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Translations of Service Level Agreement in
Systems Based on Service-Oriented

Architectures

ADAM GRZECH, PIOTR RYGIELSKI, and PAWEŁ ŚWIĄTEK
Institute of Computer Science, Wroclaw University of Technology, Wroclaw, Poland

The gain of the article is to introduce and to discuss a formal speci-
fication of a computer system’s service level agreement (SLA) and its
translation into the structure of complex services (composed of
atomic services) delivering required functionalities and nonfunc-
tionalities in a distributed environment. It is assumed that the SLA
is composed of two parts specifying quantitative and qualitative
requirements. The former requirements define the structure of the
adequate complex services in form of a directed graph, where poten-
tial parallelism of atomic services performance may be taken into
account. The latter—qualitative requirements—are applied to select
the optimal complex service realization scenario; it is based on
assumption that various atomic services distinguished in the complex
services structures are available at the considered distributed envir-
onment in different versions and locations. Different versions of
atomic services are atomic services delivering the required func-
tionalities and satisfy nonfunctionalities at various levels. Different
locations (installation place) of available atomic services means
that the cost of atomic services delivery (communication and calcu-
lation) depends on parts of the distributed systems where the services
are performed. The proposed model of SLA translation into complex
services structures and variants may be applied—among others—
to calculate upper and lower complex services’ delivery times and
to estimate the validity of possible parallelism in complex services.
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INTRODUCTION

In systems based on a service-oriented architecture (SOA) paradigm, complex
services are delivered by a distributed computer communication system as a
composition of properly selected atomic services (Johnson et al. 1995; Milanovic
and Malek 2004). Each atomic service provides certain and well-defined func-
tionality and, moreover, is characterized by parameters describing quality of
required and delivered service. Functionality of requested complex service is a
sum of functionalities of ordered atomic services; the order is a consequence
of complex service decomposition into simple tasks ruled by same time and data
interdependencies. Besides requested functionality, the service requestor may
specify certain nonfunctional properties of complex service formulated in terms
of security, availability, cost, response time, quality measures, etc. Values of the
nonfunctional parameters—given in the particular service level agreement (SLA;
Keller and Ludwig 2003; Li et al. 2008)—of the requested complex service may be
delivered without changes or should be negotiated before acceptance (Ander-
son et al. 2005). In order to deliver complex service with the requested functional
and nonfunctional properties, appropriate atomic services must be chosen in the
process of complex service composition.

One of the most important nonfunctional properties of services is service
response time, which is a commonly used measure of the quality of service
(QoS). Service response time is mainly influenced by three factors: execution
time of atomic services, load of the system (number of requests present in the
system), and communication delays on links connecting atomic services. In
order to guarantee the service response time stated in the SLA all these factors
must be taken into account in the process of service composition.

SLA TRANSLATION MODEL

It is assumed that new incoming ith complex service request is characterized
by proper SLA description denoted by SLAi. The SLAi is composed of two
parts describing the ith complex service request’s functional and nonfunc-
tional requirements, denoted respectively by SLAfi and SLAnfi. The first part
characterizes functionalities that have to be performed, and the second con-
tains values of parameters representing various required quality of service
aspects (delivery times, security levels, guarantees, etc.).

The SLAfi is a set of distinguished, separated, and ordered functionalities
subsets:

SLAfi ¼ Ci1;Ci2; . . . ;Cij ; . . . ;Cini

� �
ð1Þ

where C(i) (CðiÞ ¼ Ci1 [ Ci2 [ � � � [ Cij [ � � � [ Cini
) is a set of all functional-

ities necessary to complete the ith complex service request, Ci1 � Ci2 �
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� � � � Cij � � � � � Cini
is an ordered distinguished functionalities subsets

required by the ith complex service request; Cij�Ci,jþ1 (for j¼ 1, 2, . . . ,
ni� 1) denotes that delivery of functionalities from the subset Ci, jþ 1 cannot
start before completing functionalities from the Cij subset, and Cij ¼�
uij1;uij2; . . . ;uijmj

�
(for i¼ 1, 2, . . . ,ni) is a subset of functionalities uijk

(k¼ 1, 2, . . . ,mj) that may be delivered in a parallel manner (within Cij sub-
set); the formerly mentioned feature of particular functionalities is denoted
by uijkjuijl (uijk, uijl2Cij for k, l¼ 1, 2, . . . ,mj and k 6¼ l).

