
The Vision of Self-Aware Performance Models
Johannes Grohmann

University of Würzburg
Würzburg, Germany

johannes.grohmann@uni-wuerzburg.de

Simon Eismann
University of Würzburg

Würzburg, Germany
simon.eismann@uni-wuerzburg.de

Samuel Kounev
University of Würzburg

Würzburg, Germany
samuel.kounev@uni-wuerzburg.de

Abstract—Performance models are necessary components of
self-aware computing systems, as they allow such systems to
reason about their own state and behavior. Research in this field
has developed a multitude of approaches to create, maintain,
and solve performance models. In this paper, we propose a
meta-self-aware computing approach making the processes of
model creation, maintenance and solution themselves self-aware.
This enables the automated selection and adaption of software
performance engineering approaches specifically tailored to the
system under study.

I. INTRODUCTION

Self-aware computing systems are defined as computing
systems that: (1) learn models capturing knowledge about
themselves and their environment on an ongoing basis and
(2) reason using the models enabling them to act based on
their knowledge and reasoning in accordance with higher-level
goals, which may also be subject to change [1].

Self-aware data centers are one application domain for self-
aware computing systems. The data center collects knowledge
about itself in the form of models and then uses these models
to reason about its own state and behavior. For example,
performance concerns of the applications hosted in the data
center can be addressed using performance models such as
queueing networks or architecture-level performance models
like the Descartes Modeling Language (DML) [2]. This en-
ables, e.g., bottleneck analysis [3], Service Level Agreement
(SLA) evaluation [4], proactive auto-scaling [5] or configu-
ration optimization [6]. These performance models serve as
the knowledge base or the model representation of the model-
based learning and reasoning loop (LRA-M loop) of the self-
aware system [1]. Several approaches for the extraction of
performance models exist (e.g., [7], [8], [9], [10]), which can
be used to extract a performance model using monitoring data
of a software system.

Our vision is to introduce the concept of meta-reflective
self-awareness or simply meta-self-awareness [11] in the area
of performance modelling, by making the model learning and
prediction processes themselves self-aware. The self-aware
model learning and prediction processes can reason about their
own performance and capabilities and based on this reasoning
adapt themselves at run-time. In order to do so, we identify
four areas involved in the performance model extraction and
prediction processes that can be improved by introducing
meta-self-awareness.

The main benefit of self-awareness is that the system learns
which algorithms work best for each specific problem instance.

The system automatically adapts to the current situation by
selecting the best suited algorithms for the specific setting.
In the following, we detail how classical performance models
can be enhanced by adding self-aware capabilities, enabling
the construction of systems with meta-self-awareness.

II. OVERVIEW

Our approach as shown in Figure 1 is composed of
four interrelated steps: (1) query-based model tailoring, (2)
query-tailored model solution, (3) model validation and (4)
model recalibration. Two repositories serve as knowledge
base, storing the model history (model repository) as well as
measurement and prediction history (performance repository).
Questions about the performance behavior of the system can
be formulated as so called performance queries, specifying the
performance metric of interest, the required accuracy and an
upper time limit.

Fig. 1. Overview

In order to tailor the model to a specific query, the query-
based model tailoring abstracts and/or deletes model elements,
which have little to no impact on the requested metrics. This
speeds up model solution and makes the analysis of large
systems feasible. The tailoring process continuously adapts



itself by evaluating the prediction accuracy of previously
tailored models.

This tailored model is then forwarded to the model solution
component. Based on the requested metrics and the time-
sensitiveness of the query, the model solution component
selects the most suitable of several existing solving methods
for the specific query. The achieved prediction accuracy as well
as the time-to-result, i.e., the time a solution approach requires
to answer a performance query, of the solution approach are
saved in the performance repository, creating a knowledge base
to support future trade-off decisions.

In addition to the query results, the performance repository
stores online monitoring data from the observed system. The
repository can then be used to continuously analyze and
validate the model in order to develop awareness of the model
about its own accuracy. If the model detects inaccuracies, a
recalibration is triggered.

The recalibration is concerned with extracting and parame-
terizing the model representation of the system. This recalibra-
tion takes measurement history and previous model learning
attempts into account to develop system-specific knowledge
about how the different available approaches perform in order
to improve the ongoing parametrization and recalibration of
the model.

