
BUNGEE: An Elasticity Benchmark for
Self-Adaptive IaaS Cloud Environments

Nikolas Roman Herbst and Samuel Kounev
University of Würzburg

Würzburg, Germany

Email: {firstname.lastname}@uni-wuerzburg.de

Andreas Weber and Henning Groenda
FZI Research Center for Information Technology,

Karlsruhe, Germany

Email: {lastname}@fzi.de

Abstract—Today’s infrastructure clouds provide resource elas-
ticity (i.e. auto-scaling) mechanisms enabling self-adaptive re-
source provisioning to reflect variations in the load intensity over
time. These mechanisms impact on the application performance,
however, their effect in specific situations is hard to quantify
and compare. To evaluate the quality of elasticity mechanisms
provided by different platforms and configurations, respective
metrics and benchmarks are required. Existing metrics for
elasticity only consider the time required to provision and de-
provision resources or the costs impact of adaptations. Existing
benchmarks lack the capability to handle open workloads with
realistic load intensity profiles and do not explicitly distinguish
between the performance exhibited by the provisioned underlying
resources, on the one hand, and the quality of the elasticity
mechanisms themselves, on the other hand.

In this paper, we propose reliable metrics for quantifying the
timing aspects and accuracy of elasticity. Based on these metrics,
we propose a novel approach for benchmarking the elasticity of
Infrastructure-as-a-Service (IaaS) cloud platforms independent
of the performance exhibited by the provisioned underlying
resources. We show that the proposed metrics provide consistent
ranking of elastic platforms on an ordinal scale. Finally, we
present an extensive case study of real-world complexity demon-
strating that the proposed approach is applicable in realistic
scenarios and can cope with different levels of resource efficiency.

I. INTRODUCTION

Infrastructure-as-a-Service (IaaS) cloud environments pro-

vide the benefit of Utility Computing [1]. Accordingly, many

providers offer tools that allow customers to configure auto-

mated adaptation processes and thus benefit from the increased

flexibility and the ability to react on variations in the load

intensity. Predicting and managing the performance impact

of such adaptation processes and comparing the elasticity

of different approaches is still in its infancy. However, cus-

tomers require that performance related service level objectives

(SLOs) for their applications are continuously met.

Elasticity itself is influenced by these adaptation processes

as well as by other factors such as the underlying hardware, the

virtualization technology, or the cloud management software.

These factors vary across providers and often remain unknown

to the cloud customer. Even if they are known, the effect of

specific configurations on the performance of an application

is hard to quantify and compare. Furthermore, the available

adaptation processes are quite different in their methods and

complexity as shown in the surveys by Lorido-Botran et al. [2],

Galante et al. [3] and of Jennings and Stadler [4].

Previous works on elasticity metrics and benchmarks evalu-

ate this quality attribute only indirectly and to a limited extent:

The focus of existing metrics lays either on the technical

provisioning time [5], [6], [7], on the response time variability

[8], [9], [10], or on the impact on business costs [11], [12],

[13], [14], [15]. Existing approaches do not account for differ-

ences in the efficiency of the underlying physical resources and

employ load profiles that are rarely representative of modern

real-life workloads with variable load intensities over time.

However, the quality of a mechanism in maintaining SLOs

depends on the scenario and workload.

In this paper, we propose: (i) a set of intuitively under-

standable and hardware-independent metrics for characterizing

the elasticity of a self-adaptive platform, and (ii) a novel

benchmarking methodology, called BUNGEE, for evaluating

the elasticity of IaaS cloud platforms using the proposed

metrics. These contributions are partially based on our prior

work in [16] and in [17] presenting general discussions about

definitions and differentiation of terms, as well as initial ideas

and conceptual sketches without any evaluation of specific

metrics or benchmarking methodology.

The refined metrics we propose here support evaluating

both the accuracy and the timing aspects of elastic behavior.

We discuss how the metrics can be aggregated and used to

compare the elasticity of cloud platforms. The metrics are

designed to support human interpretation and to ease decision

making by comparing resource supply and demand curves.

The proposed elasticity benchmarking approach BUNGEE1

supports the use of characteristic open workload intensity

profiles tailored to the intended application domain. It em-

ploys the LIMBO2 toolkit [18] with its underlying modeling

formalism DLIM for describing load profiles [19]. Different

levels of platform efficiency are accounted for by performing

an automated calibration phase, the results of which are used

to adjust the load profile executed on each platform from

the considered platforms under test. In combination with the

proposed metrics this allows an independent and quantitative

evaluation of the actual achieved platform elasticity.

1BUNGEE Cloud Elasticity Benchmark: http://descartes.tools/bungee
2LIMBO Load Intensity Modeling: http://descartes.tools/limbo



In our evaluation, we demonstrate that the proposed met-

rics provide a consistent ranking of elastic platforms and

adaptation process configurations on an ordinal scale. The

BUNGEE benchmarking approach is evaluated by applying

it to an extensive real-world workload scenario considering

deployments on both a private cloud (based on CloudStack)

and the public Amazon Web Services (AWS) cloud. The

evaluation scenario employs a realistic load profile, consisting

of several millions of request submissions, and is conducted

using different types of virtual machine instances that differ

in terms of their exhibited performance. We demonstrate that

the proposed approach is applicable in realistic scenarios and

can cope with different levels of resource efficiency.

