks further away
from the p/d-points. Hence, the distance score quantifies the
extent to which the walking distances (distri ) of the selected
racks match the ideal distance (idealDistp,fj ). For calculating
the idealDist, we perform the following steps: First, we deter-
mine the relative rank of the incoming product p by dividing
the rank of the product (rankp) by the size of the product
assortment P : relRankp = rankp/|P |. Then, the relative rank
is mapped to a rack index: rackIdxp,fj = relRankp · |Rfj |
with Rfj being the list of racks of floor fj sorted by the racks’
walking distances to their closest p/d-point. The rack in Rfj
at index rackIdx represents the best-suited rack for storing
product p with regard to constraint SC2. Finally, the idealDist
computes as: idealDistp,fj = Rfj [rackIdxp,fj ].distance.
The overall distance score calculates as the sum over all
racks in Chromosome (C) of differences between the walking
distances of the racks selected for storing product p and the
idealDist (see Equation 13).

distanceScorep,fj ,C = (−1)
∑
n∈C
|idealDistp,fj − distri |

(13)
Further, we provide an example of this calculation in Figure 8.

3) Quantity Score: This score assesses SC3 and ensures
that the mean ordered quantity of a product is locally available.
Therefore, the target quantity defines the quantity to which the
product p should be locally available based on a set of recent
customer orders: tqp = dµp + 2σpe. Further, we define four
masks and a modifier for each mask to measure the density
to which the tqp is locally available: M1 equals the size of
a rack (maskMod = 1), M2 equals the size of two facing
racks (maskMod = 0.75), M3 is a sliding window with half
the sub aisle’s length (maskMod = 0.5), and M4 covers
an entire sub aisle (maskMod = 0.25). Using these masks,
we calculate a quantity factor for each sub aisle (sa) of a
floor and each mask (Mk). Therefore, we select the quantity
(q) of products inside a mask divided by the target quantity:
qFactorp,fj ,sal = max(qp,fj ,sal(Mk)/tqp). This results in
a value of 1 if the target quantity is met and a value of 0
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Fig. 8: Calculating the ideal distance for storing the incoming product p98.

if no products can be found within this mask. This quan-
tity factor is then multiplied by the maskMod to calculate
the mask score: maskScorep,fj ,sal(Mk) = maskModMk

·
qFactorp,fj ,sal(Mk). The highest possible mask score is 1,
indicating that the target quantity is available in a single
rack of the sub aisle. Based on these mask scores, the
maximum value is selected to assign a score to each sub aisle:
subAisleScorep,fj ,sal = max4k=1maskScorep,fj ,sal(Mk).
The final quantity score computes as the sum of all
subAisleScores:

quantityScorep,fj ,C =

|SA|∑
o=1

subAisleScorep,fj ,sal (14)

Figure 9 illustrates the idea of using masks of different
sizes to measure the density to which the target quantity tqp
of product p is locally available. The left side shows the
storage locations of existing and incoming items of product p
in a specific sub aisle sa. The center of the figure depicts
the four masks Mk that iterate over the racks of the sub
aisle. During this process, the masks count the existing and
incoming quantities of product p that can be found in the

covered regions. The right side shows the regions where the
masks find the largest quantity of product p in the sub aisle sa.

4) Correlation Score: This score relates to SC4 and de-
scribes the extent to which the incoming product is stored close
to its correlated products. Association rules describe correla-
tions between products and can be derived from recent cus-
tomer orders. We consider association rules of the form rule =
{p} conf−−−→ {cp}, where p denotes the incoming product, cp
the correlated product, and conf a confidence value. We first
calculate the number of possible clusters of target quantities
of the incoming product: qClustersp,fj = btotalQp,fj/tqpc.
We use this value to define the ideal quantity to which the
correlated product should be available in the vicinity of the
incoming product: idealCorrQrule,fj = dqClustersp,fj ·tqcp·
conf(rule)e. In the next step, we determine the quantity of
cp that already is available in the vicinity of p. For this task,
the previously introduced masks Mk are used and are placed
directly on top of the racks containing cp. Again, the qFactor
is calculated to capture the extent to which the target quantity
of p is available in the region covered by Mk placed on top of
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rack r: qFactorp,r(Mk) = qp,r(Mk)/tqp. Then, we calculate
the fraction to which the items of cp stored in r are considered
to be in the vicinity of p: corrQrule,r(Mk) = exQcp,r ·
qFactorp,r(Mk)·maskModMk

. exQcp,r refers to the existing
quantity of the correlated product cp in rack r. Afterward,
we select the corrQ with the highest value representing the
mask with the largest amount of p in the vicinity of cp:
corrQrule,r = max4

k=1 corrQrule,r(Mk). The sum of all
corrQrule,r over all racks on this floor denotes the quantity of
the cp on this floor that is considered as being in the vicinity
of p: corrQrule,fj =

∑
rack∈Rfj,cp

corrQrule,r. Now, we
calculated the quantity of the correlated product that is in
the vicinity of the incoming product and the difference of
this value to the ideal quantity. Based on this difference, the
correlation score is calculated as:

cSp,fj ,C = (−1)
∑

rule∈Ap

idealCorrQrule,fj − corrQrule,fj

(15)

C. Genetic Operators

The NSGA-II is a genetic algorithm and requires the defi-
nition of selection, crossover, and mutation operators.

1) Selection: We apply a binary tournament selection op-
erator where two random parent individuals compete against
each other [37]. The individual with the higher Pareto rank
is declared the winner and is allowed to participate in the
crossover procedure. In case both parents are of equal Pareto
rank, the individual with the larger crowding distance, i.e. the
higher diversity, wins the tournament.

2) Crossover: Since all chromosomes created during a run
of the NSGA-II algorithm are of equal length, we use the
traditional single-point crossover operator. It selects a random
crossover point on both parents’ chromosomes, splits them,
and recombines them cross-wise to obtain two new children.

3) Mutation: We define eight mutation operators that incor-
porate domain-specific knowledge to guide the search process:
(1) The FillRack mutator selects a random rack and fills
it with incoming items from the same sub aisle. (2) The

MoveRack mutator selects a random rack containing at least
one incoming item and moves them to a different rack within
the same sub aisle. (3) The FillSubAisle mutator selects
a random sub aisle and fills it with incoming items from
other sub aisles until it provides the product’s target quantity.
(4) The ClearSubAisle mutator selects a random sub aisle
and moves any incoming items to a different sub aisle. (5)
The RedistributeExceedingQuantities mutator redistributes
incoming items of racks that provide more items than the target
quantity to racks that require only a few items to provide the
target quantity. (6) The ShiftRacks mutator shifts all incoming
items towards a randomly selected direction: left, right, up, or
down. (7) The SwapSubAisles mutator first groups the sub
aisles into pairs and swaps incoming items randomly within
each pair. (8) The SwapRacks mutator is similar to (7) but
swaps items within pairs of racks instead of sub aisles.

