
Towards Testing the Software Aging Behavior of
Hypervisor Hypercall Interfaces

Lukas Beierlieb
University of Würzburg

Würzburg, Germany
lukas.beierlieb@uni-wuerzburg.de

Charles F. Gonçalves
University of Coimbra

Coimbra, Portugal
charles@dei.uc.pt

Lukas Iffländer
University of Würzburg

Würzburg, Germany
lukas.ifflaender@uni-wuerzburg.de

Nuno Antunes
University of Coimbra

Coimbra, Portugal
nmsa@dei.uc.pt

Aleksandar Milenkoski
ERNW GmbH

Heidelberg, Germany
amilenkoski@ernw.de

Samuel Kounev
University of Würzburg

Würzburg, Germany
samuel.kounev@uni-wuerzburg.de

Abstract—With the continuing rise of cloud technology hy-
pervisors play a vital role in the performance and reliability
of current services. As long-running applications, they are sus-
ceptible to software aging. Hypervisors offer so-called hypercall
interfaces for communication with the hosted virtual machines.
These interfaces require thorough robustness to assure perfor-
mance, security, and reliability. Existing research either deals
with the aging properties of hypervisors in general without
considering the hypercalls or focusses on finding hypercall-related
vulnerabilities. In this work, we discuss open challenges regarding
hypercall interfaces. To address these challenges, we propose an
extensive framework architecture to perform robustness testing
on hypercall interfaces. This framework supports extensive test
campaigns as well as the modeling of hypercall interfaces.

Index Terms—software aging, software rejuvenation, robust-
ness testing, hypercalls, hypervisor security, Hyper-V

I. INTRODUCTION

Researchers discovered the phenomena of software aging
in the early ’90s as a result of significant software reliability
research efforts conducted by large telecoms [1]. Software
rejuvenation approaches were developed to address software
aging [2]. The impact of software aging on systems is re-
ceiving increased attention due to severe failures attributed to
software aging [3].

Virtualization received increasing interest as a way to re-
duce costs through server consolidation and to enhance the
flexibility of physical infrastructures. It allows the creation of
virtual instances of physical devices called virtual machines
(VMs). In a virtualized environment, governed by a hypervisor,
VMs share resources. Hypervisors implement interfaces that
provide call-based connectivity to hosted VMs. One of them is
the hypercall interface, which allows a VM to request services
from the hypervisor. Hypercalls are software traps from a VM
to the hypervisor. They are critical for the operation of VMs.

Hypervisors often run for extended intervals. Thus, system
behavior issues related to software aging, such as performance,
scalability, reliability, and robustness degradation, may impact
hypervisor operation [4]–[6]. The testing of software aging-
related aspects of the behavior of hypervisors, and therefore

of virtualized environments, is of immense relevance due to
the widespread use of hypervisors. Cloud and workstation
infrastructures commonly comprise hypervisors. For example,
the Windows 10 operating system supports the Virtual Secure
Mode feature [7], which configures Windows 10 to operate as
a VM running on top of the Hyper-V hypervisor. Windows 10
co-distributes this hypervisor.

The behavior of the hypervisor’s hypercall interface consti-
tutes a significant part of the virtualized environment’s overall
behavior. Therefore, testing the software aging-related aspects
of this behavior is essential. This paper focusses on such
testing. The contributions of this paper are:

• Discussions on central open challenges when it comes
to testing software aging-related aspects of virtualized
environment behavior;

• A framework that facilitates such testing and enables the
addressing of these challenges. The framework enables
the testing of software aging-related aspects of the behav-
ior of hypervisor hypercall interfaces, with a current focus
on robustness as a behavior aspect affected by software
aging. It allows the observation and measurement of the
behavior of hypercall interfaces by generating and execut-
ing tailored test campaigns. The framework is designed
as generically as possible. We provide an example of
hypervisor-specific details for Hyper-V;

• An outlook on future work towards addressing the open
challenges discussed in this work.

The contributions of this paper directly relate to the field
of software aging, since they focus on testing software aging-
related behavior aspects (i.e., performance, scalability, relia-
bility, and robustness) of a commonly deployed, long-running
software (i.e., hypervisors).

The remainder of this paper is structured as follows: Sec-
tion II discusses key open challenges when it comes to testing
software aging-related aspects of the behavior of virtualized
environments. Next, Section III introduces the relevant tech-
nical background; Section IV presents the framework that we

1



propose; Section V discusses related work, and Section VI
concludes the paper.

II. CHALLENGES

In this section, we discuss key open challenges when it
comes to testing software aging-related aspects of the behavior
of virtualized environment including aspects such as perfor-
mance, scalability, reliability, and robustness. The challenges
are presented in the form of research questions. The objective
of the framework presented in Section IV is to enable the
addressing of the challenges.