The proposed scheme covers all possible cases; ni equal to 1 (ni¼ 1)
means that all required functionalities may be delivered in parallel manner,
and mj equal to 1 (mj¼ 1 for j¼ 1, 2, . . . ,ni) means that all required function-
alities have to be delivered in sequence.

It is also assumed that the uijk (j¼ 1, 2, . . . ,ni and k¼ 1, 2, . . . ,mj) func-
tionalities are delivered by atomic services available at the computer system
in several versions. It is assumed that the various versions of the dis-
tinguished atomic service offer exactly the same functionality and different
values of nonfunctional parameters.

The nonfunctional requirements may be decomposed into separate sub-
sets of nonfunctionalities in a manner similar to that introduced for functional
requirements; that is,

SLAnfi ¼ Hi1;Hi2; . . . ;Hij ; . . . ;Hini

� �
ð2Þ

where Hij ¼
�
cij1; cij2; . . . ; cijmj

�
is a subset of nonfunctional requirements

related respectively to the Cij ¼
�
uij1;uij2; . . . ;uijmj

�
subset of functionalities.

According to the above assumption the SLAfi of the ith complex service
request may be translated into ordered subsets of atomic services:

SLAfi ¼ Ci1;Ci2; . . . ;Cij ; . . . ;Cini

� �
) ASi1;ASi2; . . . ;ASij ; . . . ;ASini

� �
ð3Þ

where fASi1;ASi2; . . . ;ASij ; . . . ;ASini
g is a sequence of atomic services subsets

satisfying an order (ASi1 � ASi2 � � � � � ASij � � � � � ASini
) predefined by the

order in the functionalities subsets Ci1 � Ci2 � � � � � Cij � � � � � Cini

(Figure 1).
The order in sequence of atomic services subsets is interpreted as the

order in functionalities subsets: ASij�ASi,jþ1 (for j¼ 1, 2, . . . ,ni� 1) states
that atomic services from the subset ASi, jþ 1 cannot be started before all
services from the ASij subset are completed.

Each subset of atomic services ASij (for j¼ 1, 2, . . . ,ni) contains aijk
atomic services (for k¼ 1, 2, . . . ,mj) available at the computer system in
several versions aijkl (l¼ 1, 2, . . . , l(k)); ASij ¼ aij1;aij2; . . . ; aijni

� �
. Moreover,

it is assumed that any version aijkl (l¼ 1, 2, . . . , l(k)) of the particular aijk
(aijk¼ {aijk1, aijk2, . . . , aijkl(k)}) atomic services (for k¼ 1, 2, . . . ,mj) assures
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the same required functionality uijk and satisfies nonfunctional requirements
at various levels.

The above assumption means that—if fun(aijkl) and nfun(aijkl) denote,
respectively, functionality and level of nonfunctional requirements satisfac-
tion delivered by the lth version of the kth atomic service (aijkl2ASij), the
following conditions are satisfied:

funðaijklÞ ¼ uijk for l ¼ 1; 2; . . . ;mk;

nfunðaijklÞ 6¼ nfunðaijkrÞ for l; r ¼ 1; 2; . . . ;mk and l 6¼ r :

The ordered functionalities subsets SLAfi determine the possible level of
parallelism at the ith required complex service performance (in the particular
computation and communication environment). The parallelism level lp(i)
for the ith required complex service is uniquely defined by the maximal
number of atomic services that may be performed in a parallel manner at
distinguished subsets of functionalities (SLAfi); that is,

lpðiÞ ¼ max m1;m2; . . . ;mj ; . . . ;mni

� �
ð4Þ

The possible level of parallelism may be utilized or not in designing a
performance scenario for the required ith complex service (Stefanovic and
Martonosi 2000). Based on the above notations and definitions, two extreme
required ith complex service compositions may be defined: the first extreme
composition fully utilizes possible parallelism (available due to computation

FIGURE 1 Transformation of functionalities into sets of atomic services.
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and communication resources parallelism), and the second extreme compo-
sition means that the required functionalities are delivered one by one (no
computation and communication resources parallelism). The above pre-
sented discussion may be summarized as shown in Figure 2.

The known functional requirements SLAfi may be presented as a
sequence of subsets of functionalities, where the size of the mentioned latter
subsets depends on the possible level of parallelism. The latter defines a set of
possible performance scenarios (graphs) according to which the required
complex service may be delivered. The space of possible solutions is lim-
ited—from one side—by the highest possible parallelism and—from the other
side—by the simplest complex service realization scenario, according to
which all the required atomic services are performed one by one in sequence.