D. NSGA-II Algorithm

The overall procedure of our NSGA-II algorithm is
summarized in Algorithm 1. The algorithm receives the
product to be stored and its quantity as well as the
list fittingRacks. Further, the parentPopSize defines
the size of the parent population, the mutation probability is
given by mutProb, the number of generations to be used
when calculating the standard deviation of the maximum
crowding distance std(L) is called L, the threshold for the
standard deviation of the crowding distance is δlim, and the
maximum number of generations is called maxGen. In the
end, the algorithm returns a paretoFront of the best
storage assignments.

In the first step, the algorithm initializes the population
by randomly creating the required amount of chromosomes.
Therefore, the algorithm selects fitting racks for the prod-
uct randomly which might produce invalid solutions due
to exceeded rack spaces. Each invalid chromosome is then
repaired by moving the amount of exceeding products to
another available rack. Then, the generation counter gen
and the history of observed maximum crowding distances
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Fig. 10: Calculating the quantity of the correlated product p2 that is available in the vicinity of the incoming product p1.

are initialized. Then, the while loop starts and iterates us-
ing the two following stopping criterions: (i) the number
of maximum generations (maxGen) is executed, or (ii) the
standard deviation of observed crowding distances (std(L))
falls below the given threshold (δlim). Inside the while loop,
the generations counter is incremented, and a complete new
children population in the size of the parent population is
bred using the proposed selection, crossover and mutation
operators. (createChildrenPopulation). This set is
added to a combined population of existing parent individ-
uals and select the best individuals to fill the new parent
population (createNextParentPopulation()). After-
wards, a Pareto front is calculated from this parent pop-
ulation (calculateParetoFront()) and the maximum
crowding distance of this front is calculated. This value is
added to the history of maximum crowding distances. In case,
the while loop stops, the current Pareto front is returned.

Since the NSGA-II algorithm returns a Pareto front, a user
is usually required to identify the most valuable trade-off solu-
tion. However, we automate this step by applying the following
procedure. For each of the four objective functions (ofi), we
select the solution (sj) of the Pareto front with the highest

value (ofi(sj)) for this function. We then use these values as
a 4-dimensional reference point (pref = [e1, e2, e3, e4]). Based
on the Euclidean distance, the solution that is closest to the
reference point is automatically selected as the most valuable
trade-off solution.

VIII. ORDER PICKING

This section introduces our order picking approach that is
based on Ant Colony Optimization. The overall goal of this
algorithm is to construct a pick route for a given customer
order. Since the travel distance is an essential economic goal,
the pick route should be as short as possible. Additionally, the
pick route should also be ergonomically favorable. The need
for changing floors should be minimal to reduce the order
picker’s physical stress. Further, the product picking sequence
is relevant as if light products are picked first, the order picker
might need to rearrange the already picked products so that
light products are placed on top of heavy products. Hence, the
order picking algorithm aims to construct a short pick route
that collects heavy products first and changes floors as little
as possible to address economic and ergonomic criteria.



Algorithm 1: Proposed NSGA-II Algorithm.
Input: product, quantity, fittingRacks
Parameter: parentPopSize, mutProb, L, δlim, maxGen
Output: paretoFront

1 popparent = initParentPopulation(product, quantity,
fittingRacks, parentPopSize)

2 gen = 0
3 historyOfMaxCD = new List()
4 while gen < maxGen && std(L) > δlim do
5 gen++
6 popchildren = createChildrenPopulation(popparent,

...)
7 popcombined = popparent ∪ popchildren
8 popparent =

createNextParentPopulation(popcombined,
parentPopSize)

9 paretoFront = calculateParetoFront(popparent)
10 maxCD = calculateMaxCD(paretoFront)
11 historyOfMaxCD.add(maxCD)

12 return calculateParetoFront(popparent)

The main idea of this approach is to represent a mezzanine
warehouse as a graph and let ants search for satisfactory order
picking sequences. We make the following assumptions to
better deal with the complexity of the order picking problem:
(i) The state of the mezzanine warehouse does not change
while the algorithm is running, that is no repositioning or
removal of products is performed. (ii) The start and ending
p/d points of a pick route may differ. (iii) Narrow sub aisles
may only be traversed to the sub aisles’ midpoint, as the picker
always must go back to the cart in the wide pick aisle. (iv) The
order pickers visit only one rack each time they enter a sub
aisle. (v) Picking carts withstand infinite loads and can carry
an unlimited amount of items.

A. Constraints

For the order picking algorithm, we define a set of hard
and soft constraints. The hard constraints assess the feasibility
of a solution, while the soft constraints measure the extent
to which the solution fulfills economic and ergonomic goals.
We define the following hard constraints: The pick route must
start and end at a p/d point (HC1). The pick route must
collect the requested quantities of the products specified in the
pick list (HC2). After entering a narrow sub aisle, the route
must always return to the sub aisle’s entrance (HC3). Further,
we define one economic soft constraint: The travel distance
should be minimal (SC1); And two ergonomic soft constraints:
The need for changing floors should be minimal (SC2).
Heavy products should be picked first, followed by lighter
products (SC3).

B. Graph Representation

We propose the following procedure for transferring a
mezzanine warehouse into a graph representation. Figure 11

illustrates the procedure of dividing the warehouse into mul-
tiple zones called market zones.

Each market zone is represented by a market, and thus,
a node in the graph. The figure depicts the state of floor1
that consists of three cross aisles, three wide (pick) aisles,
and two p/d-points. We define six market zones obtained by
dividing the floor along the wide (pick) aisles into multiple
vertical lanes. In the depicted example, lane1 refers to the
area from aisle0 to pickAisle3, and lane2 refers to the area
from pickAisle3 to aisle6. A crossLane(c,l) refers to the
part of the cross aisle c that lies within the lane l. For each
cross lane, we define a market zone that comprises the storage
racks that can be visited from the respective cross lane up to
their midpoints. For example, the red market zone includes the
racks that can be visited if the order picker is located at the
crossLane(1,1). The market zones are limited to the midpoints
of the corresponding sub aisles, which prevents the ants from
constructing pick routes that entirely traverse the pick aisles.
A market is referred to as market(f,c,l), where f denotes the
floor, c the cross aisle, and l the lane. For each market, we
define three attributes: (1) the market’s coordinates, (2) the
market’s closest p/d-point, and (3) the market’s supply that
specifies which products are available at which quantity. After
defining all markets, they are connected via edges to create
a complete directed graph. The edges’ weights represent the
Manhattan distances between the markets. If the warehouse
consists of a second floor2, the markets on floor1 are also
connected to the markets on floor2 and vice versa, with an
extra floorPenalty added to the edges’ weights.

C. Pick Route Construction

An ant colony explores the graph to construct a set of pick
routes, i.e., a sequence of markets that provide the products,
for a given pick list. A pick route consists of two layers: (i)
representing markets, and (ii) rack sequences.