The remainder of this paper is structured as follows: In

Section II, we review related work on metrics and benchmarks.

Section III proposes a set of metrics for the quantification

of elasticity together with a metric aggregation approach.

Section IV explains the benchmarking approach BUNGEE

in detail. Section V describes the evaluation and Section VI

concludes the paper.

II. RELATED WORK

In this section, we group existing elasticity metrics and

benchmarking approaches according to their perspective and

discuss shortcomings.

Elasticity Metrics:
Several metrics for elasticity have been proposed so far:

(i) The “scaling latency” metrics in [5], [6] or the

“provisioning interval” in [7] capture the time to bring

up or drop a resource. This duration is a technical property

of an elastic environment independent of the demand changes

and the elasticity mechanism itself that decides when to

trigger a reconfiguration. Thus, these metrics are insufficient

to fully characterize the elasticity of a platform.

(ii) The “elastic speedup” metric proposed by SPEC OSG

in [7] relates the processing capability of a system at different

scaling levels. This metric does not capture the dynamic

aspect of elasticity and is regarded as scalability metric.

(iii) The “reaction time” metric in [20] can only be computed

if a unique mapping between resource demand changes

and supply changes exists. This assumption does not

hold especially for proactive elasticity mechanisms or for

mechanisms that have unstable (alternating) states.

(iv) The approaches in [8], [21], [10], [9] characterize elasticity

indirectly by analysing response times for significant changes

or for SLO compliance. In theory, perfect elasticity would

result in constant response times for varying arrival rates.

In practice, detailed reasoning about the quality of platform

adaptations based on response times alone is hampered due to

the lack of relevant information about the platform behavior,

e.g., the information about the amount of provisioned surplus

resources.

(v) Cost-based metrics are proposed in [11], [12], [13], [14],

[15] quantifying the impact of elasticity either by comparing

the resulting provisioning costs to the costs for a peak-load

static resource assignment or the costs of a hypothetical

perfect elastic platform. In both cases, the resulting metrics

strongly depend on the underlying cost model, as well as on

the assumed penalty for under-provisioning, and thus they do

not support fair cross-platform comparisons.

(vi) The integral-based “agility” metric proposed by SPEC

OSG in [7] compares the demand and supply over time

normalized by the average demand. They state that the metric

becomes invalid in cases where SLOs are not met. This metric

resembles our previously proposed “precision” metric in [16].

In this paper, we propose a refined version normalized by

time (see Section III-A) to capture the accuracy aspect of

elastic adaptations, considering also situations when SLOs

are not met.

Benchmarks:
Existing benchmarking approaches for elasticity [12], [13],

[14], [22], [11], [9], [10], [15], [21] account neither for differ-

ences in the efficiency of the underlying physical resources,

nor for the possibly non-linear scalability of the evaluated

platform. As a consequence, elasticity evaluation is not per-

formed in isolation from these related platform attributes, as

previously highlighted in [16]. In contrast, the approach pro-

posed in this paper uses the results from an initial scalability

and efficiency analysis to adapt the load profile generated for

evaluating elasticity, in such a way that differences in the

platform efficiency and scalability are factored out. Another

limitation of existing elasticity benchmarks is that systems are

subjected to load intensity variations that are not representative

of real-life workload scenarios. For example, in [9] and [22],

of scaling the workload downwards is completely omitted.

In [11], sinus like load profiles with plateaus are employed.

Real-world load profiles exhibit a mixture of seasonal patterns,

trends, bursts and noise. We account for the generic benchmark

requirement “representativeness” [23] by employing the load

profile modeling formalism DLIM previously presented in

[19].

III. ELASTICITY METRICS

The elasticity metrics we propose in the following are

specified based the definition of elasticity given in [16]:

Elasticity is the degree to which a system is able to adapt

to workload changes by provisioning and de-provisioning

resources in an autonomic manner, such that at each point

in time the available resources match the current demand

as closely as possible.

The resource demand induced by a given load intensity is

understood as the minimal amount of resources required for

fulfilling a given performance related service level objective

(SLO). The metrics we propose are designed to characterize

two core aspects of elasticity: accuracy and timing3. For all

metrics, the optimal value is zero corresponding to a perfectly

elastic platform. The following assumptions must hold for

applying the proposed elasticity metrics on a set of evaluated

3In [16], these aspects are referred to as precision and speed.



platforms: the existence of an autonomic adaption process, the

scaling of the same resource type, e.g., CPU cores or virtual

machines (VMs), and the respective resource type is scalable

within the same ranges, e.g., from 1 to 20 resource units.

The metrics evaluate the resulting elastic behavior as ob-

served from the outside and are thus designed in a manner in-

dependent of distinct descriptions of the underlying hardware,

the virtualization technology, the used cloud management soft-

ware or the employed elasticity strategy and its configuration.