RQ1: How should the behavior of a virtualized environment
be characterized?

It is necessary to identify existing or develop new metrics
relevant for characterizing such behavior, to evaluate the
impact of hypercall execution on the behavior of a virtualized
environment. These metrics can be used to characterize a base-
line behavior that can be used to detect deviations. With our
framework, we plan to identify metrics and workloads suitable
for characterizing the behavior of a virtualized environment
and that are relevant from a software aging perspective. This
characterization enables the construction of tailored models
for testing and characterizing relevant behavior aspects of
virtualized environments. We also plan to investigate the
development of new metrics.

RQ2: How does the setup of the virtualized environment under
test impact test results?

The hypervisor hosting the environment can operate directly
on top of the hardware (i.e., a bare-metal setup) or inside a
VM hosted by another hypervisor (i.e., a nested virtualization
setup), to test the behavior of a given virtualized environment.
The nested virtualization setup has the advantage of full con-
trol over, and behavior transparency of, the tested virtualized
environment. This nesting enables, for example, recovering
from crashes caused by tests and storing system and hypervisor
states. Such control and transparency are not feasible in a
straightforward manner with a bare-metal setup. However, the
use of another hypervisor to host the virtualized environment
under test may impact test results and create representativeness
issues. Therefore, it is essential to identify and evaluate the
extent of this impact, which includes the identification of the
hypercall activities, causing the impact. This identification is
a challenging task considering the complexity of hypervisor
operation.

RQ3: What is the performance, reliability, and robustness
impact of updates?

Some operating systems, including hypervisors they host,
are updated very frequently. For example, some releases of
Windows 10 receive monthly updates. Updates often introduce
new features and significant reworks of internal mechanisms.
Therefore, it is crucial to evaluate how updates impact the
performance, reliability, and robustness of virtualized environ-
ments.

RQ4: Are there effective rejuvenation techniques for virtual-
ized environments?

Testing virtualized environments for software aging-related
issues, such as performance or robustness degradation, enables
the identification and systematization of such issues that may
occur in practice. This knowledge, in turn, enables the devel-
opment of rejuvenation techniques for alleviating the issues
and the assessment of the efficacy of developed techniques. For
example, such a technique is adapting the number of allocated
resources to a VM during operation.

III. TECHNICAL BACKGROUND

A. Hypervisors and Hyper-V

In a non-virtualized scenario, physical hardware (i.e., pro-
cessor, memory, and IO devices) is managed by an operating
system, which provides and schedules physical resource ac-
cesses to applications running on top. Virtualization describes
the concept of introducing an abstraction layer above the
hardware. That layer called the hypervisor or Virtual Machine
Monitor (VMM) provides a set of virtual resources, which
can form multiple virtual machines and can be managed
by independent operating systems. This abstraction provides
several advantages [8]: Running services in virtual machines
rather than directly on hardware allows for higher availability,
as in the case of hardware maintenance, VMs are migratable to
another hypervisor with little downtime [9]. Dynamically scal-
ing services is possible by starting or stopping VMs running
instances of the application. Because VMs are isolated from
each other, damage by compromised machines is limited. This
isolation allows running any services alongside each other,
improving the flexibility of deployment, hardware utilization,
and thus operating costs.

One way to classify hypervisors is by whether they have
direct control over the hardware or whether they are running
on top of an operating system [10]. The former approach
is called a Type-1 or bare-metal hypervisor and can utilize
its full control for increased performance. Type-2 or hosted
hypervisors, on the other hand, can reduce their complexity
by relying on the operating system taking care of most of the
hardware management.

Virtualization solutions differ by their implementation type.
Generally, to virtualize a processor architecture, it is required
that all control sensitive instructions affecting the processor
state in a way that prevents the hypervisor from functioning
correctly, are privileged instructions. These instructions gen-
erate a trap event when executed in non-privileged mode [11],
allowing the hypervisor to emulate these instructions safely.
The x86 architecture did, however, not comply with this
requirement, as there were several non-privileged, sensitive
instruction [12]. Thus, initial virtualization approaches had to
make efforts to prevent their execution at all. Full virtualization
allowed VMs to run the same, unmodified operating systems
used on physical hardware by patching out critical instructions
on the fly using binary translation [13].

In contrast, para-virtualization applied changes to the source
code of operating systems themselves. These modifications

2



also allowed hypervisor and VMs to interact more efficiently,
e.g., by using abstract IO interfaces instead of emulating
existing, physical devices, leading to reduced overhead and
improved performance [14]. Starting in 2005, Intel and AMD
added virtualization extensions to their hardware [15], with
features including an instruction set that supported trap-and-
emulate wholly, an additional privilege mode for the hypervi-
sor and hardware implementations for Second Level Address
Translation (SLAT).