Figure 12 depicts an example pick route created by a
single ant of the colony. The market sequence (layer one)
of a pick route is computed by an ant that is placed on a
market within the graph. Guided by the pheromone trails, the
ant visits neighboring markets until it collected the requested
product quantities specified in the pick list. The ant manages a
purchasing list that specifies the missing items. The pick route
is complete after the ant’s purchasing list is empty. Further,
each ant must decide whether it enters the market zone from
the left or from the right side which depends on the position of
the previously visited market. The left/right entrance is located
at the position where the cross lane has its lowest/highest x
coordinate value. The decision from which side the ant enters
the market zone depends on the position of the previously
visited market. While constructing pick routes, the ant applies
a heuristic function to identify the markets within its vicinity
that seem attractive to visit next.

The second layer represents the rack sequence, i.e., the racks
the ant visited in each market. When calculating the rack
sequence, the ants use the following priority rules: (1) Racks
that provide heavy products should be visited first. (2) Racks
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Fig. 11: The floor is divided into multiple market zones.

Fig. 12: A pick route consists of a market sequence and a rack sequence.

located closer to the sub aisle’s entrance should be visited
second. (3) Racks that provide the largest quantities should be
visited third.

D. Heuristic Function

To identify the most promising paths and assess the at-
tractiveness of a market, the ants apply a heuristic function.
The attractiveness of a market is based on two factors: (i) the
closeness of the market to the ant’s current location, and (ii)
the availability of required items. Thus, we define the heuristic
function as follows:

ηkm,n =

(
1

dm,n

)(
Ikn
)

, where n ∈ Uk (16)

where ηkm,n is the heuristic value that the ant k currently
located at market m associates with the edge (m,n) leading
to market n. Uk is the set of markets the ant has not visited

yet and dm,n > 0 refers to the Manhattan distance between
the markets. Ikn ∈ [0; 1] denotes the percentage to which the
required items of ant k are available at market n. The higher
the heuristic value, the more attractive is the market for the
ant.

E. Objective Functions

After retrieving possible pick routes from the algorithm, we
use two objective functions to asses the quality of the route.

1) Travel Distance: This objective function calculates the
travel distance of a pick route and measures the extent to which
the soft constraint SC1 and SC2 are satisfied. We define a pick
route P to be P = (M,R) where M = (m1, ...,mk) refers
to the market sequence and R = (r1, ..., rl) refers to the rack



sequence. We then define the objective function as follows:

travelDistance(P ) = dpdm1
+

l∑
i=1

dsubri +

k∑
i=1

dcrossmi

+

k−1∑
i=1

dmarket(mi,mi+1)
+ dpdmk

where we sum up the distance from the start p/d-point
to the first market, the sum of the distances within each
entered sub aisle (dsubri ), the sum of the distances within
the cross lanes (dcrossmi

), the distances between the visited
markets (dmarket(mi,mi+1)

), and the distance from the last visited
market to its closest p/d-point (dpdmk

).
2) Weight Violation: The second objective function mea-

sures the extent to which a pick route satisfies the soft con-
straint SC3 and counts the number of weight violations in the
product picking sequence. A weight violation occurs if a heavy
product is collected after a much lighter product. In this case,
the order picker must rearrange the lighter products already
placed on the picking cart to prevent damage. The user-
specified threshold allowedWeightDifference defines
the acceptable weight difference between the heavier and the
lighter products. Using this threshold, we count the number of
weight violations in a product picking sequence.

F. ACO Algorithm Procedure

This section proposes our proposed ACO algorithm and
shows the pseudo-code in Algorithm 2. First of all, the algo-
rithm constructs the graph and initializes the pheromones. The
pheromones are initialized with their maximum possible value
determined by τmax. Additionally, a minimum pheromone can
be specified by using the value τmin in the parametrization of
the algorithm. Then, a while loop starts and uses the concept
of cataclysms [19] and a maximum number of iterations as
stopping criterion: The parameter maxCataclysms specifies
the maximum number of cataclysms that may occur. The
parameter maxconsIterWoImpr defines the time window
in which the ACO algorithm must improve the current Pareto
front to prevent the cataclysm operator from being applied.
The parameter maxIter defines the maximum allowed num-
ber of iterations regardless of happened cataclysms.

Inside the loop the number of current iterations is incre-
mented and pick routes are constructed. The general idea is
to place one ant on each market of the graph from which
the ant starts to create a pick route. The next market is
selected based on the pheromone values and the heuristic
function. We propose two different versions of the ACO to
combine these values as explained later. For each found pick
route, the reverse pick route is calculated by reversing the
market sequence, toggling the sides from which the ant entered
the markets, and recalculating the rack sequence. We store
the pick routes the ants construct in each iteration in the
variable pickRoutes. In the next step, the Pareto-optimal
pick routes of this iteration are selected by calculating the
objective function and the Pareto rank of all routes. Afterward,
the iteration-best (pickRoutesib) and the global-best pick

routes (nextPickRoutesgb) are merged into a single set
and the Pareto-optimal pick routes in this set represent the
next set of global-best pick routes. The iteration-best pick
routes and the global-best pick routes are used to perform
the pheromone update, which is explained later. In the further
course of the iteration, the ACO algorithm checks whether
the cataclysm operator must be applied and compares the
global best pick routes of the last and the current iteration.
If the ACO algorithm succeeded in improving the Pareto
front, the set pickRoutesgb is updated, and the counter
variable consIterWoImpr is reset to 0. However, if no
improvement was made, this counter variable is incremented.
If multiple consecutive iterations fail to achieve an improve-
ment, the search is considered stuck, and the cataclysm
operator is applied. In case the cataclysm is applied, the
global-best pick routes pickRoutesgb are included in the
set pickRoutescataclysm, the pheromones on the edges
representing the pick routes in pickRoutesgb are reset to the
lowest possible value, and the set pickRoutesgb is emptied.
Then, the number of cataclysms is incremented and the counter
variable consIterWoImpr is reset to 0. After the main loop
terminates, the global-best pick routes pickRoutesgb of the
last iteration are included in the set pickRoutescataclysm
and the algorithm returns the Pareto-optimal pick routes in this
set.

G. ACO3 Variant
In the following, we introduce two variants of our algorithm

that show a distinct pheromone handling. Both variants are
inspired by [38] that propose four different variants to handle
multi-objective problems with an ACO. We select the two best
performing variants (ACO3 and ACO4) and integrate them in
our approach to compare which variant produces the best re-
sults in our problem domain. This section introduces the ACO3

variant that applies one ant colony using a single pheromone
matrix τ1 for optimizing both objectives simultaneously. In
each construction step, the probability of selecting an edge
calculates as:

probkm,n =
(τ1m,n)α(ηkm,n)β∑

u∈Uk

(τ1m,n)α(ηkm,n)β
, where n ∈ Uk (17)

where probkm,n denotes the probability of ant k located at
market m to select the edge (m,n) leading to market n. τ1m,n
refers to the pheromone value of edge (m,n). ηkm,n denotes
the heuristic value (see Formula 16) that the ant associates
with the edge (m,n). The parameters α and β control the
importance of the pheromone values and heuristic values.
Lastly, Uk represents the set of markets that ant k has not
visited yet.

