
Design and Evaluation of a Proactive,
Application-Aware Auto-Scaler

Tutorial Paper

André Bauer
University of Würzburg,

Germany
andre.bauer

@uni-wuerzburg.de

Nikolas Herbst
University of Würzburg,

Germany
nikolas.herbst

@uni-wuerzburg.de

Samuel Kounev
University of Würzburg,

Germany
samuel.kounev

@uni-wuerzburg.de

ABSTRACT
Simple, threshold-based auto-scaling mechanisms as mainly
used in practice bring no features to overcome resource pro-
visioning delays and non-linear scalability of a software ser-
vice. In this tutorial paper, we guide the reader step-by-
step through the design and evaluation of a proactive and
application-aware auto-scaling mechanism.

First, we introduce the building blocks for such an auto-
scaling mechanism: (i) an on-demand arrival rate forecasting
method, (ii) resource demand estimates at run-time, (iii) a
descriptive and continuously updated performance model
of the deployed software and (iv) an intelligent adaptation
planner that incorporates a threshold-based mechanism as
fall-back.

Second, we cover auto-scaler evaluation steps: (i) the
preparation steps are an application scenario and workload
profile definition and (ii) an automated scalability analy-
sis. In step (iii), we show how representative and repeatable
auto-scaler experiments can be conducted and (iv) the re-
sults analyzed with the help of elasticity and end-user met-
rics for a detailed and fair comparison of alternative auto-
scaler mechanisms and their respective configurations even
across platforms.

For the individual steps of the construction of the auto-
scaler building blocks and for their evaluation, we shortly
introduce open-source tools available online1.

CCS Concepts
•General and reference→Cross-computing tools and
techniques; •Networks → Cloud computing; •Com-
puter systems organization → Self-organizing auto-
nomic computing; •Software and its engineering →
Virtual machines;

1Descartes Tools: http://descartes.tools/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE’17, April 22 - 26, 2017, L’Aquila, Italy
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4404-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3030207.3053678

Keywords
Elasticity, IaaS, Cloud, Auto-Scaler, Benchmark, Metric,
Load Profile, Resource Demand, Forecasting, Descriptive
Performance Model

1. INTRODUCTION
In practice, threshold-based controllers are commonly ap-

plied to dynamically add or remove computing resources of
a service in an elastic cloud environment. Numerous proac-
tive approaches based on control theory, queuing theory,
machine learning, and time series analysis have been pro-
posed in literature. In general, a proactive auto-scaler aims
to overcome resource provisioning delays. We understand
application-aware as features to learn non-linear scalability
and inter-dependencies between different layers of a service.

In the first part, this tutorial paper presents an ensemble
of open-source tools available online1 that enable the compo-
sition of a proactive, and application-aware auto-scaler with
the following components:

Forecasting of Arrival Rates:
Forecasting the next request arrival rates of incom-
ing requests is an essential requirement for proactive
auto-scaling. Hence, we use a self-adaptive forecast-
ing technique with combinations of time series analysis
methods and forecast accuracy feedback. We select as
solution for this issue the WCF (Workload Classifica-
tion and Forecasting Framework, see Section 2) [2].

Online Resource Demand Estimation:
Resource demand estimates per request class are cru-
cial information for good auto-scaling decisions. In this
part of the tutorial, we cover a library of methods that
estimate the resource demand per request class based
on basic performance metrics. For us, the library Li-
bReDE (Library for Resource Demand Estimation, see
Section 3) [5] offers the demanded features.

Descriptive Software Performance Model:
In the case, multiple layers of a service are elastically
scalable, the next required information is at which
layer and how many resources should be added or re-
moved. Thus, we discuss about a descriptive and con-
tinuously updated performance model of the deployed
application. We base on the Descartes Modeling Lan-
guage (DML, see Section 4) [4]).