Nested virtualization describes the situation when a hyper-
visor is running inside a guest VM of another hypervisor. This
nesting is useful for specific scenarios, e.g., when hypervisors
have to be migratable together with their VMs or to assess
virtual systems regarding performance or security [16]. Even
though privileged instructions of the virtualized hypervisor
have to be trapped and emulated and MMU hardware does
not provide support for the third memory paging layer. Ben-
Yehuda et al. [16] found a nested VM to have less than 15%
overhead compared to a regular VM.

Hyper-V is an x86 64 hypervisor developed by Mi-
crosoft [17]. It is a Type-1 hypervisor. Thus, it directly
controls the hardware. However, to avoid limiting it to specific
hardware configurations or bloat the code base with countless
device drivers, Hyper-V uses a microkernel-based architecture.
A specialized VM called the root partition, always runs an
instance of Windows on top of Hyper-V to provide manage-
ment features and device drivers. Guest VMs can run para-
virtualized if they support it, but also can use unmodified
operating systems, in which case Hyper-V provides emulated
devices.

Hyper-V offers various interfaces for VM-Hypervisor and
VM-VM communication [18]. These range from the hypervi-
sor taking over control to handle faults accesses to privileged
registers and memory addresses over the emulation of priv-
ileged instructions, IO ports and memory-mapped IO to the
VMBUS, which is a memory-based communication channel
for inter-VM communication, and hypercalls. Similarly to how
applications can request services from the operating system by
issuing system calls, guest operating systems can call into the
hypervisor with hypercalls.

B. Robustness Testing

In the words of the IEEE Standard Glossary of Software
Engineering Terminology, robustness is ”The degree to which
a system or component can function correctly in the presence
of invalid inputs or stressful environmental conditions” [19].
Thus, robustness testing is concerned with providing unex-
pected inputs or conditions to the system under test, while
trying to detect defects like invalid return values and appli-
cation states, crashes, freezes, or performance degradations.
Robustness testing applies to a multitude of different domains:
operating systems [20]–[23], web services [24]–[26], Java
server application [27], hypercall interfaces [28], [29], to name
but a few. Common steps are the definition of a model of
the interface under test, containing information about required
parameters, their data types, and the tested range of possible

values. When testing operating systems, a filehandle might be
tested with values for handles to deleted or altered files [23].
For testing web services, validation of string parameters in-
cludes testing with a null value, an empty string, a string with
non-printable characters or very long strings [24]. This model
can be used to generate test cases automatically. One approach
is rating irregular behavior that a system shows in response to
the test case execution is to use the CRASH scale [23], [28], an
acronym for the severity classes Catastrophic, Restart, Abort,
Silent, and Hindering.

IV. FRAMEWORK

The framework is supposed to provide means to test the
hypercall robustness of any desired hypervisor. As every
hypervisor has its unique hypercall calling convention, it
is not possible to generalize every aspect. However, the
framework is designed to implement all generalizable steps
and provide reusable interfaces for consistent implementation
of hypervisor-specific details. Due to Hyper-V’s widespread
application, its support of a variety of hypercalls, and the
limited availability of information on its implementation and
robustness characteristics, we choose it as a case study for an
accurate evaluation of the framework.

The architecture comprises two domains: the test gener-
ation and hypercall injection workflow and the execution
monitoring during the hypercall injection. Fig. 1 provides a
visual overview. Test campaign files describe when hypercall
injection occurs and its parameterization. JSON files define the
test campaigns allowing humans to arrange tests manually as
well as to generate tests automatically from hypercall interface
models. The format currently supports the following language
features:

• Hypercalls: As mentioned before, the calling conventions
vary across hypervisors. For them to have the same high-
level representation, hypercalls and their parameters are
abstractly referenced by name.

• Order: To provide means to test if robustness problems
occur when performing specified calls in sequence, mul-
tiple hypercall can be performed in order.

• Integer Bounds: Boundary data type values are a regular
testing input. The language supports automatic generation
of signed and unsigned maximum integer values, adapted
to the size of the used parameter.

• Repetition: Single hypercalls can specify a count value
and series of calls can be wrapped in a loop with a
specified count to ease the execution of a single or
multiple recurring hypercalls.

• Random: Parameter values can also be tagged to take on
a random value. This randomization enables the frame-
work for fuzzing purposes.

• Timing: Timing delays can be inserted between a series
of hypercalls to allow for varying load profiles. Our
framework supports constant, uniformly distributed, and
negative-exponentially distributed random values for de-
lay length specification.