As a consequence, the metrics and the measurement method-

ology are applicable in situations where not all influencing

factors are known. All metrics require two discrete curves

as input: The demand curve, which defines how the resource

demand varies during the measurement period, and the supply

curve, which defines how the amount of resources allocated

by the platform actually varies.

The following Section III-A describes the metrics for quanti-

fying the accuracy aspect whereas Section III-B presents a set

of metrics for quantifying the timing aspect. In Section III-C,

we outline an approach for the aggregation of the proposed

metrics allowing to rank multiple elastic cloud environments

and configurations consistently.

A. Accuracy

The under-provisioning accuracy metric accuracyU , is cal-

culated as the sum of areas
∑

U where the resource demand

exceeds the supply normalized by the duration of the mea-

surement period T , as visualized in Figure 1. Analogously,

the over-provisioning accuracy metric accuracyO is based on

the sum of areas (
∑

O) where the resource supply exceeds

the demand.

Under-provisioning: accuracyU [resource units] =

∑
U

T

Over-provisioning: accuracyO [resource units] =

∑
O

T

time resource demand resource supply 

re
so

ur
ce

s 

T 

U2 

O1 

U1 

U3 O3 

O2 

A1 A2 A3 B1 B2 B3 

Fig. 1: Illustrating example for accuracy (U, O) and timing (A, B)
metrics.

Thus, accuracyU and accuracyO measure the average

amount of resources that are under/over-provisioned during

the measurement period T . Since under-provisioning results

in violating SLOs, a customer might want to use a platform

that does not tend to under-provision at all. Thus, the challenge

for providers is to ensure that enough resources are provided

at any point in time, but at the same time distinguish them-

selves from competitors by minimizing the amount of over-

provisioned resources. Considering this, the defined separate

accuracy metrics for over-provisioning and under-provisioning

allow providers to better communicate their elasticity capabil-

ities and customers to select the provider that best matches

their needs.

B. Timing

We characterize the timing aspect of elasticity from the

viewpoint of the pure provisioning timeshare, on the one hand,

and from the viewpoint of the induced jitter accounting for

superfluous or missed adaptations, on the other hand.

1) Provisioning Timeshare: The two accuracy metrics allow

no reasoning as to whether the average amount of under-

/over-provisioned resources results from a few big deviations

between demand and supply or if it is rather caused by a

constant small deviation. To address this, the following two

metrics are designed to provide insights about the ratio of

time in which under- or over-provisioning occurs.

As visualized in Figure 1, the following metrics

timeshareU and timeshareO are computed by summing up

the total amount of time spent in an under- (
∑

A) or over-

provisioned (
∑

B) state normalized by the duration of the

measurement period. Thus, they measure the overall timeshare

spent in under- or over-provisioned states:

Under-provisioning: timeshareU =

∑
A

T

Over-provisioning: timeshareO =

∑
B

T

2) Jitter: Although the accuracy and timeshare metrics

characterize important aspects of elasticity, platforms can still

behave very differently while producing the same metric

values for accuracy and timeshare. An example is shown

in Figure 2.

Both Platforms A and B exhibit the same accuracy metrics

and spend the same amount of time in under-provisioned and

over-provisioned states respectively. However, the behavior of

the two platforms differs significantly. Platform B triggers

more unnecessary resource supply adaptations than the mech-

anism on Platform A.

The jitter metric addresses this instability and inertia of

elasticity mechanisms. A low stability increases adaptation

overheads and costs (e.g., in case of instance-hour-based

pricing), whereas a high level of inertia results in a decreased

SLO compliance.

The jitter metric compares the amount of adaptations in

the supply curve ES with the number of adaptations in the

demand curve ED. If a platform de-/allocates more than one

resource unit at a time, the adaptations are counted individually



resource demand resource supply

re
so

ur
ce

s

(a) Platform A

resource demand resource supply

re
so

ur
ce

s

(b) Platform B

Fig. 2: Platforms with different elastic behaviors that produce equal
results for accuracy and timeshare metrics

per resource unit. The difference is normalized by the length

of the measurement period T :

Jitter metric: jitter

[
#adaptations

time

]
=

ES − ED

T

A negative jitter metric indicates that the platform adapts

rather sluggish to changes in the demand. A positive jitter
metric means that the platform tends to oscillate like Platforms

A (little) and B (heavily) as in Figure 2. High absolute values

of jitter metrics in general indicate that the platform is not

able to react on demand changes appropriately. In contrast to

the accuracy and timeshare metrics, a jitter value of zero is

a necessary, but not sufficient requirement for a perfect elastic

system.

C. Metric Aggregation

The sections above introduced different metrics for captur-

ing core aspects of elasticity:

• accuracyU and accuracyO measure average resource

amount deviations

• timeshareU and timeshareO measure ratios of time in

under- or over-provisioned states

• jitter measures the difference between the frequencies

of changes in the demand and supply respectively.

To facilitate direct comparisons between platforms, we pro-

pose a way to aggregate the metrics and to build a consistent

and fair ranking by selecting an arbitrary baseline platform

for normalization. The aggregation and ranking of results

is similarly done in established industry benchmarks, e.g.,

SPEC CPU 20064. Our proposed approach to compute an

aggregated elastic speedup metric consists of the following

three steps:

1) Aggregate the accuracy and timeshare submetrics into

a weighted accuracy and a weighted timeshare metric,

respectively.