All of the four steps develop their own knowledge base and
hence realize their own LRA-M loop [1]. The architecture
can be seen as event-based, however, the individual steps
are continuously learning and evolving. In the following, we
explain each of the four outlined steps in more detail.

III. QUERY-BASED MODEL TAILORING

Performance predictions have been shown to be useful
for many purposes like bottleneck analysis [3], SLA evalua-
tion [4], proactive auto-scaling [5] and configuration optimiza-
tion [6]. For many use cases, only specific parts of the system
are of interest. For example, in order to determine whether
provisioning of additional resources resolves an identified
bottleneck, only the throughput of the bottleneck resource is
required. Similarly, to evaluate if the SLAs for a service will
be violated, only the response time of the respective service
is required.

However, in most cases the full system needs to be sim-
ulated to derive metrics for specific system parts. As the
simulation time scales with the size of the simulated system,
this leads to unnecessarily long simulation times, especially
for large-scale systems. Therefore, multiple problem specific
meta-models focusing on, e.g., network [12] or database
performance [13] are currently used in parallel. These models
depict one aspect of the system in great detail and treat the
remainder of the system as a black box. However, this means
multiple models have to be simultaneously maintained and
concerns cutting across multiple problem domains are hard to
analyze.

We aim to extend traditional architectural meta-models to
provide multiple descriptions of different granularity for each
component and dynamically select the appropriate description

depending on the performance query. The selected granularity
for each model element is based on their relation to the
components for which metrics were requested. Once enough
information about the impact of modeling granularities on the
prediction accuracy is available in the performance repository,
the rules for granularity selection can be updated.

The proposed approach increases the simulation speed,
without sacrificing prediction accuracy. Since only the query-
relevant parts of the model are simulated, large systems can
be effectively analyzed.

IV. QUERY-TAILORED SOLUTION

Commonly, architectural performance models are solved
by transformation to stochastic models, such as queueing
networks [14], layered queueing networks [15], or stochastic
process models [16]. In order to derive predictions for these
models, existing analytical and simulation-based solvers can
be used. Each combination of transformation and applicable
solver represents a valid solution approach, capable of deriv-
ing performance predictions for the architectural performance
model. Every solution approach has different properties in
terms of prediction accuracy and time-to-result.

The selection of the appropriate solution approach is chal-
lenging since no static ranking of the solution approaches in
terms of accuracy and time-to-result exists. Instead, the best-
suited solver depends on the requested metrics, the structure
and control flow of the architectural performance model,
as well as the user preferences and constraints concerning
the trade-off between prediction accuracy and time-to-result.
Brosig et al. showed significant time-to-result differences
between different simulation-based solution approaches [17].
In their experiments, the accuracy of solvers was shown to
depend on the model structure.

Our goal is to predict the accuracy and time-to-result for
each specific query and model combination and select the
solution approach that best fits the user’s accuracy and time-
to-result preferences. The accuracy of a solution approach de-
pends on static properties of the solver and the structure of the
analyzed performance model. Therefore, we aim to combine
expert knowledge about the solvers with an indicator of much
information, and therefore accuracy, is lost in the transforma-
tion to the solution formalism for the specific model. In order
to predict the time-to-result, we intend to utilize the data about
previous queries stored in the performance repository. We plan
to use regression analysis techniques, such as Support Vector
Regression (SVR) or Multivariate Adaptive Regression Splines
(MARS), to estimate the time-to-result for a specific query and
performance model combination. This is made possible by the
fact that the training data only contains data for this exact
model or a variation thereof given that all previous queries
analyze the same underlying real-world system.

Based on the accuracy and time-to-result predictions, the
correct solution approach can be automatically selected for
each problem instance. This improves the accuracy and time-
to-result of the performance predictions and allows reusing



the performance model in different contexts as the prediction
process automatically adapts to new situations.

V. MODEL VALIDATION

The model validation process analyzes and evaluates a per-
formance model by comparing the model representation with
actual monitoring data. This can be used to derive a confidence
metric for the model. If the model detects inaccuracies, a recal-
ibration is triggered. We distinguish between two reasons for
degradation of model accuracy: (1) insufficient expressiveness
of the model, i.e., the system is not depicted reasonably well in
the model, and (2) evolving system state, i.e., the system was
once sufficiently modeled, but now evolved (due to changing
configuration or deployment).