3



Human-readable
Test Campaign

Injection Driver-
readable

Test Campaign

Compiler/
Expert Knowledge

Injection Driver

Test Setup

Hypercall Injection
Log File

Human-readable
Results

Performance
Monitoring

Perform Hypercall Hypercall Return

Fig. 1. Framework overview

The module that performs the hypercalls then receives an
easy to parse format translated from the high-level test cases.
The framework supplies a compiler that parses the JSON file
and extracts the hypercalls, delays, and loops. A hypervisor-
specific module translates the hypercall and parameter names
into call codes, parameter sizes, and offsets, calculates integer
bounds values according to data type sizes, and exports the
campaign in the injection module format.

With the injection driver, there is no opportunity for abstrac-
tion. It reads the specially crafted campaign file and injects the
hypercalls in a hypervisor-specific fashion. The general way
of performing a hypercall from a 64bit VM to Hyper-V is to
store the hypercall’s call code in the RCX register, and pointers
to memory pages in the RDX and R8 registers. The former
method points to the input page, containing all parameters.
The latter approach points to the output page, where the
hypervisor can write return values. With everything prepared,
control passes to Hyper-V by executing the VMCALL in-
struction on Intel processors or the VMMCALL instruction
on AMD CPUs. These instructions are only executable in
a privileged CPU mode. Thus, hypercalls are not injectable
from userspace but have to originate from the kernel. We want
to test robustness from guest VMs as well as the privileged
root partition, which has to run a Windows operating system.
Therefore, the selection of implementations is limited to a
Windows kernel driver. A userspace application firstly loads
the driver into the kernel, then supplies it with the file path
of the test campaign file, using a write call to the driver’s
control device. The driver reads the campaign step by step.
If it encounters a time delay action, it sleeps for the specified
amount of time. If it encounters a hypercall action, it copies the
call code and contents of input and output pages from the file
to the corresponding registers and memory locations. Hyper-
V provides a way to perform a transition to the hypervisor

agnostic of whether it is running on an Intel or AMD platform,
by overlaying a page with the correct instruction over the
VM’s memory. Our driver can execute the provided instruction
by retrieving the overlayed memory address (physical guest
address), create a virtual memory mapping for it (results in
the virtual guest address), casting it to a function pointer and
calling it. After the hypervisor finished processing and returned
control to the VM, the hypercall result value (placed in RAX),
the contents of the output page, as well as the measured
execution time are written to the injection log file. This file is
another detail specific to the hypervisor and injection module.

A generalized compiler can generate a humanly understand-
able report of the test campaign execution results, using the
original campaign file, the injection log file, a hypervisor-
specific helper module, and performance measurement data.

The second domain of the framework is concerned with
performance monitoring to detect if unexpected behavior
occurs while executing a test campaign. This monitoring is
a part of the framework that shows many relations to the
software aging topic. As stated in RQ1, the first step is to
construct a model that describes the normal behavior of the
virtualized environment under test. This model should include
a set of metrics that capture all relevant aspects of a virtualized
environment. There exist lots of benchmarks that are designed
to measure the performance of the CPU, the memory bus, disk,
and network IO or complete virtualization solutions. However,
they usually run over a time frame ranging from multiple
seconds to a few hours. It is necessary to measure metrics at
very short intervals of probably less than a second to capture
short-term performance degradations. Also, it is unclear where
to place the performance monitoring agent. Can it run isolated
in another guest VM? Does it have to run in injecting VM?
In the case of Hyper-V, does it make sense to execute it in
the root partition when performing calls a guest partition?
Ideally, measurements can run in all of the locations, but there
might be interactions between them, causing less predictable
behavior. When the metrics are defined and measured for a
baseline and a hypercall injection scenario, the model needs
to decide which performance deviations are due to various
effects like scheduling variations and which are likely to be
caused by robustness problems. Another part of the model
has to be the detection of crashes and failures. These could
potentially happen to only the injecting VM, or it could affect
the whole hypervisor. These differences should be detectable
using agents sending heartbeat messages to a host outside the
hypervisor. When only the signals of the injecting VM stop,
its OS probably crashed. When additionally no messages from
other VMs are received, probably the whole hypervisor is
affected.

For the testing setup, there are two alternatives. Hyper-V is
mentioned to illustrate the problem, but the discussion applies
to all other hypervisors under tests as well. One approach
is to run Hyper-V directly on the hardware, as shown in
Fig. 2. This method has the advantage of being a tried and
true configuration, with Hyper-V being in complete control
of the hardware virtualization extensions. However, it can be

4



Hardware

Hyper-V

root
partition

guest
partition1

guest
partition2

Fig. 2. Bare-metal setup

problematic to recover the system from defects. In case of
crashes, a physical reset has to be triggered to reboot the
system.