The above-mentioned extreme compositions determine some set of
possible ith required complex service delivery scenarios. The possible

FIGURE 2 Two extreme performance scenarios for required complex service.
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scenarios can be represented by a set of graphs GBi—nodes of the graphs
represent particular atomic services assuring the ith required complex service
functionalities, and the graph edges represent an order according to which
the atomic services functionalities have to be delivered.

The process of obtaining a complex service execution scenario graph is
explained in detail in the next section.

PREREQUISITES FOR DETERMINING A COMPLEX SERVICE
EXECUTION SCENARIO

The lth (l¼ 1, 2, . . . , L) complex service cs(l) is a response for a call for service
fully described by the appropriate SLA denoted by the ith SLAi¼ (SLAfi,
SLAnfi), which contains information about functionality (SLAfi) required by
the user and nonfunctional requirements (SLAnfi) determining the required
level of the quality of service. The functional part of SLAfi¼ (Ui, Ri) is a sub-
ject of the structure composition process, which delivers a set of atomic func-
tionalities Ui ¼ fui1; . . . ;uini

g present in system and defines the allowed
order of execution of the required functionalities, with use of precedence
relations �, given in matrix Ri.

The discussed precedence matrix describing a set of precedence rela-
tions may be—in the simplest case—described by a square binary order con-
straints matrix Ri with size (niþ 2)� (niþ 2). The Ri matrix defines which
functionalities are bound with relation of precedence.

An exemplary order constraints (precedence) matrix is presented below:

Ri ¼

0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 0 1
0 0 0 0 0

2
66664

3
77775 ð5Þ

Matrix Ri has a dimension 5� 5, which corresponds to three atomic
functionalities with the addition of abstract starting and ending functionality
Ui¼ {uis, ui1, ui2, ui3, uie}. The matrix in this example should be understood
as follows:

. Column 1—Functionality uis (abstract start functionality) should not be
preceded by any other functionality.

. Column 2—Functionality ui1 can be preceded by functionality uis or ui3.

. Column 3—Functionality ui2 can be preceded by functionalities ui1 or ui3.

. Column 4—Functionality ui3 can be preceded by functionalities uis, ui1,
or ui2.

Translation of SLA in Systems Based on SOA 615
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. Column 5—Functionality uie (abstract end functionality) can be preceded
by functionalities ui2 or ui3.

Order constraints given with matrix Ri can be transformed into descrip-
tion using the precedence relation � as follows:

uis � fui1;ui3g; ui1 � fui2;ui3g; ui2 � fui3;uieg;
ul3 � ful1;ul2;uleg; uie � ; ð6Þ

In general, binary 1 in the kth row and in the jth column (ri(k,j)¼ 1) means
that functionality uij can be preceded by functionality uik. Zero value in
the kth row and in the jth column (ri(k,j)¼ 0) means that functionality uij can-
not be preceded by functionality uik. Having an abstract start and abstract
end is guaranteed by zeros in the j¼ 0 column and k¼niþ 1 row.

riðk;jÞ ¼ 1 if uik � uij

0 otherwise

n
ð7Þ

Moreover, each row (except for the k¼niþ 1 row) has to have at least
one 1 value, which guarantees the presence of exactly one end functional-
ity. Additionally, a guarantee of having exactly one start functionality is
determined by having at least one 1 in each column (except for the j¼ 0
column). The above assumptions can be summarized with the following
formulas:

8
k2f0;...;nig

Xniþ1

j¼1

riðk;jÞ � 1 ð8Þ

8
j2f1;...;niþ1g

Xni

k¼0

riðk;jÞ � 1 ð9Þ

Having functionalities set Ui ¼ fui1; . . . ;uini
g and order constraints matrix

Rl gives one the ability to build a base graph denoted by GBi.
GBi¼GB(SLAfi)¼GB({Ui, Ri})¼GB(VBi, EBi) is a graph defining the struc-
ture of complex service, where VBi¼ {vbi1, vbi2, . . . , vbik, . . . , vbin} is a set of
vertices of a base graph (each vertex vbik corresponds to proper function-
ality uik) and EBi is a set of edges corresponding to the precedence rela-
tions defined by matrix Ri.