Therefore, our model validation process is also two-fold as
we envision two types of simultaneously running evaluations
of the model accuracy:

1) Historic prediction accuracy analysis: Since all perfor-
mance predictions, as well as run-time measurements,
are stored in the performance repository, we can com-
pare the predicted performance metrics with the actual
measurements. This allows us to compute a confidence
metric for the model. We distinguish between active and
passive accuracy analysis. Passive analysis may only
use stored results of previous performance queries. Ac-
tive analysis autonomically issues performance queries
together with automated performance tests, using for
example BenchFlow [18]. By comparing the results with
the predicted performance, additional insights about the
model can be acquired.

2) Self-reflective parameter analysis: Performance model
variables corresponding to observable measurement val-
ues can be directly evaluated in order to validate if
the representation is accurate. Similarly, dependencies
between different parameters can be tested by compar-
ing observations of the dependent variables with the
modeled dependency function. The resulting confidence
values are then aggregated to reflect the holistic model
confidence.

The advantage of the latter approach is that model inaccuracies
might be detected and remedied before a performance query
is actually issued by the user. Hence, we assume the historic
prediction accuracy analysis to be better suited for detecting
insufficient model expressiveness and the self-reflective pa-
rameter analysis for detecting evolving system states. Both
validation processes result in a confidence value for the model.
The lowest confidence is chosen, to represent the current
confidence of the model in itself. If a certain confidence
value (e.g., 95%) is undershot, a recalibration of the model
is triggered.

VI. MODEL RECALIBRATION

The recalibration process aims at adapting the current
system model representation in order to improve the model
accuracy. We group model inaccuracies into two types: (1)
Inaccurate parametrization and (2) structural inaccuracies.

Both types can be consequences of the reasons for model
inaccuracies listed above. While structural inaccuracies are
generally very hard to locate, wrongly or badly parameterized
variables can be identified and marked by self-reflective pa-
rameter analysis. Therefore, we assume that in the case of an
inaccurate model variable parametrization, the concrete model
variable is known.

a) Inaccurate parametrization: Inaccurate parametriza-
tion occurs if elements are correctly modeled, but their
variables are wrongly parameterized. For example, all calls
of an element could be modeled, but the frequency or the
ratio between those calls may be wrongly parameterized.
We envision several remedies to address inaccurate variable
parametrization.

• Improve current variable description: One way to improve
the current variable description is by relearning an empir-
ically observed description using additional more recent
monitoring data. If this does not solve the problem, a
different approach for relearning the variable description
can be utilized: As the modeling of monitoring streams
is a standard problem (e.g., in machine learning or
forecasting), different approaches qualify. Our framework
applies a collection of different algorithms from different
domains, in order to enable switching between them.

• Choose alternative variable description: Apart from
choosing another algorithm to characterize the variable,
the model can also change the way a variable is described.
Different possibilities include: (1) explicit user characteri-
zation, (2) empirical characterization based on monitoring
data, or (3) description via a dependency on another
model variable. This implies that dependencies can be
identified and characterized, which might change the
model structure. Additionally, this enables the model to
actively ignore a user given characterization if a deviation
from recent monitoring data is detected. Also, if several
different dependencies are modeled, the model is able to
switch to the most expressive one.
b) Structural inaccuracies: By structural inaccuracies we

mean, inaccuracies on the model elements level, i.e., one
or more elements are either missing or wrongly modeled.
An example could be a component that is deployed on a
different host or internally calling another component that is
not modeled at all.

One challenge of structural inaccuracies is what we call
problem area detection. As the model elements do not rep-
resent the correct structure of the system, it is difficult to
locate the problem area of a structural inaccuracy. Therefore,
as a first mechanism of dealing with structural inaccuracies,
a re-extraction of the system structure with state-of-the-art
model extraction tools (e.g., Walter et al. [10]) is triggered
in response to changing deployment and/or system update. If
a rediscovery of the structure does not solve the problem, the
model can automatically add additional black-box components
to account for unmodeled issues with response time, utilization
or software parallelism. As an example, if the monitored
response time of a component is always higher than predicted,



an additional dummy-element is added to the component,
delaying all requests by the monitored amount.