When performing the pheromone update, the ACO3 variant
rewards in 90% of the time the iteration-best pick routes
and in 10% of the time, the global-best pick routes (found
since the last cataclysm) to update the pheromone matrix τ1.
The pheromone values are updated according to the following
rule [38]:

τ1m,n = (1− ρ) · τ1m,n + ∆τ1m,n (18)



Algorithm 2: Proposed ACO Algorithm.
Input: warehouseState, pickList
Parameter: maxIterWoImpr, maxCataclysms, maxIter
Output: pickRoutes

1 graph = constructGraph()
2 pheromones = initializePheromones()
3 while cataclysms < maxCataclysms || iter < maxIter

do
4 iter++
5 pickRoutes = constructPickRoutes()
6 pickRoutesib = selectParetoPickRoutes(pickRoutes)
7 pickRoutesmerged = pickRoutesib ∪ pickRoutesgb
8 nextPickRoutesgb =

selectParetoPickRoutes(pickRoutesmerged)
9 updatePheromones()

10 if isParetoFrontImproved() then
11 pickRoutesgb = nextPickRoutesgb
12 consIterWoImpr = 0
13 else
14 consIterWoImpr++
15 if consIterWoImpr >= maxIterWoImpr then
16 pickRoutescataclysm = pickRoutescataclysm

∪ pickRoutesgb
17 resetPheromonesOnGlobalBestRoutes()
18 cataclysms++
19 consIterWoImpr = 0

20 pickRoutescataclysm = pickRoutescataclysm ∪
pickRoutesgb

21 return
selectParetoOptimalPickRoutes(pickRoutescataclysm)

∆τ1m,n =

{
1, if (m,n) belongs to a pick route in PF
0, otherwise

(19)
where ρ refers to the evaporation factor and ∆τ1m,n is the
amount of pheromone that is added to the edge (m,n).
PF refers to the Pareto front containing the solutions to be
rewarded.

H. ACO4 Variant

The ACO4 variant also applies one ant colony but a
pheromone matrix τ1 for optimizing the first objective func-
tion, and another pheromone matrix τ2 for optimizing the
second objective function. When deciding which edge to
explore next, an ant randomly chooses a pheromone matrix.
In each construction step, the probability of selecting an edge
calculates as [38]:

pkm,n =
(τ im,n)α(ηkm,n)β∑

u∈Uk

(τ im,n)α(ηkm,n)β
, where n ∈ Uk and i ∈ {1, 2}

(20)
where τ rm,n refers to the pheromone value of edge (m,n)
w.r.t. pheromone matrix τ i. At the end of an iteration, the

ACO4 variant updates the pheromone matrix τ i by rewarding
the iteration-best pick route PRiib that minimizes the objective
function ofi [38]:

τ im,n = (1− ρ) · τ im,n + ∆τ im,n (21)

∆τ im,n =


1

1+ofi(PRi
ib)−ofi(PR

i
gb)
, if (m,n)

belongs to
the pick route
PRiib

0, otherwise

(22)

where ρ again refers to the evaporation factor and ∆τ im,n is the
pheromone added to the edge (m,n) in pheromone matrix τ i.
PRigb refers to the global-best pick route that minimizes the
ith objective function of all pick routes constructed since the
last cataclysm occurred.

IX. EVALUATION

This section presents the evaluation of our approaches.
It defines the used warehouse models for applying our al-
gorithms, presents performance indicators, summarizes alter-
native policies to which we compare our algorithms, and
provides the parameter settings of our algorithms. Afterwards,
we first evaluate our storage assignment and order picking
algorithms individually before we evaluate the interaction of
both algorithms.

A. Mezzanine Warehouse Models
The NSGA-II and the ACO algorithm are evaluated in

three artificial mezzanine warehouses of different sizes that are
defined in cooperation with our cooperation company to build
real-world test cases. The warehouses are shown in Figure 13:
WHsmall (yellow), WHmedium (orange), and WHlarge (red).
For the small, medium, and large warehouses, we define the
size of the product assortment to be 500, 1000, and 1500,
respectively. Since each product requires a weight, we define
three normal distributions and a probability to determine the
weight using this distribution: 25% to use N (2, 1.02), 50%
to use N (5, 2.02), and 25% to use N (8, 1.02). Using these
distributions and probabilities, we aim at a representative
set of product weights where most of the products have a
medium weight and some products have low and some have
heavy weights. The products might also have correlations
to up to three other products: With a probability of 30%,
40%, 20%, and 10% a product has no, one, two, or three
correlated products, respectively, with a randomly generated
correlation confidence between 10% and 90%. For evaluating
the order picking algorithm, we fill the storage up to 50%
of the available storage space and randomly generate 100
customer orders based on the product assortment and given
correlations between products. Each customer order comprises
20 items to pick that are selected as follows: We split the
product assortment into four equally sized groups based on the
product rank. With a probability of 40%, 30%, 20%, and 10%
an order contains an item of the highest, second highest, third
highest, and lowest rank class, respectively, which ensures that
high-ranked products appear more often in customer orders.



Fig. 13: The warehouses WHsmall,WHmedium, and WHlarge use different floor layouts.

B. Performance Indicators for Assessing Pareto Fronts

Since we assess a multi-objective optimization problem,
the algorithms compute a Pareto front. We use the following
quality indicators for Pareto fronts introduced by [24]. The
Coverage (C) quality indicator quantifies the extent to which
a computed Pareto front covers the reference Pareto front. The
quality indicators Generational Distance (GD) and Euclidean
Distance (ED) measure the distance from a computed Pareto
front to a reference Pareto front or a reference solution. The
quality indicators Pareto Front Size (PFS) and Generated
Spread (GS) measure the diversity of the solutions that exist
in a computed Pareto front. Finally, the quality indicator
Inverted Generational Distance (IGD) combines convergence
and diversity aspects. Since most of these quality indicators
require the calculation of a reference Pareto front, we use
the Pareto fronts returned by all algorithms as basis. From
these Pareto fronts, we select the non-dominated solutions of
the union of all computed Pareto fronts and use this front as
reference Pareto front.

C. Alternative Policies

We use the following alternative policies for the storage
assignment problem. The random storage assignment policy
allocates the incoming items to random racks on the floors in
clusters of target quantity size [5]. In the closest open location
storage assignment policy, the warehouse employees select
the storage locations for storing an incoming product, which
are usually the racks closest to the p/d-points [2]. The
rank-based storage assignment policy assigns fast-moving
products close to the p/d-points, while slow-moving products
are assigned to racks further away [6].

For the order picking problem, we apply a modified S-Shape
heuristic for comparison that constructs s-shaped pick routes
based on the graph representation [12]. This heuristic uses all
markets as starting point iteratively as well as the reversed
versions of each route to generate a Pareto front of possible
solutions.