An exemplary graph for the Ri matrix (Eq. (5)) and functionalities set
Ui¼ {uis, ui1, ui2, ui3, uie} is presented in Figure 3. Each binary value 1 repre-
sents an edge between functionalities in graph GBi.

616 A. Grzech et al.
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COMPLEX SERVICE SCENARIO COMPOSITION

The structure of complex service determines which atomic functionalities are
delivered within it and what the order bounds are. Such service can be an
object of an optimization process concerning the determination of the exact
order of functionalities delivery and parallel execution manner. The result of
processing complex service structure is called the ith complex service
execution scenario.

The complex service execution scenario is a graph GCi obtained in the
scenario determination process. Scenario GCi¼GC(SLAfi)¼GC({Ui, Ri})¼
GC(VCi, ECi) is a graph containing vertices set VCi¼VBi¼ {vbi1, vbi2, . . . ,
vbik, . . . , vbin}, which are the same as in the service structure and edge set
ECi¼ EBinEAi, which is a subset of structure edge set EBi:

ECi � EBi

ECi [ EAi ¼ EBi

The problem of finding an optimal scenario can be formulated as follows:

Given:

. the ith complex service request given with SLAi

. a graph GBi with set of vertices VBi and set of edges EBi

. the order constraints matrix Ri

. an other parameters vector ai

Find:

Such an adjacency matrix RGCi
(as a representation of graph GCi) from a set

of binary matrices of size (niþ 2)� (niþ 2) that minimizes the function f:

R�GCi
¼ arg min

RGCi

f RGCi
; aið Þ ð10Þ

FIGURE 3 Graph GBi representation for matrix Ri (Eq. (5)). Each binary 1 value in the matrix
corresponds to an edge in structure graph GBi. Redundant edges make the graph cyclic.
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with respect to constraints:

. Graph GCi represented by matrix RGCi
should be acyclic.

. Graph GCi represented by matrix RGCi
should have exactly one abstract

start and abstract end functionality:

8
k2f0;...;nig

Xniþ1

j¼1

rCGiðk;jÞ � 1 ð11Þ

8
j2f1;...;nlþ1g

Xni

k¼0

rCGiðk;jÞ � 1: ð12Þ

. Matrix RGCj
should comply with order constraints matrix Ri:

RGCi
� Ri ¼ RGCi

.

Satisfaction of the order constraints can be determined via logical multi-
plication of each binary element of matrix. Operation � is defined as follows:

A� B ¼ C

8
k2f0;...;niþ1g

8
j2f0;...;niþ1g

: ckj ¼ 1 if akj ¼ 1 and bkj ¼ 1
0 otherwise

n

Equality RGCi
� Ri ¼ RGCi

determines the satisfaction of order constraints.
Function f RGCi

; aið Þ can be any function determining the quality of the ser-
vice level; for example, execution time, cost, security level, reliability, etc.
Depending on the function relationship with quality (function value growth
can mean a quality level increase or decrease), the optimization task might
be maximization or minimization.

Determination of an optimal scenario consists in removing a subset of
edges EAi from the EBl set in such way that each vertex in the resulting graph
belongs to some path connecting the starting vertex and ending vertex in
such way that input and output degrees of vertices ui1;ui2; . . . ;uini

g
�

are
at least equal to 1. Moreover, the input degree of the starting vertex and
the output degree of the ending vertex must be equal to 0. Additionally,
the resulting graph GCi representing a scenario must be acyclic.

The set of edges that are subject to be removed is uniquely defined by a
result of subtraction of adjacency matrices R�Ai

¼ Ri � R�GCi
. The remaining

binary 1 values in the adjacency matrix R�Ai
define edges that are subject to

be removed from graph GBi to obtain an optimal complex service execution
scenario GC�i .

For an exemplary matrix Ri (Eq. (5)) there are six possible scenario
graphs GCl. All are presented in Figure 4.
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The scenario presented in Figure 4(a) was obtained after substraction
RGCia

¼ Ri � RGAia
:

RGCia
¼

0 1 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 0 1
0 0 0 0 0

2
66664

3
77775�

0 0 0 0 0
0 0 0 1 0
0 0 0 1 0
0 1 1 0 0
0 0 0 0 0

2
66664

3
77775 ¼

0 1 0 1 0
0 0 1 0 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

2
66664

3
77775

One can notice that the scenarios presented in Figure 4 differ in case of
serial and parallel execution possibilities. All functionalities from scenarios
(b), (c), and (d) are executed in series (one by one) so one may suspect that
the quality expressed, for example, as execution time may be worse than in
scenarios (a), (e), and (f), which use parallel execution. Parallel execution of
functionalities shortens complex service execution time but utilizes more of
the system resources than a serial execution scenario at a particular moment.