Moreover, if the system gets altered permanently, restoring
the initial conditions is an expensive operation. In the best
case, the system should be restored after every test campaign,
at any rate, to avoid hard to trace interaction effects between
campaigns. On the other hand, Hyper-V can itself be run in
a virtualized environment, e.g., in a KVM virtual machine,
as shown in Fig. 3. With this configuration, having a fully
restored system for every test campaign is easy to achieve, e.g.,
by not writing to the base disk image but an overlay image.
At the end of a run, the overlay image becomes disposable,
and a new overlay can be created and used for the next
test. Nested virtualization is the preferred solution from a
test execution perspective. However, RQ2 states the question
whether the results are identical between bare-metal and nested
virtualization setups or whether side effects of the VM nesting
might produce results that provide a more inconsistent baseline
and thus burden deviation detection.

Naturally, every hardware configuration yields different
performance results. This limitation requires to determine the
baseline metric values for every single setup. However, as
pointed out in RQ3, baseline performance is also affected
by software changes. Especially with Hyper-V versions being
distributed alongside Windows OS updates and the Windows
OS in the root partition a lot of relevant virtualization code, we
want to evaluate how much our model varies between different
versions of OS builds.

Finally, after virtualized environments can be tested for
software aging-related problems and thus solving the other re-
search questions, a final challenge remains. RQ4 asks whether
it is possible to develop countermeasures in the form of
rejuvenation techniques. Such a technique could be adapting
the amount of allocated resources to a VM during operation.

V. RELATED WORK

One of the first works that brought software aging and
rejuvenation to a greater audience was a report on the Patriot

Hardware

KVM

Hyper-V

root
partition

guest
partition1

guest
partition2

Linux

Fig. 3. Setup with nested virtualization

missile defense system. A bug in its software required frequent
reboots to keep accuracy [30].

A multitude of works deals with the basics of software
aging and rejuvenation [31]–[45]. Related work more specific
to this paper covers two categories. The first papers take a
look at hypervisors regarding software aging. The second set
then tackles robustness testing of hypercall interfaces.

A. Hypervisors and Software Aging

Multiple papers address the combination of virtualized
environments and software aging as well as the required reju-
venation cycles. Additionally, some of these works explicitly
focus on software aging related to hypervisors.

In [4], Machida et al. present analytic models for virtual
machine monitor (VMM) - their term for hypervisor - re-
juvenation approaches. They model Cold-VM rejuvenation
(shutting down VMs for the process), Warm-VM rejuvenation
(suspending VMs for the process), and Migrate-VM reju-
venation (migrating VMs to another host for the process).
Furthermore, the paper gives insight into the aging-related
trigger intervals for the hypervisor rejuvenation. The authors
evaluate these approaches regarding steady-state availability.
The findings include that Warm-VM rejuvenation is not always
superior to Cold-VM rejuvenation. If the target host has
enough capacity, Migrate-VM rejuvenation outperforms the
other approaches.

Matos et al. characterize software aging effects in elastic
storage mechanisms in [5]. The elastic block storage (EBS)
framework Eucalyptus interacts with various components. One
of them is the KVM hypervisor while the other is the Eucalyp-
tus Node Controller. The authors find that memory leaks in the
node controller due to software aging-related bugs are strongly
correlated to a high CPU utilization by the KVM process.
Furthermore, they show that the aging effects directly impact
the performance of a webserver running on the virtualized
infrastructure.

Machida et al. investigate bug reports of five major open-
source projects regarding software-aging in [46]. One of these

5



projects in the Xen hypervisor. They find that Xen has a
surprisingly high number of unresolved issues. Users should
be alerted to the immaturity of this software.

Pietrantuono and Russo perform a literature review on
software aging in virtualized environments in [6]. Therefore,
the paper summarizes the past effort conducted by the com-
munity in the cloud domain. The authors investigate model-
based, measurement-based, and hybrid analysis approaches.
Additionally, they present different rejuvenation techniques
extracted from the reviewed material. These include Cold-
VM rejuvenation, Warm-VM rejuvenation, Migrate-VM re-
juvenation, VI Micro-reboot, VI Resource Management, VM
Failover, and VM Restart.

Barada and Swain give a survey on software aging and
rejuvenation studies in virtualized environments in [47]. From
the collected information, the authors propose an algorithm
to choose the correct rejuvenation technique according to the
observed aging effect.

While the papers mentioned above target hypervisors or
their application environments, these papers do not explore
the software-aging related issues of the hypercall interfaces.

B. Hypercall Security and Robustness Testing

In [48], Milenkoski et al. present HInjector. HInjector allows
interjecting hypercall attacks in a Xen-based environment
while operating a paravirtualized guest VM. Therefore, XEN’s
code-base is adapted. The injected attacks correspond to
known Xen vulnerabilities. HInjector is designed to provide an
IDS with training data to protect against hypercall injections.