D. Algorithm Parameter Settings

Based on a preliminary parameter study, we parameterize
our NSGA-II algorithm as follows: We set the mutation proba-

bility to 0.95 for all warehouse sizes so that the mutation oper-
ators are applied very frequently. Further, we define parameters
dependent on the warehouse size (small/medium/large): The
parent population size is set to (50/60/70), and the maximum
number of generations to (200/250/300). These values increase
with the size of the warehouse since the number of possible
solutions increases with the warehouse size and we provide
the algorithm more exploration possibilities (population size)
and more time (number of generations) for optimizing the
solutions.

Further, we set the parameters for our ACO algorithm as
follows: In line with the literature, we set the pheromone
factor α to 1.0 and the heuristic factor β to 2.0. We set
the evaporation factor ρ to 0.02 causing the pheromones to
evaporate rather slowly which enables the algorithm to achieve
a higher degree of exploration especially in the early stages.
The min/max values for the pheromone matrices (τmin/max)
are set to 1 and 25, respectively, add a floor change penalty of
50, and set the allowed weight difference to 3 kg. As stopping
criterion, we set the maximum number of cataclysms to 3
and hence, the algorithm terminates after it became stuck for
the third time. Using the results of a preliminary parameter
study, we set the maximum consecutive iterations without
improvements to 20, and the maximum iterations to 250 since
these values yield the best results w.r.t the scores.

E. Evaluation of the NSGA-II Algorithm for Storage Assign-
ment Tasks

We evaluate our NSGA-II algorithm against the random,
closest open location, and rank-based storage assignment
policies. We apply all approaches on the three warehouse
sizes (Setting 1.a, 1.b, 1.c) and on five randomly generated
storage assignment tasks, i.e., we select a random product
from the product assortment and set the quantity to be
assigned to the quantity already existing in the warehouse.
We repeat the execution of the NSGA-II algorithm ten times
to reduce random effects and present mean and standard
deviation values. All generated solutions of all algorithms are
then used to calculate the reference Pareto front required for
the quality indicators. Table III summarizes the mean values
and Table IV shows the standard deviation values for this



TABLE III: Mean values of the six quality indicators achieved
by the storage assignment algorithms in Setting 1.a, 1.b, and
1.c (best values are shown in bold).

Setting Policy C [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

1.a

Random 0.01 1.59 25.33 24.80 0.73 2.26
Closest 0.01 2.14 28.37 21.98 0.74 2.53
Rank 0.09 0.95 21.88 28.20 0.78 2.53
NSGA-2 0.90 0.04 16.48 47.52 0.50 0.26

1.b

Random 0.01 2.38 26.20 16.80 0.75 1.92
Closest 0.00 3.32 31.28 14.82 0.73 2.18
Rank 0.06 1.68 22.03 19.44 0.83 2.13
NSGA-2 0.93 0.02 14.01 52.84 1.04 0.11

1.c

Random 0.00 2.78 29.47 9.92 0.81 1.86
Closest 0.00 3.11 28.58 11.08 0.86 2.10
Rank 0.01 1.40 25.23 14.24 0.94 1.92
NSGA-2 0.99 0.00 16.76 64.34 1.37 0.02

TABLE IV: Standard deviations of the six quality indicators
achieved by the storage assignment algorithms in Setting 1.a,
1.b, and 1.c.

Setting Policy C [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

1.a

Random 0.01 0.78 10.20 11.52 0.16 1.91
Closest 0.01 1.26 12.29 9.49 0.19 1.71
Rank 0.09 0.44 10.66 14.98 0.21 1.99
NSGA-2 0.10 0.08 7.93 5.35 0.17 0.26

1.b

Random 0.02 1.21 15.20 13.29 0.13 0.96
Closest 0.01 1.74 18.95 9.84 0.08 0.95
Rank 0.12 1.14 13.53 19.53 0.18 1.13
NSGA-2 0.14 0.05 9.38 9.46 0.54 0.20

1.c

Random 0.00 2.34 26.32 4.89 0.13 1.81
Closest 0.00 3.55 26.45 7.49 0.16 2.17
Rank 0.01 1.39 23.91 6.79 0.17 2.12
NSGA-2 0.01 0.00 14.06 9.60 0.45 0.06

evaluation. The coverage (C) results for the small warehouse
show that the NSGA-II Pareto front covers about 90% of the
reference Pareto front while the other approaches cover only
around 9% and 1% Since, the NSGA-II shows the lowest
GD and ED values, this Pareto front is located closest to
the reference front. The NSGA-II algorithm finds around 48
solutions per problem instance with a maximum possible value
of 50 solutions for the small warehouse size. The other policies
only construct 22 to 28 Pareto-optimal solutions while their
maximum possible value is set to 500. Further, the NSGA-II
achieves the lowest GS and IGD values which indicates, that
the solutions converge well towards the reference Pareto front
and offer diverse solutions.

In the medium warehouse, the results show similar behavior.
The table shows that the Pareto front PFnsga2(cm) covers
approximately 93% of the reference Pareto front PFref .
Except for some outliers, the alternative policies struggle to
cover the solutions in PFref . The observed GD and ED values
are fairly similar to the values in Setting 1.a. However, the
standard deviations of the ED metric increased noticeably,
which may be related to the larger search space where the
solutions tend to be more spread out. Nevertheless, the Pareto
front PFnsga2(cm) still achieves the lowest GD and ED values,
indicating that this Pareto front converges best towards PFref .
Concerning the PFS metric, the NSGA-II algorithm finds
about 53 solutions per problem instance, while the alternative
policies find approximately less than 20 solutions per problem

instance. The GS values of PFnsga2(cm) increased remarkably,
which may be due to the larger parent population size and
the larger search space that make it difficult for the NSGA-II
algorithm to fill the gaps in the Pareto front so that all solutions
are evenly distributed. Lastly, the IGD values of PFnsga2(cm)

are close to 0, indicating that PFnsga2(cm) represents the entire
reference Pareto front PFref in most cases.

Similarly, the large warehouse shows comparable results.
The Pareto front PFnsga2(cl) covers about 99% of the ref-
erence Pareto front PFref , while PFrank covers only 1%.
Thus, almost all solutions found by the rank-based policy are
dominated by the solutions found by the NSGA-II algorithm.
The mean GD value of PFnsga2(cl) equals 0, indicating that
the entire Pareto front PFnsga2(cl) is part of PFref in almost
all cases. Other than that, the observations made in the previ-
ous Setting 1.b also occur in this setting. Thus, the standard
deviations of the ED metric further increase, the NSGA-II
algorithm finds the most solutions per problem instance, the
alternative policies find fewer solutions per problem instances,
the GS values of PFnsga2(cl) further increase, and the IGD
values PFnsga2(cm) are closer to 0.