In the case of a serial scenario, we can estimate the time of execution of
complex service using the following equation:

t GCiserialð Þ ¼
Xniþ2

k¼1

t vbikð Þ þ t ECið Þ; ð13Þ

FIGURE 4 Six possible scenario graphs GCi obtained for structure graph GBi with order con-
straints given with matrix Ri (Eq. (5)). Black edges are edges from set ECi, grey ones are from
set EAi.
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where t(ECi) is an overall time of transferring requests between functional-
ities in a complex service scenario. If a transfer delay request between the
kth and (kþ 1)th functionality is denoted as t(eclk,kþ1), calculation of transfer
times in the whole complex service with a serial scenario is as follows:

ECi ¼
�
ecikj : rCGiðk;jÞ ¼ 1

�
ð14Þ

t ECið Þ ¼
Xniþ1

k¼1

t eclk;kþ1

� �
: ð15Þ

In an extreme parallel scenario the above calculations are slightly different.
Time of execution of a complex service is calculated as follows:

t GCiparallel

� �
¼ max

k2 1;2;...;niþ2f g
t vbikð Þ þ t eci1kð Þ þ t eciknþ2ð Þf g ð16Þ

Two extreme scenarios—with best and worst execution times—are pre-
sented in Figure 5.

The situation where the maximum the number of parallel functionalities
delivery is limited should be considered. A need for the introduction of such
a limitation may arise in the case where utilization of a larger number of par-
allel functionalities delivery can result in a decrease of end-user quality; for
example, increases the cost of service to such a level that it violates the user’s
requirement.

In order to determine parallelism in an execution scenario there is
a need to introduce a measure that will determine the parallelism level.

FIGURE 5 Two extreme scenario graphs. Serial scenario (a) gives the worst execution time
and extreme parallel scenario (b) gives the best execution time.
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In the literature, (Rau and Fisher 2000) the most popular parallelism level is an
instruction-level parallelism (ILP), which measures the number of operations that
can be done simultaneously divided by the number of all operations that should
be performed (Eq. (17)):

lpILP ¼
nipar

ni
ð17Þ

where lpILP is an ILP measure and nipar is a number of operations that can be exe-
cuted in a parallel manner.

For a scenario given by a graph, other parallelism measures can be used;
for example, a measure that uses a mean weighted path length in the graph,
where weights correspond to time needed to deliver proper functionality uik.
The proposed measure lpMP can be defined as follows:

lpMP GCið Þ ¼ 1

np

Xnp

k¼1

plðkÞ
 !�1

ð18Þ

where np is a number of paths in graph GCi and pi(k) is a weighted kth path
length. Other parallelism measures can be found, for example, in Jain and
Rajaraman (1994).

In order to optimize end-user quality there is need to introduce constraints
concerning the parallelism level of execution scenario graph GCi. When there
are no constraints in SLAnfi concerning QoS parameters—for example, cost—
the formerly formulated problem can be used without change; otherwise,
one should add a constraint concerning the parallelism level of scenario:

lpðGCiÞ ¼ lpðRGCi
Þ 	 lpmax;

where lp function returns a parallelism level (with respect to chosen measure)
for a graph or for an adjacency matrix that is a representation of a graph. This
function should be designed in such a way that higher values mean delivery
of a larger number of functionalities simultaneously, and smaller values mean
that the scenario graph is mainly executed as an extreme serial scenario.

QUANTITATIVE ANALYSIS OF COMPLEX
SERVICES REALIZATIONS

In general, the optimization task may be formulated (under the assumption
that all scenarios originating from the GBi graph deliver at least nonfunctional
requirements) as follows:

SLA�nfi  max
GCi1;GCi2;...;GCisf g

max
aijkl2aijk2ASij

Hi1;Hi2; . . . ;Hini
f g

� �
:

Translation of SLA in Systems Based on SOA 621
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The latter task may be reduced where the particular ith required complex
service composition (i.e., a graph equivalent to a particular ith required com-
plex service processing scheme) is assumed. In such a case, the optimization
task can be formulated as:

SLA�nfiðGCiÞ  max
aijkl2aijk2ASij

Hi1;Hi2; . . . ;Hini
f g;

where GCi represents the selected ith required complex service scenario
(composition).