4SPEC CPU 2006: http://www.spec.org/cpu2006/

2) Compute elasticity speedups for both of the aggregated

metrics using the metric values of a baseline platform.

3) Use the geometric mean to aggregate the speedups for

accuracy and timeshare to an elastic speedup metric.

The resulting elastic speedup metric can be used to compare

platforms without having to compare each elasticity metric

separately. As a limitation of this approach, the jitter metric

is not considered (as it can become zero also in realistic cases

of imperfect elasticity). Each of the three steps is explained in

the following.

1) The accU and accO metrics are combined to a weighted

accuracy metric accweighted:

accweighted = waccU · accU + waccO · accO
with waccU , waccO ∈ [0, 1], waccU + waccO = 1

In the same way, the timeshareU and timeshareO
metrics (shortened to ts) are combined to a weighted

timeshare metric tsweighted:

tsweighted = wtsU · tsU + wtsO · tsO
with wtsU , wtsO ∈ [0, 1], wtsU + wtsO = 1

2) Let x be a vector that stores the metric results:

x = (x1, x2) = (accweighted, tsweighted)

For a metric vector xbase of a given baseline platform

and a metric vector xk of a benchmarked platform k, the

speedup vector sk is computed as follows:

sk = (skacc , skts) =

(
xbase1

xk1

,
xbase2

xk2

)

3) The elements of sk are aggregated to an elastic speedupk
metric using the geometric mean:

elastic speedupk =
√
skacc

· skts

The geometric mean produces consistent rankings inde-

pendent of the reference data based on which measure-

ments are normalized; it is generally considered as the

only correct mean for normalized measurements [24].

Thus, the ranking of the platforms according to the

introduced elastic speedupk is consistent, regardless

of the chosen baseline platform. Furthermore, different

preferences concerning the two elasticity aspects can be

taken into account by using a weighted geometric mean

to compute the elastic speedup metric:

elastic speedupweightedk
= skacc

wacc · skts

wts

with wacc, wts ∈ [0, 1], wacc + wts = 1

Elasticity Metric Weights:
The single number elasticity metric shown in the equation

above can be adjusted according to the preferences of the

target audience by using different weights. For example, the

accuracy weights waccU = 0.2, waccO = 0.8 allow to amplify

the influence of the amount of over-provisioned resources

compared to the amount of under-provisioned resources. A



reason for doing so could be that over-provisioning leads

to additional costs, which mainly depend on the amount of

over-provisioned resources. The cost for under-provisioning,

in contrast, does not depend that much on the amount of

under-provisioned resources, but more on how long resides in

an under-provisioned state. This observation can be taken into

account by using timeshare weights like: wtsU = 0.8, wtsO =
0.2. Finally, when combining the accuracy and timeshare
metrics, the weights wacc, wts can help to prioritize different

elasticity aspects. Here, weights like wacc = 1
3 , wts = 2

3
for example would double the importance of short under- and

over-provisioning periods compared to the importance of small
under- or over-provisioning amounts.

IV. BUNGEE ELASTICITY BENCHMARK

This section presents our the benchmarking approach that

is based on the initial sketch in [16] and addresses generic

and cloud specific benchmark requirements as stated in Hup-

pler [23], [25] and Folkerts et. al [12]. A general overview of

the benchmark components and of the benchmarking workflow

is given in this section. The conceptual ideas about the

essential benchmark components are discussed in individual

subsections. We provide an implementation of the benchmark

concept named BUNGEE5. Detailed information about its

benchmark implementation is provided in [26].

Fig. 3: Blueprint for the SUT and the BUNGEE benchmark controller

Figure 3 illustrates an elastic cloud platform architecture

as a blueprint for a infrastructure cloud “system under test”

(SUT) together with the benchmark controller, which runs the

benchmark. The individual benchmark components automate

the process for benchmarking resource elasticity in four se-

quential steps:

5BUNGEE Cloud Elasticity Benchmark: http://descartes.tools/bungee

1) Platform Analysis: The benchmark analyzes the SUT

with respect to the efficiency of its underlying resources

and its scaling behavior.

2) Benchmark Calibration: The results of the analysis are

used to adjust the load intensity profile injected on the

SUT in a way that it induces the same resource demand

on all compared platforms.

3) Measurement: The load generator exposes the SUT to a

varying workload according to the adjusted load profile.

The benchmark extracts the actual induced resource de-

mand and monitors resource supply changes on the SUT.

4) Elasticity Evaluation: The elasticity metrics are com-

puted and used to compare the resource demand and

resource supply curves with respect to different elasticity

aspects.

The remainder of this section explains the benchmark com-

ponents according to the following structure: Section IV-A ex-

plains how workloads are modeled and executed. Section IV-B

explains why analyzing the evaluated platform and calibrating

the benchmark accordingly is required and how it is realized.

Finally, Section IV-C explains how the resource demand curve

and the resource supply curve can be extracted during the

measurement.