In summary, the results show that the random and the
closest open location policy struggle to cover even a single
solution in the reference Pareto front. Additionally, the NSGA-
II algorithm outperforms the alternative policies in smaller
warehouses. Further, the NSGA-II finds on average the most
solutions per problem instance and the solutions are less
equally distributed.

In addition to the quality evaluation, we also measure
the mean execution time of the approaches for solving 50
problem instances in each warehouse size1. The alternative
policies achieve low execution times of about 0.17/0.30/0.50
seconds for small/medium/large which is due to their compa-
rably simple operation. In the warehouse small/medium/large,
the NSGA-II algorithm achieves execution times of about
2/6/15 seconds, which is due to the increase population and
iteration count for larger warehouses. The execution times
of the NSGA-II algorithm may be considered acceptable, as
the algorithm requires only a few seconds to find storage
allocations that are remarkably better than the ones found by
the alternative policies.

F. Evaluation of the ACO Algorithm for Order Picking Tasks

We evaluate both versions of our ACO algorithm against
the modified S-Shape heuristic. We apply all approaches on
the three warehouse sizes (Settings 2.a, 2.b, 2.c) using five
customer orders randomly selected from the set of generated
customer orders as explained earlier and repeat the execution
of the ACO algorithms ten times to reduce random effects and
present mean and standard deviation values. Then, we use all
generated solutions the algorithms to calculate the reference
Pareto front required for the quality indicators. Table V
summarizes the mean values and Table VI shows the standard

1We run our experiments on a MacBook Pro using macOS Sierra 10.12.6,
a 2.2GHz Intel Core i7 CPU and 16GB DDR3 RAM.



Fig. 14: Box plots of the six performance indicators achieved by the storage assignment strategies in Setting 1.a, 1.b, and 1.c.

TABLE V: Mean values of the six quality indicators achieved
by the order picking algorithms in Setting 2.a, 2.b, and 2.c
(best values are shown in bold).

Setting Policy C [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

2.a
sShape 0.00 22.15 80.34 2.80 0.84 18.28
ACO3 0.73 1.40 32.03 10.66 0.99 2.74
ACO4 0.74 1.59 32.07 9.54 0.87 1.91

2.b
sShape 0.00 31.20 117.42 3.60 0.72 18.78
ACO3 0.69 1.97 50.11 12.14 0.81 3.00
ACO4 0.33 4.30 54.59 11.30 0.66 4.15

2.c
sShape 0.00 41.41 121.35 2.00 0.88 27.18
ACO3 0.84 1.56 56.75 10.50 0.74 5.64
ACO4 0.16 9.78 70.02 10.14 0.68 7.28

deviation values for this evaluation. For the small warehouse,
the Pareto fronts of the ACO3 and ACO4 variants cover 74%
of the reference Pareto front while the S-Shape heuristic fails
to cover even a single solution. Both ACO algorithms achieve
nearly the same GD and ED values and the close to zero GD
values show that many solutions are part of the reference front.
The ACO algorithms find around ten solutions per problem
instance, while the S-Shape only finds three solutions per
problem instance. The S-Shape achieves the lowest, hence,
the best GS values, but it is not meaningful to compare these
values to the ACO ones as it contains only three solutions that
are considerably worse than solutions of the ACO algorithms.
The ACO algorithms achieve low IGD values, indicating that
both Pareto fronts converge well towards the reference front
and provide diverse solutions.

TABLE VI: Standard deviations of the six quality indicators
achieved by the order picking algorithms in Setting 2.a, 2.b,
and 2.c.

Setting Policy C [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

2.a
sShape 0.00 14.20 28.26 1.60 0.16 6.55
ACO3 0.13 1.91 16.21 5.63 0.36 2.96
ACO4 0.18 2.64 16.14 3.97 0.35 2.52

2.b
sShape 0.00 6.92 34.51 1.02 0.12 5.03
ACO3 0.15 2.08 15.74 3.80 0.20 2.67
ACO4 0.16 3.62 14.43 3.23 0.17 2.68

2.c
sShape 0.00 16.42 35.71 0.89 0.14 6.95
ACO3 0.11 2.90 18.95 2.87 0.23 6.27
ACO4 0.11 5.83 21.76 3.28 0.21 3.91

The metrics of the medium warehouse show similar behav-
ior as in the previous setting. Like in the previous setting,
the Pareto front PFsShape fails to cover even a single so-
lution in the reference Pareto front PFref . The Pareto front
PFaco3 covers approximately 69% of PFref , while PFaco4
covers only 33%. Thus, the ACO3 variant tends to find better
pick routes than the ACO4 variant. The Pareto front PFaco3
achieves the lowest GD and ED values among all computed
Pareto fronts. Thus, PFaco3 converges best towards PFref ,
which is not surprising, as PFaco3 covers most of the solutions
in PFref . The GD and ED values of PFaco4 are slightly
larger than the ones of PFaco3 , indicating that PFaco4 does
not converge as well as PFaco3 towards PFref . Compared
to the previous setting, the GD and ED values of PFsShape
increased, which may be due to the larger search space.



Fig. 15: Box plots of the six performance indicators achieved by the order picking strategies in Setting 2.a, 2.b, and 2.c.

Concerning the PFS metric, the ACO3 variant finds about 12
solutions per problem instance, followed closely by the ACO4

variant that finds around 11 solutions per problem instance,
while the S-Shape heuristic only finds about 4 solutions per
problem instance. Regarding the GS metric, the solutions in
PFaco4 are slightly better distributed than the solutions in
PFaco3 . With respect to the IGD metric, PFaco3 achieves
the lowest IGD values, indicating that PFaco3 converges well
towards PFref and offers a high diversity of solutions.

In the large warehouse, the S-Shape heuristic is again
unable to cover a solution in PFref . The Pareto front PFaco3
covers 84% of the reference Pareto front PFref , while PFaco4
covers only 16%. Thus, most of the solutions found by the
ACO4 variant are dominated by the solutions found by the
ACO3 variant. Accordingly, the ACO4 variant has problems
to compete with the ACO3 variant in larger warehouses.
Compared to the previous setting, the GD and ED values of
PFaco4 further increased, indicating that the distances between
the solutions in PFaco4 and the solutions in PFref became
larger. The Pareto front PFaco3 converges best towards PFref ,
as it achieves the lowest GD and ED values. Regarding the
PFS metric, both ACO variants find about 10 solutions per
problem instance. The GS metric indicates that the solutions in
PFaco4 are marginally better distributed than the solutions in

PFaco3 . Finally, the Pareto front PFaco3 achieves the lowest,
and thus, best IGD values, signalizing that PFaco3 converges
best towards PFref and offers diverse solutions.

In summary, the ACO algorithms outperform the S-Shape
heuristic in all warehouse sizes, and ACO3 and ACO4 show
similar performance in smaller warehouses. With increasing
warehouse size, the solutions found by the ACO3 variant
dominate more and more solutions of the ACO4 variant.
Hence, the ACO3 variant starts to find better pick routes than
the ACO4 variant, while the ACO4 variant produces slightly
better distributed solutions.