The above formulated task means that the optimal versions of atomic
services, determined by the selected ith required complex service perform-
ance scenario, should be selected. Such formulations of optimization pro-
blems can be found in Grzech et al. (2010) and Grzech and Swiatek (2009).

Any graph GCip (GCip2GBi and p¼ 1, 2, . . . , s) (the pth possible per-
formance scenario for the required ith complex service) may be interpreted
as a root graph for a set of realization graphs {Gipr} for r¼ 1, 2, . . . ,R, where R
is a number of all different combinations of atomic services versions. For
example, assuming that the are three distinguished groups of atomic services
(ni¼ 3) containing, respectively, 3, 2, and 3 atomic services (m1¼ 3, m2¼ 2,
and m3¼ 3) with two versions of each, the example of root graph is pre-
sented in Figure 6; in the considered example the required complex service

FIGURE 6 Root graph for the required complex service realization graphs.
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root graph is a source of 256 (R¼ 256) different ith complex service realization
graphs with possible level of parallelism equal to 3 (lp(i)¼ 3). The illustrative
calculations simply show how the size of the complex services (measured by
the number of atomic services necessary to complete the required complex
service) influences the increase of the number of possible solutions.

Any two realization graphs (determined by a particular root graph
defined by a particular complex service functionalities) in the set {Gipr} differ
at least by one version of the set of atomic services aijk standing for the graph
GCip nodes. Two possible realization graphs (Gip1 and Gip2) for the above
required complex service root graph are presented in Figure 7.

COMPLEX SERVICE DELIVERY TIMES AND
RESOURCES UTILIZATION

The two distinguished extreme compositions of the ith required complex ser-
vice—that is, based on the highest possible parallelism of atomic services
(represented by the Gipar graph) and based on the sequence of atomic ser-
vices (represented by the Giseq set of graphs)—can be used to estimate the
limits of the ith required complex service completing times.

Let us denote by d(Gipar) and d(Giseq) the completion times for the two
extreme compositions for the ith required complex service execution time.
The introduced times (delays) satisfy the inequalities given below.

FIGURE 7 Two possible complex service realization graphs for root graph (Figure 6).
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For the highest possible parallel composition of the ith required com-
plex service (under the assumption that the computation and communication
resources parallelism, available at the distributed system, does not introduce
any complex service performance limits):

dðGiparÞ 	 max
k¼1;2;...;m1

cominðai1kÞ þ max
k¼1;2;...;m1

calðai1kÞ

þ
Xni�1

j¼1

max
k¼1;2;...;mj ;l¼1;2;...;mjþ1

comðaijk;ai;jþ1;lÞ þ max
l¼1;2;...;mjþ1

calðai;jþ1;lÞ
� �

þ max
l¼1;2;...;mni

comoutðainilÞ; ð19Þ

where comin(ai1k) is a communication delay between the ith complex service
input interface and the kth (k¼ 1, 2, . . . ,m1) atomic service from the Ai1 set;
cal(ai1k) is a calculation time of the kth (k¼ 1, 2, . . . ,m1) atomic service from
the Ai1 set; com(aijk, ai,jþ1,l) is a communication delay between the kth
(k¼ 1, 2, . . . ,mj) and lth (k¼ 1, 2, . . . ,mjþ1) atomic services belonging to
two separate, neighboring, and ordered sets of atomic services Aij and Ai,jþ1,
respectively; cal(aijk) is a calculation time of the kth (k¼ 1, 2, . . . ,mj) atomic
service from the Aij set; and comoutðainikÞ is a communication delay between
the kth (k ¼ 1; 2; . . . ;mni

) atomic service from the Aini
set and the ith complex

service output interface.
For sequence composition of the ith required complex service (under

the assumption that the computation and communication resources parallel-
ism does not exist and the complex service is composed of atomic services
performed one by one):

dðGiseqÞ ¼ max
k¼1;2;...;m1

cominðai1kÞ

þ
Xni

j¼1

Xmj

k¼1

calðaijkÞ þ ðmj � 1Þ max
l;u2f1;2;...;mjg;l 6¼u

comðaijl ;aijuÞ
� � !

þ max
k¼1;2;...;mni

comoutðainikÞ; ð20Þ

where com(aijl, aiju) is a communication delay between successive atomic
services ordered according to the given Giseq.