Proactive, Application-Aware Auto-Scaler:
After the required components are introduced, we cover

http://descartes.tools/
http://dx.doi.org/10.1145/3030207.3053678

a possible integration of these tools and the associ-
ated logic behind the scaling decisions. We call our
proactive, and application-aware elasticity mechanism
Chameleon (see Section 5) [1].

In the second part, we cover the methodology for evalu-
ating the elasticity achieved by the auto-scaler:

Modelling of Load Profiles:
In order to trigger and benchmark automated scal-
ing events, a variable, representative, and reproducible
load intensity profile is required. We show how to au-
tomatically a extract load intensity model from a given
trace including how adapt such a load profile for their
needs. We use for our workload scenario definition the
load intensity modeling tool called LIMBO (see Sec-
tion 6) [6].

Benchmarking of Elasticity:
The performance measurement and the comparison
with other auto-scalers or different configurations is
an important step in the development of such an auto-
scaler. Hence, we discuss elasticity metrics to rate
and rank the designed auto-scaler. For our elasticity
measurements, we use the BUNGEE Cloud Elasticity
Benchmarking Framework (see Section 7) [3].

2. WCF FORECASTING
As forecasting component of our proactive auto-scaler, we

use the Workload Classification and Forecasting Tool [2]. It
provides a set of automated forecasting methods based on
time series analysis such as auto-regressive integrated mov-
ing averages with seasonality (sARIMA), extended exponen-
tial smoothing (ETS) or its extension tBATS for complex
seasonal patterns, and a machine learning based-forecaster
that leverages neural nets. For achieving a good forecast ac-
curacy, WCF uses a decision tree for selecting dynamically a
set of suitable methods. WCF allows the user to define ob-
jectives based on parameters such like forecast time horizon,
confidence level and processing overhead limitation. Fore-
cast results come with an accuracy estimate based the mean
absolute scaled error (MASE) metric that helps to drop and
repeat or trust a forecast result.

3. LIBREDE ESTIMATION
In order to estimate during run-time the amount of time

that an individual request requires on a resource given the
application and the current mix of request classes, the Lib-
rary for Resource Demand Estimation [5] is used. Usually,
for obtaining accurate resource demands, a fine-grained in-
strumentation of the software would be necessary. How-
ever, this instrumentation is likely to introduce high over-
heads and can distort their own measurement. Therefore,
LibReDE supplies offline and online resource demand es-
timation techniques based on basic, aggregate monitoring
data (e.g., utilization, number of request arrivals and av-
erage response times) with different state-of-the-art tech-
niques based on the service demand law, linear regressions
or Kalman filters. Also concepts from queuing theory are
used.

4. DML MODEL
The Descartes Modeling Language (DML) [4] belongs to

the architecture-level modeling languages for performance,

quality-of-service, and resource management. It provides
information about the performance behaviour and system
properties. In addition, the configuration space and adap-
tation processes can be modelled. The structure and the
four meshing models (resource landscape, application archi-
tecture, adaption points and adaption process) are depicted
in Figure 1. Leveraging simulative what-if-analyses, DML
allows to find an appropriate system configuration without
changing the system. I.e., Chameleon uses a DML model in-
stance of the controlled application continuously parameter-
ized with the latest resource demand estimates to determine
where and how to adapt the system resource configuration.

Application Architecture Meta-Model

Adaptation Points Meta-Model

Adaptation Process Meta-Model

B
A

C

Degrees of
Freedom

Resource Landscape Meta-Model

<<Container>>
Node1

<<Container>>
Node3

<<Container>>
Node2

Deployment
Meta-Model

Usage
Profile
Meta-
Model

TacticsStrategies Actions

<<InternalAction>>

ResourceDemandX

Instances of VMx

Instances of VMY

Instances of VMz

Number of vCPUs of VMx

Number of vCPUs of VMy

Number of vCPUs of VMz

Allocation of VMx

Figure 1: Structure of DML.