In addition to the quality evaluation, we also measure the
mean execution time of the approaches for solving 50 problem
instances in each warehouse size. The S-Shape heuristics
takes around 0.15 seconds to compute routes. The ACO3

and the ACO4 variant achieve fairly the same execution
times in all warehouse sizes of around 1/3/6 seconds for
WHsmall/WHmedium/WHlarge. As the warehouse size in-
creases, the graph consists of more markets causing more ants
to be deployed in each iteration. Still, we consider the ACO
execution times acceptable, as they require only a few seconds
to find noticeably better pick routes.



TABLE VII: Mean values of the six quality indicators achieved
by the combination of storage assignment and order picking
algorithm in Setting 3 to 5 (best values are shown in bold).

Setting Policy C [µ] GD [µ] ED [µ] PFS [µ] GS [µ] IGD [µ]

3.a
Random, ACO3 0.00 60.32 215.43 9.96 0.97 56.49
NSGA-2, ACO3 1.00 0.00 22.62 12.20 1.12 0.00

3.b
Random, ACO3 0.00 38.37 168.05 13.76 0.91 38.85
NSGA-2, ACO3 1.00 0.00 36.65 12.12 0.96 0.00

3.c
Random, ACO3 0.00 50.06 213.69 13.96 0.90 51.35
NSGA-2, ACO3 1.00 0.00 32.78 12.02 0.87 0.00

4.a
Random, ACO4 0.00 54.03 165.75 8.14 0.93 46.16
NSGA-2, ACO4 1.00 0.00 25.08 10.26 0.96 0.00

4.b
Random, ACO4 0.01 44.61 198.83 11.82 0.86 48.94
NSGA-2, ACO4 0.99 0.12 35.65 11.10 0.71 0.21

4.c
Random, ACO4 0.00 51.19 207.95 12.04 0.85 52.91
NSGA-2, ACO4 1.00 0.00 38.08 10.04 0.71 0.03

5.a
NSGA-2, ACO3 0.80 1.43 25.30 10.26 0.99 1.38
NSGA-2, ACO4 0.66 1.52 26.58 9.32 0.88 0.98

5.b
NSGA-2, ACO3 0.69 1.40 21.37 9.84 0.94 3.53
NSGA-2, ACO4 0.41 3.83 22.85 8.14 0.79 3.13

5.c
NSGA-2, ACO3 0.79 1.92 33.80 9.16 0.81 3.11
NSGA-2, ACO4 0.22 8.69 43.25 9.18 0.66 5.71

TABLE VIII: Standard deviations of the six quality indicators
achieved by the combination of storage assignment and order
picking algorithm in Setting 3 to 5.

Setting Policy C [σ] GD [σ] ED [σ] PFS [σ] GS [σ] IGD [σ]

3.a
Random, ACO3 0.00 22.94 62.38 4.10 0.06 22.96
NSGA-2, ACO3 0.00 0.00 7.51 6.17 0.35 0.00

3.b
Random, ACO3 0.00 13.66 35.09 3.88 0.07 14.41
NSGA-2, ACO3 0.00 0.00 16.50 4.18 0.36 0.00

3.c
Random, ACO3 0.00 14.03 54.74 3.56 0.07 17.53
NSGA-2, ACO3 0.00 0.00 8.19 5.40 0.32 0.00

4.a
Random, ACO4 0.00 18.52 73.60 3.69 0.10 26.01
NSGA-2, ACO4 0.00 0.00 8.71 3.65 0.31 0.00

4.b
Random, ACO4 0.03 15.52 62.11 2.96 0.09 22.17
NSGA-2, ACO4 0.03 0.57 22.53 4.20 0.28 0.77

4.c
Random, ACO4 0.01 21.77 68.40 3.55 0.08 26.20
NSGA-2, ACO4 0.01 0.00 12.91 3.82 0.28 0.22

5.a
NSGA-2, ACO3 0.15 2.70 6.61 4.74 0.20 1.93
NSGA-2, ACO4 0.20 2.11 7.98 3.72 0.20 0.93

5.b
NSGA-2, ACO3 0.16 1.74 4.58 3.43 0.25 3.46
NSGA-2, ACO4 0.16 5.59 4.58 1.90 0.22 3.48

5.c
NSGA-2, ACO3 0.14 3.81 12.68 3.28 0.25 4.40
NSGA-2, ACO4 0.14 6.32 17.01 3.54 0.18 3.54

G. Evaluation of the Interaction between NSGA-II and ACO
Algorithm

In the previous section, we have shown the applicability of
our algorithms for storage assignment and order picking in
dedicated analyses. The results indicate that both algorithms
outperform state-of-the-art solutions for those tasks. In this
section, we evaluate the interaction between our proposed
algorithms by assessing them in three settings: Section IX-G1
determines whether the ACO3 performs better on the NSGA-
II planned warehouse compared to the random warehouse;
Section IX-G2 performs a similar assessment for the ACO4;
Section IX-G3 evaluates whether the ACO3 or the ACO4

perform better on the NSGA-II planned warehouse. Tables VII
and VIII summarize the results.

1) Comparison of NSGA-II and Random Planned Ware-
houses for ACO3: In this setting, we apply the ACO3

algorithm on all warehouse sizes (Setting 3.a, 3.b, 3.c) twice:
once for the warehouse that used the NSGA-II algorithm

for storage assignment and once for the randomly assigned
warehouse. Again, we select five random items from the
product assortment and set the amount to assign to the already
existing amount inside the warehouse. In the small warehouse,
the Pareto front of the NSGA-II planned warehouse covers the
entire reference front while the random planned warehouse
does not cover a single solution in the reference front, hence,
the GD and IGD values of the NSGA-II planned warehouse
are 0 and the ED values are minimal. The high GD and
ED values of the random planned warehouse indicate that
its Pareto front does not converge well towards the reference
front. Thus, the solutions found in the random warehouse are
considerably worse than the solutions found in the NSGA-
II warehouse. In the medium warehouse, the Pareto fronts
of random and NSGA-II planned warehouses achieve fairly
the same quality indicator values as in the previous setting.
However, the GD and ED metric indicate that the results for
the random warehouse unexpectedly converge better towards
the reference front than in Setting 3.a. This could be due to the
limited amount of executed problem instances and needs to be
further assessed with a higher number of problem instances.
Nevertheless, the Pareto front of the random warehouse is
still far from converging towards reference front. In the large
warehouse, the same observations can be made as in the
previous settings, underlining that the ACO3 variant finds
better pick routes in the NSGA-II warehouse than in the
random warehouse. In summary, the evaluation results show
that the NSGA-II algorithm and the ACO3 variant interact
well together and the ACO3 variant profits from the NSGA-
II algorithm that ensures our four economic constraints.