A. Load Modeling and Generation

This section covers modeling and executing workloads

suitable for elasticity benchmarking.

Load Profile: A benchmark should stress the SUT in a

representative way. Classical performance benchmarks achieve

this by executing a representative mix of different programs.

An elasticity benchmark measures how a platform reacts when

the demand for specific resources changes. Thus, an elasticity

benchmark is required to induce a representative profile of

demand changes. Changes in demand and accordingly elastic

adaptation of the platform are mainly caused by a varying load

intensity. Hence, for elasticity benchmarking, it is important

that the variability of the load intensity is directly controlled by

generating precisely timed requests based on an open workload

profile. Workloads are commonly modeled either as closed

workloads or as open workloads [27]. In closed workloads new

job arrivals are triggered by job completions, whereas arrivals

in open workloads are independent of job completions.

Real-world load profiles are typically composed of trends,

seasonal patterns, bursts and noise elements. To address these

requirements, BUNGEE employs realistic load intensity pro-

files to stress the SUT in a representative manner.

V. Kistowski et al. present in [19] a formalism providing

means to define load intensity profiles in a flexible manner. The

corresponding LIMBO toolkit, described in [18], facilitates

the creation of new load profiles that are either automatically

extracted from existing load traces or modelled from scratch

with desired properties like seasonal patterns or bursts. The

usage of this toolkit and the underlying formalism within

BUNGEE allows the creation of realistic load profiles that

remain configurable and compact.



Load Generation: In order to stress an elastic platform in a

reproducible manner, it is necessary to inject accurately timed

requests into the SUT that mainly stress the resources that are

elastically scaled. Depending on the request response time,

the handling of consecutive requests (sending of a request and

waiting for the corresponding response) overlaps and therefore

requires a high level of concurrency. In its load generator,

BUNGEE employs the thread pool pattern (also known as

replicated worker pattern [28]) with dynamic assignments of

requests to threads. When the maximum response time is

known - for example when a timeout is defined for the requests

- the amount of threads required to handle all requests without

delays due to a lack of parallelism can be computed as shown

in [26]. These threads can either be located on one node or be

split up across several nodes. After each benchmark execution,

BUNGEE evaluates the request submission accuracy by check-

ing whether the 95th percentile of the deviation between the

defined load profile and the actual request submission times

remained below a certain threshold.

B. Analysis and Calibration

The resource demand of a platform for a fixed load intensity

depends on two factors: The efficiency of a single under-

lying resource unit and the overhead caused by combining

multiple resource units. Both aspects can vary from platform

to platform and define distinct properties namely efficiency

and scalability. Elasticity is a different property and should

be measured separately. We achieve this by analyzing the

load processing capabilities of a platform before evaluating

its elasticity. After such an analysis, it is known how many

resource units the platform needs for every static load intensity

level. The resource demand can then be expressed as a function

of the load intensity: demand(intensity). With the help of

this mapping function, which is specific for every platform, it

is possible to compare the resource demand to the amount of

the actually allocated resources. In the following section, we

explain how the mapping function can be derived.

time
resource demand resource supply

re
so

ur
ce

s

(a) Platform A - less efficient re-
sources

time
resource demand resource supply

re
so

ur
ce

s

(b) Platform B - more efficient re-
sources

Fig. 4: Different resource demand and supply curves for the same
load profile

Figure 4 illustrates the effect of the same workload on

two exemplary platforms. Since the resources of Platform

B are more efficient than those of Platform A, Platform B

can handle the load with less resources than Platform A. For

both platforms, there exist some points in time where the

platforms over-provision and other points in time where they

under-provision. As the resource demands of the platforms are

different, a direct comparison of their elasticity is performed

using cost models. (see Section II).

In contrast to related approaches, the idea of our approach

introduces an additional benchmark calibration step that ad-

justs the load profile injected on each tested platform in a

way that the induced resource demand changes are identical

on all platforms. By doing so, the possibly different levels

of efficiency of the underlying resources as well as different

scaling behaviors are compensated. With an identical injected

resource demands it is now possible to directly compare the

quality of the adaptation process and thus evaluate elasticity

in a fair way. The realisation consists of two steps, explained

in the following two subsections.

1) Platform Analysis: The goal of the Platform Analysis is

to derive a function that maps a given load intensity to the

corresponding resource demand. Hereby, the resource demand

is the minimum resource amount that is necessary to handle the

load intensity without violating a set of given SLOs. Therefore,

the analysis assumes a predefined set of SLOs. They have to

be chosen according to the targeted domain.

Since this Platform Analysis is not intended to evaluate

any elastic behavior, scaling is controlled manually by the

framework during the analysis phase. The results of three

hypothetical analyses are shown in Figure 5. The upper end of

the line marks the upper scaling bound and thus the maximal

load intensity the platforms can sustain without violating

SLOs. This upper bound is either caused by a limited amount

of available resources or by limited scalability due to other

reasons like limited bandwidth or increased overhead. In the

latter case, additional resources are available, but even after

adding resources the SLOs cannot be satisfied. Figure 5 shows

that the derived mapping function demand(intensity) is a

step function. The function is characterized by the intensity

levels at which the resource demand increases. Thus, analyzing

the platform means finding these levels.