5. CHAMELEON AUTO-SCALER
Our proactive and application-aware auto-scaler consists

of four components: (i) the controller, (ii) a performance
data repository, (iii) the forecast component (here a modi-
fied version of WCF) and (iv) the resource demand estima-
tion component (here LibReDE). The design and the flow
of information is depicted in Figure 2. The central part
of Chameleon is the controller. It communicates with the
three remaining components and the managed cloud. The
functionality of the controller is divided into two sub-tasks:
monitoring and reconfiguration.

During the monitoring task, the controller communicates
with the cloud and the performance data repository. This
repository contains a time series storage and the DML de-
scriptive performance model instance of the application. The
controller periodically polls (e.g., every minute) informa-
tion on the current state of the application from message
queues. The collected information includes CPU utilization
averages per node, average request residence times at the
nodes, and the number of request arrivals. The new infor-
mation is stored in the performance data repository for the
recent time window. If the CPU utilization exceeds config-
urable thresholds, Chameleon scales the system reactively
according to a standard threshold-based rule approach that
is implemented as a fallback.

The reconfiguration of the system is planed proactively in
longer intervals, e.g., 4 minutes, for a set of future scaling

Figure 2: Design overview of Chameleon.

intervals. It involves six tasks: (1) at first, the controller
queries the performance data repository for the available
historical data. (2) Then, the available time series data is
send to the controller. (3) Afterwards, the time series of
request arrival rates is forwarded to the forecast component
and data about the CPU utilization and average request
residence times per node is send to the resource estimation
component. The forecast component predicts the arrival
rates for the next reconfiguration intervals. If an earlier
forecast result still contains predicted values for requested
future arrival rates, no new time series forecast is computed.
In case, a drift between the forecast and the recent monitor-
ing data is detected, a new forecast is executed. (4) Then,
the new forecast values are sent to the controller. (5) The
resource demand estimation component estimates the time
a single request needs to be served on the CPU of a node
and sends the estimated value to the controller. (6) Finally,
the controller scales the application deployment based on
the estimated resource demands, the forecast arrivals and
knowledge from the descriptive software performance model
in case multiple tiers are scaled.

6. LIMBO LOAD MODELING
The LIMBO tool is capable to automatically extract from

a given workload trace (that contains the amount of request
arrivals per interval over a given period) a Descartes Load
Intensity Model (DLIM) instance [6]. A DLIM model in-
stance can be used to define any load intensity profile as it
represents a tree of mathematical functions that are com-
bined over the modeled time. Each instance captures the
characteristics of the trace (e.g., trends, seasons, bursts, and
noise, see Figure 3) that can be modified for creating a target
dynamic work load scenario.

7. BUNGEE EXPERIMENT CONTROLLER
The BUNGEE Cloud Elasticity Benchmarking Framework

measures the elasticity independently of the given platform
performance. Therefore, it observes the given application
under stress via a given load profile that is provided by
LIMBO or as plain arrival rate data. The resulting work-
flow of BUNGEE is depicted in Figure 4 and is split into
four phases:

1. System Analysis: BUNGEE constructs a mapping
function for the relationship between a given load in-
tensity and the associated demand for resources. The

W
or

kl
oa

d
Un

its

Time

 + / × + / × + / × + / ×

 + / ×

Seasonal

Trends &
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×

Figure 3: Elements of a load profile model.

demand for resources is the minimal amount of re-
sources that is required for handling the intensity with-
out violating a predefined response-time SLO. This is
done via a binary search per possible resource config-
uration.

2. Benchmark Calibration: BUNGEE creates based
on the given load profile and the mapping function
an identical set of demand changes on every platform
under comparison.

3. Measurement: BUNGEE starts with a warm-up pe-
riod and then runs the measurement with the prede-
fined workload intensity profile, in which the maxi-
mum intensity and the experiment time can be ad-
justed. During the run, BUNGEE coordinates, times
and monitors each request and gathers additional in-
formation on resource supply from the platform. At
the end, a measurement sanity check is conducted.