2) Comparison of NSGA-II and Random Planned Ware-
houses for ACO4: This setting repeats the Settings 3.a to
3.c for the ACO4 algorithm. We now discuss the results for
the Settings 4.a to 4.c. In the small warehouse, the Pareto
front of the NSGA-II warehouse covers the entire reference
Pareto front and the random warehouse fails to cover a single
solution. Thus, all solutions found in the random warehouse
are dominated by the solutions of the NSGA-II warehouse.
The GD and ED values for the random warehouse are higher
than the ones of the NSGA-II warehouse which shows that the
Pareto front of the random warehouse is further away from the
reference front. Hence, the solutions of the random warehouse
are noticeably worse than the solutions found in the NSGA-II
warehouse. In the medium warehouse, the Pareto front of the
NSGA-II warehouse does not always cover the entire reference
front, while the random warehouse covers at least one solution
in the reference front in 7 of 50 repetitions. Thus, the ACO4

variant occasionally finds a few solutions in the random
warehouse that are comparable with the solutions found in
the NSGA-II warehouse. Despite these few outliers, the results
show a similar behavior as in the previous setting. Similar to
the previous settings, the evaluation in the large warehouse
show comparable results. The NSGA-II warehouse covers all
solutions in the reference front in 49 of 50 repetitions and
the random warehouse manages to cover at least one solution
in the reference front. In summary, the results show that the



Fig. 16: Box plots of the six performance indicators achieved by the interaction evaluation for the ACO3 algorithm in Setting
3.a, 3.b, and 3.c.

ACO4 variant also finds better pick routes if the warehouse
applies the NSGA-II storage strategy and both algorithms
interact well with each other.

3) Comparison of ACO3 and ACO4 on NSGA-II Planned
Warehouses: This section investigates which ACO variant
performs better if the warehouse applies the NSGA-II storage
strategy. Both variants are applied on five randomly selected
customer orders on all warehouse sizes (Settings 5.a, 5.b,
5.c). In the small warehouse, the Pareto front of the ACO3

algorithm covers approximately 80% of the reference front,
while ACO4 covers only 66%. Both ACO variants converge
well towards the reference front as indicated by the low
GD and ED values and find approximately ten solutions per
problem instance, and IGD values of both fronts are almost
the same. However, the GS values indicate, that the solutions
of the ACO4 variant have a better distribution than the ones of
ACO3. In the medium warehouse, the Pareto front of ACO3

covers approximately 69% of the reference front, while the
one from ACO4 covers only 41%, and thus, the solutions

found by ACO4 tend to be dominated by the ones from
ACO3. The GD and ED metric indicate that the ACO3 Pareto
front converges better towards the reference front. Similar
to the small warehouse, the GS indicate, that solutions of
the ACO4 Pareto front are better distributed. In the large
warehouse, the ACO3 dominates ACO4 even more with
regards to the Coverage metric. Furthermore, the GD and
ED values of ACO4 increased, indicating that the distance
between the solutions in ACO4 Pareto front and the solutions
in the reference front become larger. Again, the solutions in the
ACO4 Pareto front have a slightly better distribution than the
solutions in the ACO3 Pareto front. However, this time, ACO3

achieves better IGD values, as ACO3 covers large parts of the
reference front. In summary, we can state that with increasing
warehouse size, the ACO3 variant finds better pick routes
than the ACO4 variant while both variants find approximately
the same number of solutions per problem instance. However,
the solutions found by the ACO4 variant are slightly better
distributed than the ones from the ACO3 variant.



Fig. 17: Box plots of the six performance indicators achieved by the interaction evaluation for the ACO4 algorithm in Setting
4.a, 4.b, and 4.c.

H. Threats to Validity

We identified the following threats to validity of our eval-
uation. First, the NSGA-II and ACO algorithms are evaluated
in three mezzanine warehouses of different sizes. However,
real-world mezzanine warehouses may consist of more floors,
blocks, pick aisles, and racks than specified in the warehouses
used for evaluation. Nevertheless, we are convinced that our
defined warehouses form a representative set for mezzanine
warehouses and can easily be extended for further evaluation
runs. Second, since the algorithms are evaluated in warehouses
that apply either the random or the NSGA-II storage strategy,
the evaluation results may not be transferable to warehouses
that apply different storage strategies. Even though the product
assortment, the product correlations, the customer orders, and
the storage allocations are randomly generated reflecting spe-
cific characteristics of real-world mezzanine warehouses, the
proposed algorithms are easily transferable to real application
data. Third, we decided to compare the ACO algorithm only to
one order picking policy. This decision was made in awareness

of the limited expressiveness of our results but was necessary
as the majority of policies in the literature violate assumptions
made in this work. Finally, we only evaluate our NSGA-II
and ACO algorithms against heuristic policies. Hence, they
also should be evaluated against other optimization methods
like other evolutionary optimization algorithms or graph-based
optimization techniques. However, we decided to do this
evaluations as future work.

X. CONCLUSION

Due to the complexity of the storage assignment and
the order picking problem, efficient optimization algorithms
are required to find satisfactory solutions within reasonable
times. This thesis proposes an NSGA-II algorithm for opti-
mizing the storage assignment problem, and an ACO algo-
rithm for optimizing the order picking problem in mezza-
nine warehouses. The algorithms incorporate knowledge about
the interdependency between both problems to improve the
overall warehouse performance. Besides optimizing economic



Fig. 18: Box plots of the six performance indicators achieved by the interaction evaluation between ACO3 and ACO4 with
the NSGA-II algorithm in Setting 5.a, 5.b, and 5.c.

constraints, the algorithms also optimize ergonomic criteria,
as mezzanine warehouses represent labor-intensive working
environments in which the employees account for a large
part of the warehouse performance. We evaluate the NSGA-II
algorithm against three storage assignment policies frequently
applied in practice: the random, the closest open location,
and the rank-based policy. The evaluation results show that
the NSGA-II algorithm outperforms the alternatives already in
smaller warehouses and the larger the warehouse, the better
the NSGA-II algorithm prevails against the alternative policies.
We evaluate the ACO algorithm against the S-Shape heuristic
that is frequently applied in practice. Our evaluation results
show that the ACO outperforms the S-Shape heuristic in all
tested warehouse sizes. Finally, we evaluate the interaction
between the NSGA-II and the ACO algorithm. The evaluation
results show that both ACO variants find better pick routes
if the warehouse assigns its products by applying the NSGA-
II algorithm instead of the random storage strategy, thus, the
NSGA-II and the ACO algorithm interact well with each other.

In the future, we plan to integrate additional features to fur-
ther increase the applicability of the storage assignment. First,
we want to allow state changes of the mezzanine warehouses
while the storage assignment is running which would make
some of the solutions in the Pareto front infeasible. Further,
we plan to parallelize the storage assignment algorithm so
that the sequential assignment of products is replaced and the
execution times will decrease. Regarding the order picking
algorithm, we also aim at parallelizing the execution to reduce
the required calculation times. Finally, we want to research on
integrating forecasts of future assignment and order picking
tasks to proactively replace goods within the storage that will
be ordered in the near future.
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