The same authors present an experience report on hypercall
handler vulnerabilities in [49]. They motivate that publicly
available information on vulnerabilities of hypercall handlers
and the attacks on them is limited. This fact hinders advances
in monitoring and securing said interfaces. The authors then
characterize the attack surface by analyzing known vulnera-
bilities. They systematize and discuss the bugs causing these
vulnerabilities. Next, they demonstrate attacks to trigger the
vulnerabilities and propose an action plan for improving
hypercall interface security.

Gonçalves et al. present an assessment of the applicability
of robustness testing to the Xen hypercall interface in [28].
They devise a testing campaign through the mutation of valid
hypercall invocations with invalid values. Attacks originate
from a compromised machine. The results revealed frequent
crashes of said machines. In some cases, the hypervisor did
not detect these occurrences. The authors conclude that new
failure mode scales are necessary for Xen as well as new
failure detection mechanisms.

The papers above introduce the testing of hypercall inter-
faces. [28] explores the idea of using campaigns to define test-
ing scenarios. While these approaches specifically target the
Xen hypervisor, our framework is generalized in many parts.
Also, these works do not cover the topic of software aging-
related bugs as well as generating failures from seemingly
valid hypercall invocations.

VI. CONCLUSION AND FUTURE WORK

In this work, we described the open challenges regarding
software aging in hypercall interfaces. From these challenges,
we derived four research questions. Next, we gave an overview
of the technical background regarding hypervisors and Hyper-
V as well as robustness testing. We then proposed a framework
architecture for hypercall interface robustness testing. This
architecture supports modeling hypercall interfaces, generating
test campaigns to assert said models and validating them
against new software versions. Furthermore, the framework
can execute defined tests while monitoring the system’s per-
formance. Finally, we support evaluating the results based on
deviations from the baseline characteristics.

In future work, we plan to complete the implementation
of the proposed architecture for the Hyper-V hypervisor and
make the framework publicly available. Next, we will execute
extensive test campaigns on Hyper-V’s hypercall interfaces us-
ing expert knowledge available inside SPEC. These campaigns
will probe different versions of Hyper-V to assert the need for
rejuvenation steps.

ACKNOWLEDGEMENTS

This work was funded by the German Research Foundation
(DFG) under grant No. (KO 3445/16-1) and was written in
Cooperation with SPEC RG Security.

REFERENCES

[1] A. Avritzer and E. J. Weyuker, “Estimating the software reliability
of smoothly degrading systems,” in 5th International Symposium
on Software Reliability Engineering, ISSRE 1994, Monterey, CA,
USA, November 6-9, 1994, 1994, pp. 168–177. [Online]. Available:
https://doi.org/10.1109/ISSRE.1994.341370

[2] Y. Huang, C. Kintala, N. Kolettis, and N. Dudley Fulton, “Software
rejuvenation: Analysis, module and applications,” in Twenty-Fifth Inter-
national Symposium on Fault-Tolerant Computing. Digest of Papers, 07
1995, pp. 381–390.

[3] M. Grottke, R. Matias Jr, and K. Trivedi, “The fundamentals of software
aging,” in Software Reliability Engineering Workshops, 2008. ISSRE
Wksp 2008. IEEE International Conference on, 12 2008, pp. 1 – 6.

[4] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis of
software rejuvenation in a server virtualized system,” 2010 IEEE Second
International Workshop on Software Aging and Rejuvenation, pp. 1–6,
Nov 2010.

[5] R. Matos, J. Araujo, V. Alves, and P. Maciel, “Characterization of
Software Aging Effects in Elastic Storage Mechanisms for Private
Clouds,” 2012 IEEE 23rd International Symposium on Software Reli-
ability Engineering Workshops, pp. 293–298, Nov 2012.

[6] R. Pietrantuono and S. Russo, “Software aging and rejuvenation in the
cloud: a literature review,” in 2018 IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW). IEEE, 2018,
pp. 257–263.

[7] “Work Package 6: Virtual Secure Mode,” 2019,
[Online; accessed 1. Aug. 2019]. [Online]. Available:
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Cyber-Si
cherheit/SiSyPHus/Workpackage6 Virtual Secure Mode.pdf? blob=
publicationFile&v=2

[8] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A survey on
concepts, taxonomy and associated security issues,” in 2010 Second
International Conference on Computer and Network Technology. IEEE,
2010, pp. 222–226.

[9] L. Iffländer, F. Wamser, C. Metter, P. Tran-Gia, and S. Kounev, “Perfor-
mance Assessment of Cloud Migrations from Network and Application
Point of View,” in Proceedings of 9th EAI International Conference on
Mobile Networks and Management (MONAMI 2018), December 2017.