VII. RELATED WORK

Meta-self-awareness or meta-cognition has been of interest
in other research areas, such as artificial intelligence [19].
In the context of self-aware computing, Lewis et al. [20]
present a reference architecture for self-aware systems, which
also includes a component for meta-self-awareness. Giese et
al. [21] present a generic architecture with the example of a
self-aware and meta-self-aware smart home and discuss several
implications of meta-reflective self-awareness. They further-
more also introduce generic architectures for individual meta-
self-aware and meta-meta-self-aware systems [22]. Diaconescu
et al. [23] discuss the term of meta-self-awareness in the
context of collective systems and present an example for a
collective intelligent transport system.

As for architectural languages, the modeling language Ex-
ecUtable RuntimE MegAmodels (EUREMA) [24], used to
specify feedback loops, supports meta-self-awareness by lay-
ering feedback loops on top of each other. Other architec-
tural languages supporting meta-self-awareness include Multi-
Quality Auto-Tuning (MQuAT) [25] and the Descartes Mod-
eling Language (DML) [26]. However, apart from high-level
and architectural studies, we are not aware of any implemented
meta-self-awareness in computing systems.

VIII. CONCLUSION AND ROADMAP

In this paper, we presented our vision of self-aware per-
formance models. We identified and described four areas in
which performance model creation, maintenance and solution
can be improved using ideas from self-aware computing. This
in turn enables a meta-self-aware computing system as the
individual mechanisms of the self-aware system exhibit self-
awareness themselves. We presented concrete ideas of four
self-awareness processes applied in the tool-chain of a self-
aware computing system.

As the query-based tailored model is input for the model
solution process, we plan to realize the two steps sequentially.
The same applies for model validation and model recalibration.
However, we will work on query-based model tailoring as well
as model validation in parallel, as these processes complement
each other.

REFERENCES

[1] S. Kounev, P. Lewis, K. L. Bellman, N. Bencomo, J. Camara, A. Dia-
conescu, L. Esterle, K. Geihs, H. Giese, S. Götz et al., “The Notion of
Self-Aware Computing,” in Self-Aware Computing Systems. Springer,
2017, pp. 3–16.

[2] N. Huber, F. Brosig, S. Spinner, S. Kounev, and M. Bähr, “Model-Based
Self-Aware Performance and Resource Management Using the Descartes
Modeling Language,” TSE 2017, vol. 43, no. 5, 2017.

[3] N. Sato and K. S. Trivedi, “Stochastic Modeling of Composite Web
Services for Closed-form Analysis of their Performance and Reliability
Bottlenecks,” in International Conference on Service-Oriented Comput-
ing, 2007, pp. 107–118.

[4] J. F. Pérez and G. Casale, “Assessing SLA Compliance from Palladio
Component Models,” in SYNASC 2013, 2013, pp. 409–416.

[5] A. Bauer, N. Herbst, and S. Kounev, “Design and Evaluation of
a Proactive, Application-Aware Auto-Scaler,” in Proceedings of the
8th ACM/SPEC International Conference on Performance Engineering
(ICPE 2017), 2017, pp. 425–428.

[6] A. Koziolek, D. Ardagna, and R. Mirandola, “Hybrid Multi-Attribute
QoS Optimization in Component Based Software Systems,” Journal of
Systems and Software, vol. 86, no. 10, pp. 2542 – 2558, 2013.

[7] K. Krogmann, “Reconstruction of Software Component Architectures
and Behaviour Models using Static and Dynamic Analysis,” Ph.D.
dissertation, Karlsruhe Institute of Technology, 2010.

[8] M. Awad and D. A. Menascé, “Dynamic Derivation of Analytical Perfor-
mance Models in Autonomic Computing Environments,” in Proceedings
of the 2014 Computer Measurement Group Conference, 2014, pp. 159–
168.

[9] F. Brosig, N. Huber, and S. Kounev, “Automated Extraction of
Architecture-level Performance Models of Distributed Component-based
Systems,” in Proceedings of the 26th IEEE/ACM International Confer-
ence on Automated Software Engineering, ASE, 2011, pp. 183–192.