The analysis starts by configuring the SUT to use one

resource instance. This includes configuring the load balancer

to forward all requests to this instance. Now, the maximum

load intensity that the platform can sustain without violating

the SLOs is determined as the level at which the resource

demand increases. In this paper, the maximum load intensity is

also referred to as the load processing capability. Several load

picking algorithms that are able to find the load processing

capability are discussed in [29]. We apply a binary search

algorithm to realize a searchMaxIntensity-function. Binary

search consumes more time than a model guided search but, in

contrast to the latter, it is guaranteed to converge and it is still

effective compared to a simple linear search. Since the upper

and lower search bounds are not known at the beginning, the

binary search is preceded by an exponential increase/decrease

of the load intensity to find those bounds. As soon as both

bounds are known, a regular binary search is applied. Once

the load processing capability for one resource is known, the

platform is reconfigured to use an additional resource unit



and the load balancer is reconfigured accordingly. After the

reconfiguration, the platform should be able to comply with the

SLOs again. The load processing capability is again searched

with a binary search algorithm. This process is repeated until

either there are no additional resources that can be added to

the platform, or a state is reached such that adding further

resources does not increase the load processing capability. In

both cases, the upper scaling bound is reached and the analysis

is finished.

2) Benchmark Calibration: The goal of the Benchmark
Calibration activity is to induce the same demand changes

at the same points in time on every platform. To achieve

this, BUNGEE adapts the load intensity curve for every

platform to compensate for different levels of efficiency of

the underlying resources and different scaling behaviors. The

mapping function demand(intensity) derived in the previ-

ous Platform Analysis step, contains information about both.

Figure 5 illustrates what impact different levels of efficiency

and different scaling behaviors may have on the mapping

function. Compared to Platform C, the underlying resources of

Platform D are more efficient. Hence, the steps of the mapping

function are longer for Platform D than for Platform C. For

both platforms, there is no overhead when adding further

resources. The resource demand is increasing linearly with

the load intensity and the length of the steps for one platform

is therefore independent of the load intensity. For Platform E,

in contrast, the overhead increases when additional resources

are used. As a result of this non-linear increasing resource

demand, the length of the steps of the mapping function

decreases for increasing load intensity.

As illustrated in Figure 6, the resource demand variations

on Platforms C-E are different when they are exposed to the

same load profile, although they offer the same amount of

resources. Different scaling behaviors and different levels of

efficiency of the underlying resources cause this difference. As

a basis for the transformation of load profiles, one platform is

selected as baseline to serves as reference for demand changes.

The induced resource demands on the compared platforms

are the same as for the baseline platform since the respective

transformed load profiles are used.

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(a) Platform C

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(b) Platform D

mapping function

0 25 50 75 100
Load Intensity

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(c) Platform E

Fig. 5: Different mapping functions

The resource demand of the baseline platform is assumed

to increase linearly with load intensity. Thus, the steps of the

mapping function are equal in length. Using this assumption,

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(a) Platform C

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(b) Platform D

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(c) Platform E

Fig. 6: Resource demand for the same load profile

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(a) Platform C

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(b) Platform D

load intensity resource demand

5h0m0s 11h0m0s
Time

0

25

50

75

100

A
rr

iv
al

 R
at

e 
[1

/s
]

0

1

2

3

4

R
es

ou
rc

e 
A

m
ou

nt

(c) Platform E

Fig. 7: Resource demands for platform specific adjusted load profiles

the mapping function demandbase(intensity) of the baseline

platform can be characterized by two parameters: The number

of steps nbase, which is equal to the assumed amount of avail-

able resources, and the maximum load intensity maxIntbase
that the base platform can sustain using all resources. The first

parameter is chosen as the maximum amount of resources

that all platforms support. The second parameter should be

greater than or equal to the maximum load intensity that

occurs in the load profile. Having defined the mapping function

demandbase(intensity), for every benchmarked platform k,

the load profile adjustment step finds an adjustment function

adjIntk(intensity) such that the following applies:

∀intensity ∈ [0,maxIntbase] :

demandbase(intensity) = demandk(adjIntk(intensity))

The adjustment function adjIntk(intensity) maps the

steps from the demandbase(intensity) function to steps of

the demandk(intensity) function. The result is a piecewise

linear function, whereby every linear section represents the

mapping of one step in the demandbase(intensity) to the

same step in the demandk(intensity) function. The param-

eters mi and bi that define the linear function yki
(x) =

mi ∗ x + bi mapping the intensities belonging to the ith step

of the demandbase(intensity) function to the ith step of the

demandk(intensity) function can be calculated as follows:

startIntki
= max{intensity|demandk(intensity) < i}

endIntki
= max{intensity|demandk(intensity) = i}

stepLengthki
= endIntki

− startIntki

mki
= stepLengthki

/(maxIntbase/nbase)

bki
= startIntki

− stepLengthki
∗ (i− 1)



and thus the function adjIntk(intensity) can be expressed

as:

adjIntk(x) =

⎧⎪⎪⎨
⎪⎪⎩

yk1
when startIntk1

< x ≤ endIntk1

...

ykn when startIntkn < x ≤ endIntkn

(1)

Having calculated the adjustment function

adjIntk(intensity), this function can be applied to the

original load profile intensity(t) = lp(t) in order to retrieve

a platform specific adjusted load profile lpk(t). This adjusted

load profile can then be used in the actual benchmark run.

lpk(t) = adjIntk(lp(t))

Figure 7 shows the induced load demand for Platforms C, D

and E using the adjusted load profiles. Although the platforms

have underlying resources with different levels of efficiency

and different scaling behaviors, the induced resource demand

variations are now equal for all compared platforms.