6



[10] Z. Gu and Q. Zhao, “A state-of-the-art survey on real-time issues in
embedded systems virtualization,” Journal of software Engineering and
Applications, vol. 5, no. 04, p. 277, 2012.

[11] G. J. Popek and R. P. Goldberg, “Formal requirements for virtualizable
third generation architectures,” Communications of the ACM, vol. 17,
no. 7, pp. 412–421, 1974.

[12] U. A. Force, “Analysis of the intel pentiums ability to support a secure
virtual machine monitor,” in Proceedings of the... USENIX Security
Symposium. USENIX Association, 2000, p. 129.

[13] D. Marshall, “Understanding full virtualization, paravirtualization, and
hardware assist,” VMWare White Paper, p. 17, 2007.

[14] H. Fayyad-Kazan, L. Perneel, and M. Timmerman, “Full and para-
virtualization with xen: a performance comparison,” Journal of Emerg-
ing Trends in Computing and Information Sciences, vol. 4, no. 9, pp.
719–727, 2013.

[15] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. Martins, A. V.
Anderson, S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, “Intel
virtualization technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[16] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor, N. Har’El,
A. Gordon, A. Liguori, O. Wasserman, and B.-A. Yassour, “The turtles
project: Design and implementation of nested virtualization.” in Osdi,
vol. 10, 2010, pp. 423–436.

[17] H. Fayyad-Kazan, L. Perneel, and M. Timmerman, “Benchmarking
the performance of microsoft hyper-v server, vmware esxi and xen
hypervisors,” Journal of Emerging Trends in Computing and Information
Sciences, vol. 4, no. 12, pp. 922–933, 2013.

[18] N. Joly and J. Bialek, “A Dive in to Hyper-V Architecture and
Vulnerabilities,” Aug 2018, [Online; accessed 6. Aug. 2019]. [Online].
Available: https://github.com/microsoft/MSRC-Security-Research/blob
/master/presentations/2018 08 BlackHatUSA/A%20Dive%20in%20t
o%20Hyper-V%20Architecture%20and%20Vulnerabilities.pdf

[19] IEEE, “IEEE standard glossary of software engineering terminology,”
IEEE Std 610.12-1990, Dec. 1990.

[20] C. P. Shelton, P. Koopman, and K. DeVale, “Robustness testing of
the microsoft win32 api,” in Proceeding International Conference on
Dependable Systems and Networks. DSN 2000. IEEE, 2000, pp. 261–
270.

[21] A. K. Ghosh, M. Schmid, and V. Shah, “Testing the robustness of
windows nt software,” in Proceedings Ninth International Symposium
on Software Reliability Engineering (Cat. No. 98TB100257). IEEE,
1998, pp. 231–235.

[22] P. Koopman and J. DeVale, “Comparing the robustness of posix oper-
ating systems,” in Digest of Papers. Twenty-Ninth Annual International
Symposium on Fault-Tolerant Computing (Cat. No. 99CB36352). IEEE,
1999, pp. 30–37.

[23] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, and T. Marz, “Com-
paring operating systems using robustness benchmarks,” in Proceedings
of SRDS’97: 16th IEEE Symposium on Reliable Distributed Systems.
IEEE, 1997, pp. 72–79.

[24] M. Vieira, N. Laranjeiro, and H. Madeira, “Assessing robustness of
web-services infrastructures,” in 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN’07). IEEE,
2007, pp. 131–136.

[25] ——, “Benchmarking the robustness of web services,” in 13th Pacific
Rim International Symposium on Dependable Computing (PRDC 2007).
IEEE, 2007, pp. 322–329.

[26] E. Martin, S. Basu, and T. Xie, “Websob: A tool for robustness testing of
web services,” in Companion to the proceedings of the 29th International
Conference on Software Engineering. IEEE Computer Society, 2007,
pp. 65–66.

[27] C. Fu, A. Milanova, B. G. Ryder, and D. G. Wonnacott, “Robustness
testing of java server applications,” IEEE Transactions on Software
Engineering, vol. 31, no. 4, pp. 292–311, 2005.

[28] C. F. Gonçalves, N. Antunes, and M. Vieira, “Evaluating the applicability
of robustness testing in virtualized environments,” in 2018 Eighth Latin-
American Symposium on Dependable Computing (LADC). IEEE, 2018,
pp. 161–166.

[29] D. Carvalho, N. Antunes, M. Vieira, A. Milenkoski, and S. Kounev,
“Challenges of assessing the hypercall interface robustness (fast ab-

[30] G. report, “Gao - patriot missile software problem,” http://fas.org/spp/st
arwars/gao/im92026.htm, 1991, accessed: 2014-09-07.

stract),” in The 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN 2015), 2015.