4. Elasticity Evaluation: In this last step, BUNGEE
calculates elasticity metrics and a score based on the
observed supply changes and the generated demand
changes:

• Under-provisioning accuracy
This metric describes the relative amount of re-
sources that is under-provisioned during the mea-
surement interval. I.e., accU is the number of re-
sources that the system has too less in relation
to the current demand divided by the experiment
time.

• Over-provisioning accuracy
Analogous to the under-provisioning accuracy, this
metric represents the relative amount of resources
that are over-provisioned during the measurement
interval. In other words, accO is the number of
resources that the system has in excess in relation
to the current demand divided by the experiment
time.

• Under-provisioning time share
This metric captures the time in percentage, in
which the system is under-provisioned during the
experiment interval. I.e., tsU is the time relative
to the measurement duration, in which the system
has to less resources.

• Over-provisioning time share
Analogous to the under-provisioning time share,

Figure 4: Operation principle of the BUNGEE elasticity benchmarking methodology.

this metric describes the time in percentage, in
that the system is over-provisioned during the
measurement interval. In other words, tsO is the
time relative to the measurement duration, in that
the system has more resources than required.

• Instability
The instability metric describes the percentage of
time in which the supply and the demand curves
are not changing in the same direction. I.e., in
measures the fraction of time in which the de-
mand change and the resource change have dif-
ferent signs.

The elasticity score of a cloud platform with a deployed
elasticity mechanism is then computed via a weighted geo-
metric mean of the aforementioned metrics normalized by
a baseline for the given scenario. Further metrics, like the
average/median response time, SLO violation percentage,
average resources and the amount of adaptions are reported.

8. CONCLUSION
The tutorial addresses topics of central interest to the

ICPE community such as run-time performance manage-
ment using software performance models and estimation tech-
niques. We demonstrate how theory in these disciplines can
be brought into practice. The system properties of elasticity
and scalability play a central role when designing and evalu-
ating an auto-scaling mechanism. We touch new aspects of
a benchmarking methodology to enable the rating of elastic
properties.

Acknowledgments
This research is supported by the Research Group2 of the
Standard Performance Evaluation Corporation (SPEC)3.
This work was co-funded by the German Research Founda-
tion (DFG) under grant No. KO 3445/11-1.

9. REFERENCES
[1] A. Bauer. Design and Evaluation of a Proactive,

Application-Aware Elasticity Mechanism. Master
Thesis, University of Würzburg, September 2016.
[Online] http://descartes.tools/chameleon.

[2] N. Herbst, N. Huber, S. Kounev, and E. Amrehn.
Self-Adaptive Workload Classification and Forecasting
for Proactive Resource Provisioning. Wiley CCPE,
26(12):2053–2078, March 2014.

[3] N. Herbst, S. Kounev, A. Weber, and H. Groenda.
BUNGEE: An Elasticity Benchmark for Self-adaptive
IaaS Cloud Environments. In SEAMS 2015, pages
46–56, Piscataway, NJ, USA, 2015. IEEE Press.

[4] S. Kounev, N. Huber, F. Brosig, and X. Zhu. A
Model-Based Approach to Designing Self-Aware IT
Systems and Infrastructures. IEEE Computer,
49(7):53–61, July 2016.

[5] S. Spinner, G. Casale, X. Zhu, and S. Kounev.
LibReDE: A Library for Resource Demand Estimation.
In ACM/SPEC ICPE 2014, pages 227–228, New York,
NY, USA, March 2014. ACM Press.

[6] J. von Kistowski, N. Herbst, S. Kounev, and more.
Modeling and Extracting Load Intensity Profiles. ACM
TAAS, 11(4):23:1–23:28, January 2017.

2SPEC Research: http://research.spec.org
3SPEC: http://www.spec.org

http://descartes.tools/chameleon
http://research.spec.org
http://www.spec.org

	Introduction
	WCF Forecasting
	LibReDE Estimation
	DML Model
	Chameleon Auto-Scaler
	LIMBO Load Modeling
	BUNGEE Experiment Controller
	Conclusion
	References