C. Measurement and Metric Calculation

After having conducted the Platform Analysis and Cali-
bration steps, BUNGEE executes the measurements with a

reasonable warm-up at the beginning. Afterwards, the mea-

surement run is validated using the sanity check explained at

the end of Section IV-A. For the computation of the accuracy,

provisioning timeshare and jitter metrics, the resource demand

and supply changes are required as input: The demand changes

can be directly derived from the adapted load profile using

the platform specific mapping function. The supply changes

need to be extracted either from cloud management logs or by

polling during the measurement. In both cases, a resource is

defined to be supplied during the time spans when it is ready

to process or actively processing requests. The time spans a

resource is billed may differ significantly.

V. EVALUATION

This section presents the experiment setup and demonstrates

the benchmarking capabilities of the BUNGEE approach with

a realistic load profile and a realistic amount of dynamically

scaled resources. The benchmark is applied to a private,

CloudStack-based cloud, as well as a public, AWS-based cloud

(Amazon EC2).

A. Experiment Setup

As previously illustrated in Figure 3, the experiment setup

consists of three parts: The infrastructure nodes, the manage-

ment and load balancing nodes and the benchmark controller

nodes. The first two parts form the benchmarked SUT. In the

private cloud setup, the infrastructure provides the physical

resources of four 12 core AMD Opteron 6174 CPUs at

2.2 GHz and 256 GB RAM as fully virtualized resources using

XenServer 6.2 as hypervisor. The management node (Intel

Core i7 860 with 8 cores at 2.8 GHz and 8 GB RAM) runs

the cloud management software (CloudStack 4.2) and the load

TABLE I: Elasticity default parameters of private cloud setup

Name Default Val.
(CS — AWS)

Description

evalInterval 5s Frequency for scaling rule evaluation
quietTime 300s Period without scaling rule evaluation

after supply change
destroyVmGracePer 30s Time for connection closing before a

VM is destroyed

condTrueDurUp 30s — 60s Duration of condition true before a scale
up triggered

counterUp CPU util. Monitored metric for thresholdUp
operatorUp > Operator comparing counterUp and

thresholdUp
thresholdUp 90% Threshold for counterUp

condTrueDurDown 30s — 60s Duration of condition true before scale
down triggered

counterDown CPU util. Monitored metric for thresholdDown
operatorDown < Operator comparing counterDown and

thresholdDown
thresholdDown 50% Threshold for counterDown

responseTimeout 1s — 2s Period of time within that a response is
expected from healthy instances

healthCheckInterval 5s Time between two health checks
healthyThreshold 1 — 2 Number of subsequent health checks

before instance is declared healthy
unhealthyThreshold 4 — 2 Number of subsequent health checks

before instance is declared unhealthy

balancer (Citrix Netscaler 10.1 VPX 1000) in separate Linux-

based VMs. The benchmark controller node runs the Java-

based benchmark harness and the load driver (JMeter) on a

Windows Vista desktop (Dell Precision T3400 (4 x 2.5 GHz)

and 8 GB RAM). The three nodes are physically connected

over a 1 GBit Ethernet network. Clock synchronization is

ensured by using a Stratum 3 NTP server located in the

same network. The template for virtual machines used by

CloudStack bases on CentOS 5.6 as operating system with java

run-time environment and SNMP service installed. SNMP pro-

vides access to resource utilization information required for the

elasticity mechanism. Experiments on the private CloudStack-

based environment employ VMs with 1 core at 2.2. GHz, 1

GB RAM and local storage is available. Experiments on the

AWS EC2 public cloud employ the general purpose m1.small
instance type.

Elasticity Parameters: CloudStack (CS) and AWS allow

to configure a rule based elasticity mechanism with the set of

parameters in Table I. The listed default values are used if not

mentioned otherwise.

Benchmark Controller Configuration: The benchmark

controller offers several configuration options that allow to

configure it according to the targeted domain. Table II shows

the different parameters and default values. The amount of

work executed within each request is defined by a size
parameter. It is set to 50000 for the evaluation meaning that

each request issues a randomized calculation of the 50000th

element of the fibonacci series. During the calibration phase,

the benchmark needs a specified SLO in order to perform

the Platform Analysis. Additionally, the benchmark has a

requestT imeout parameter defining how long the benchmark

waits for a response before the connection is closed.