[31] M. Grottke, A. Nikora, and K. Trivedi, “An empirical investigation of
fault types in space mission system software,” in Dependable Systems
and Networks (DSN), 2010 Int’l. Conf., 2010.

[32] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault triggers in open-source software: An experience report,” in IEEE
24th International Symposium on Software Reliability Engineering,
ISSRE 2013, Pasadena, CA, USA, November 4-7, 2013, 2013, pp. 178–
187.

[33] F. Qin, Z. Zheng, X. Li, Y. Qiao, and K. S. Trivedi, “An empirical
investigation of fault triggers in android operating system,” in 22nd IEEE
Pacific Rim International Symposium on Dependable Computing, PRDC
2017, Christchurch, New Zealand, January 22-25, 2017, 2017, pp.
135–144. [Online]. Available: https://doi.org/10.1109/PRDC.2017.27

[34] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S. Trivedi,
K. Vaidyanathan, and W. P. Zeggert, “Proactive management of software
aging,” IBM Journal of Research and Development, vol. 45, no. 2, pp.
311–332, 2001.

[35] F. Machida, D. S. Kim, and K. S. Trivedi, “Modeling and analysis
of software rejuvenation in a server virtualized system with live VM
migration,” Perform. Eval., vol. 70, no. 3, pp. 212–230, 2013.

[36] F. Machida, V. F. Nicola, and K. S. Trivedi, “Job completion time on
a virtualized server with software rejuvenation,” JETC, vol. 10, no. 1,
p. 10, 2014.

[37] J. Zhao, Y. Jin, K. S. Trivedi, R. M. Jr., and Y. Wang, “Software
rejuvenation scheduling using accelerated life testing,” JETC, vol. 10,
no. 1, p. 9, 2014.

[38] J. Zhao, Y. Wang, G. Ning, K. S. Trivedi, R. M. Jr., and K. Cai, “A
comprehensive approach to optimal software rejuvenation,” Perform.
Eval., vol. 70, no. 11, pp. 917–933, 2013.

[39] K. Trivedi, R. Mansharamani, D. Kim, M. Grottke, and M. Nambiar,
“Recovery from failures due to mandelbugs in it systems,” in 2013 IEEE
19th Pacific Rim International Symposium on Dependable Computing,
vol. 0. Los Alamitos, CA, USA: IEEE Computer Society, 2011, pp.
224–233.

[40] M. Grottke and K. S. Trivedi, “Fighting bugs: Remove, retry, replicate,
and rejuvenate,” Computer, vol. 40, no. 2, pp. 107–109, Feb. 2007.

[41] M. Grottke and K. Trivedi, “Software faults, software aging and software
rejuvenation,” J. Reliab. Eng. Ass. JPN, vol. 27, no. 7, 2005.

[42] K. Vaidyanathan and K. Trivedi, “A comprehensive model for software
rejuvenation,” Dependable and Secure Computing, IEEE Transactions
on, vol. 2, no. 2, pp. 124–137, April 2005.

[43] J. Alonso, M. Rivalino, E. Vicente, A. Maria, and K. Trivedi, “A
comparative experimental study of software rejuvenation overhead,”
Perform. Eval., vol. 70, no. 3, pp. 231–250, 2013.

[44] T. Dohi, K. Goseva-Popstojanova, and K. S. Trivedi, “Estimating soft-
ware rejuvenation schedules in high-assurance systems.” Comput. J.,
vol. 44, no. 6, pp. 473–485, 2001.

[45] K. Vaidyanathan and K. Trivedi, “A measurement-based model for
estimation of resource exhaustion in operational software systems,” in
Proc. of the Tenth Int. Symp. on Soft. Rel. Engineering, Nov. 1999, pp.
84–93.

[46] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, “Aging-Related Bugs in
Cloud Computing Software,” 2012 IEEE 23rd International Symposium
on Software Reliability Engineering Workshops, pp. 287–292, Nov 2012.

[47] S. Barada and S. K. Swain, “A survey report on software aging and
rejuvenation studies in virtualized environment,” Int J Comput Eng
Technol (IJCSET), vol. 5, no. 5, pp. 541–546, 2014.

[48] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, S. Kounev,
A. Avritzer, and M. Luft, “Evaluation of Intrusion Detection Systems
in Virtualized Environments Using Attack Injection,” in The 18th
International Symposium on Research in Attacks, Intrusions, and
Defenses (RAID 2015). Springer, November 2015. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-319-26362-5 22

[49] A. Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev,
“Experience report: an analysis of hypercall handler vulnerabilities,”
in 2014 IEEE 25th International Symposium on Software Reliability
Engineering. IEEE, 2014, pp. 100–111.

7