It is rather obvious that the above given expressions for d(Gipar) and
d(Giseq) present, respectively, lower and upper ith complex service com-
pletion (delivery) times and, moreover, that the compared times always
satisfy the following inequality: d(Gipar)	d(Giseq).

The value of d(Giseq)�d(Gipar), which is always nonnegative, may be
considered as a simple measure of parallelism attractiveness at the ith
complex service’s completing procedures. If the distance between the
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two considered completion times is relatively high, the parallel processing
of the selected atomic services is worth organizing and deploying. If the
distance between the two compared values is small, then all efforts neces-
sary to organize and perform atomic services in a parallel manner are not
compensated by noticeable reduction of the ith complex service com-
pletion time.

The value d(Giseq)�d(Gipar), that is, parallelism attractiveness,
strongly depends on possible parallelism in the ith complex service com-
pletion procedures; that is, level of resources parallelism (the latter is mea-
sured by the highest number of atomic services that can be computed in
parallel). Assurance of the highest possible level in computing atomic ser-
vices in a parallel manner is possible if, and only if, a required level of
resources distribution is obtainable. This means that the possible parallel-
ism attractiveness should be compared with the efficiency of the required
resources utilization.

The above discussed d(Giseq)�d(Gipar) value may be applied both as a
simple measure of resource utilization in a distributed environment as well as
for distributed environment design purposes. The gain of the former appli-
cation is to evaluate resource utilization factors reflecting the validity of the
distributed environment (especially available parallelism) for required com-
plex services realization purposes. The aim of the latter is to predict the
required level of resources parallelism for a known set of complex services
(given by a known set of complex services SLA).

EXPERIMENTAL STUDY

In the former analysis a lower and upper bound for service completion time
(represented as a graph) were introduced (Eq. (19) for parallel and Eq. (20)
for serial). Moreover, there has been a parallelism measure for graph Gi intro-
duced (Eq. (4)) having its upper and lower bound dependent on number of
vertices used in graph, respectively, lp Gi secð Þ ¼

Pni

k¼1 mk and lp(Gipar)¼ 1.
Of course, one can use other measures to describe the possible graph paral-
lelism level.

Having such a parallelism measure allows estimating differences in
service completion times with respect to various values of the mentioned
measure. This can be used to estimate the benefit (expressed as service com-
pletion time in this example) of using scenario graphs with various parallel-
ism level values. The experimental example shows lower and upper bounds
of service completion time (shortest and longest obtainable completion time
at a given level of parallelism) for an exemplary graph with seven vertices
(two of the vertices represent service input and output interfaces). In the
example another parallelism measure (PM1) was used for comparison and
is expressed as total number of paths connecting input and output interfaces
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divided by the vertices count. PM2 is a measure mentioned previously (Eq.
(4)), expressed as the maximum number of vertices that can be used simul-
taneously in processing one request.

The experiment consisted of generating all possible directed acyclic
graphs with seven vertices and with a distinguished starting and ending ver-
tex. Each vertex of such a generated graph has been represented as a
computational node with the proper atomic service version installed in it.
Edges of the graph were modeled as communication channels linking com-
putational nodes. To model the system and execute the experiment an
OMNeTþþ simulation environment has been used.

For each of the generated scenario graphs there was a single complex
service request executed and completion time of such a composed complex
service with graph parallelism measure values has been stored. From the col-
lected data lower and upper bounds have been chosen (lowest and highest
possible completion times for the given parallelism measure value) and are
presented in Figure 8. Proper delays have been modeled as follows: single
atomic service completion time was set to 1 s; transport delay for each edge
was set to 0.1 s. It is noteworthy that the parallelism measures used in the
experiment have different domains, and best and worst possible completion
times in this example d(Gipar)¼ 1.2 and d(Giseq)¼ 5.6 are reached for various
parallelism level values. This example shows that the monotonicity of the
parallelism measures may vary. The completion time curve obtained for
PM2 is nonincreasing but the curve obtained for PM1 is nonmonotonic.

The approach discussed in this article is useful in various optimization
tasks concerning the shape of a service execution graph with respect to qual-
ity of service constraints. It can be implemented in a real SOA system for use

FIGURE 8 Lower and upper bounds (determined with completion time variation range) of
complex service completion time with respect to constraints put on parallelism-level value
using two different parallelism measures proposed.
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in the composition process in order to optimize the quality of services deliv-
ered with the parallelism-level restrictions.
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