[10] J. Walter, C. Stier, H. Koziolek, and S. Kounev, “An Expandable Extrac-
tion Framework for Architectural Performance Models,” in QUDOS’17.
ACM, April 2017.

[11] P. Lewis, K. L. Bellman, C. Landauer, L. Esterle, K. Glette, A. Di-
aconescu, and H. Giese, “Towards a Framework for the Levels and
Aspects of Self-aware Computing Systems,” in Self-Aware Computing
Systems. Springer, 2017, pp. 51–85.

[12] P. Rygielski, M. Seliuchenko, and S. Kounev, “Modeling and Prediction
of Software-Defined Networks Performance using Queueing Petri Nets,”
in SIMUTools 2016, 2016, pp. 66–75.

[13] R. Osman and W. J. Knottenbelt, “Database System Performance Eval-
uation Models: A Survey,” Performance Evaluation, vol. 69, no. 10, pp.
471–493, 2012.

[14] H. Gomaa and D. A. Menascé, “Performance Engineering of
Component-based Distributed Software Systems,” in Performance Engi-
neering, 2001, pp. 40–55.

[15] H. Koziolek and R. Reussner, “A Model Transformation from the
palladio component model to layered queueing networks,” in SPEC
International Performance Evaluation Workshop, 2008, pp. 58–78.

[16] V. S. Sharma and K. S. Trivedi, “Quantifying Software Performance,
Reliability and Security: An Architecture-based Approach,” Journal of
Systems and Software, vol. 80, no. 4, pp. 493–509, 2007.

[17] F. Brosig, P. Meier, S. Becker, A. Koziolek, H. Koziolek, and S. Kounev,
“Quantitative Evaluation of Model-Driven Performance Analysis and
Simulation of Component-based Architectures,” TSE 2015, vol. 41,
no. 2, pp. 157–175, 2015.

[18] V. Ferme and C. Pautasso, “Towards Holistic Continuous Software
Performance Assessment,” in Proceedings of the 8th ACM/SPEC In-
ternational Conference on Performance Engineering. New York, NY,
USA: ACM, 2017, pp. 159–164.

[19] M. T. Cox, “Field Review: Metacognition in Computation: A Selected
Research Review,” Artificial intelligence, vol. 169, no. 2, pp. 104–141,
2005.

[20] P. R. Lewis, A. Chandra, F. Faniyi, K. Glette, T. Chen, R. Bahsoon,
J. Torresen, and X. Yao, “Architectural Aspects of Self-Aware and
Self-Expressive Computing Systems: From Psychology to Engineering,”
Computer, vol. 48, no. 8, pp. 62–70, Aug 2015.

[21] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and S. Kounev, “Archi-
tectural Concepts for Self-aware Computing Systems,” in Self-Aware
Computing Systems. Springer, 2017, pp. 109–147.

[22] H. Giese, T. Vogel, A. Diaconescu, S. Götz, and K. L. Bellman, “Generic
Architectures for Individual Self-aware Computing Systems,” in Self-
Aware Computing Systems. Springer, 2017, pp. 149–189.

[23] A. Diaconescu, K. L. Bellman, L. Esterle, H. Giese, S. Götz, P. Lewis,
and A. Zisman, “Architectures for Collective Self-aware Computing
Systems,” in Self-Aware Computing Systems. Springer, 2017, pp. 191–
235.

[24] T. Vogel and H. Giese, “Model-Driven Engineering of Self-Adaptive
Software with EUREMA,” ACM Trans. Auton. Adapt. Syst., vol. 8, no. 4,
pp. 18:1–18:33, Jan. 2014.

[25] S. Gotz, C. Wilke, S. Cech, and U. Aßmann, “Architecture and
Mechanisms for Energy Auto Tuning,” Proc. Sustainable ICTs and
Management Systems for Green Computing, pp. 45–73, 2012.

[26] S. Kounev, N. Huber, F. Brosig, and X. Zhu, “A Model-based Approach
to Designing Self-aware IT Systems and Infrastructures,” Computer,
vol. 49, no. 7, pp. 53–61, 2016.