TABLE II: Benchmark harness parameters

Name Default

requestSize 50000
requestT imeout 1000ms
SLO 95% of all requests must be processed successfully

within a maximum response time of 500ms.
warmupcalibration 180s
warmupmeasurement 300s

B. Benchmark Evaluation

This section demonstrates the benchmarking capabilities

for a realistic load profile and a representative amount of

resources on the private and on a public cloud as described

in Section V-A. The load profile (see Figure 8) used for this

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525

time

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

rr
iv

a
l

a
te

(a) Original (blue) and modeled (red) intensity [requests/15min] trace

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

100

200

300

A
rr

iv
al

 R
at

e 
[1

/s
]

(b) Compacted load profile of a single day adapted for one-core VMs in private
cloud setup

Fig. 8: One day load profile derived from a real five day transaction
trace

scenario is derived from a real intensity trace (see Figure 8(a))

previously used in [30]. The trace features the amount of

transactions on an IBM z196 Mainframe during February 2011

with a quarter-hourly resolution. To reduce the experiment

time, the first day is selected as the load profile and has

been compacted from 24 hours to 6 hours. The load intensity

within this load profile varies between two and 339 requests

per second and contains about 2.7 million request timestamps,

when adapted for a maximum of 10 one-core VMs in the

private cloud setup. As a single AWS m1.small instance

is capable of processing 71 requests per second, instead of

34 for the private cloud VMs, the load profile for public

cloud experiments (see top of Figure 10(a)) is adapted to vary

between five and 710 requests per second. This timestamp

file contains about 5.6 million individual request submission

timestamps and induces the same resource demand changes

as the load profile for the private cloud setup. The Platform
Analysis step has been evaluated for its reproducibility sepa-

rately: After eight repetitions, the maximal deviation from the

average processing capability per scaling stage was 6.8% for

the public cloud and even lower for the private cloud setup.

Platform Configurations: The resource elasticity of the

cloud platforms is evaluated for different elasticity rule pa-

rameter settings as shown in Table III: Configuration A serves

as a baseline configuration for elasticity comparisons, as it is

expected to exhibit the lowest degree of elasticity. Which one

of the Configurations B, C and D shows the highest degree of

elasticity is not directly visible from the parameters.

TABLE III: Elasticity parameter configurations on private (A,B) and
public (C,D) clouds

Config-
uration

quiet-
Time

condTrue-
DurUp

condTrue-
DurDown

thresh-
oldUp

thresh-
oldDown

A 240s 120s 120s 90% 10%
B 120s 30s 30s 65% 50%

C 120s 60s 60s 65% 50%
D 60s 60s 60s 65% 40%

waiting time service time

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e 
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e 

[m
s]

(a) Configuration A: Slow resource increase, very slow resource decrease

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

2,5

5,0

7,5

10,0

R
es

ou
rc

e 
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e 

[m
s]

waiting time service time

(b) Configuration B: Faster resource increase and decrease than Config. A

Fig. 9: Elastic behavior for two elasticity rule parameter settings on
CloudStack

Results: Figure 9 and Figure 10 illustrate the exhibited

elasticity of the four different Configurations A, B on the

private cloud and C, D on the public cloud. Configuration D

reacts fastest on the step increase starting at 90 min. The

shape of resource allocations of Configuration B fits best to

the demand changes. At the step parts of the profile, when the

platforms are in under-provisioned state, the request response

time rises to the defined timeout of 1 second with the request

violating the specified SLO. The response time graphs show



0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0

250

500

A
rr

iv
al

 R
at

e 
[1

/s
]

0
2
4
6
8

10

R
es

ou
rc

e 
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e 

[m
s]

load intensity waiting time service time

(a) Configuration C on public cloud with adapted load profile

0m0s 1h0m0s 2h0m0s 3h0m0s 4h0m0s 5h0m0s 6h0m0s
Time

0
2
4
6
8

10

R
es

ou
rc

e 
A

m
ou

nt

0

500

1.000

R
es

p.
T

im
e 

[m
s]

waiting time service time

(b) Configuration D: Even faster resource in- and decrease compared to
Configurations C

Fig. 10: Elastic behavior for different elasticity rule parameter settings
on a public cloud (1)

TABLE IV: Metric results for evaluated configurations on private
(A, B) and on public (C, D) clouds

Config-
uration

accO
[#res.]

accU
[#res.]

tsO
[%]

tsU
[%]

jitter[
#adap.
min

]

A 2.425 0.264 60.1 11.7 -0.067
B 0.815 0.080 48.7 6.5 -0.028

C 1.053 0.180 51.9 8.1 -0.033
D 1.442 0.049 57.6 4.7 -0.017

TABLE V: Elastic speedup with equal weights: waccU = waccO =
wtsU = wtsO = wacc = wts = 0.5

Config-
uration

accuracy
speedup

timeshare
speedup

elastic
speedup

SLO
viol. [%]

B 3.004 1.301 1.977 8.4
C 2.181 1.197 1.615 9.1
D 1.803 1.152 1.442 5.0
A 1.000 1.000 1.000 20.3

higher and more variable response times for the public cloud

experiments (C, D) compared to the private cloud experiments

(A, B). Possible reasons are a higher performance variability

due to imperfect isolation or overbooking on the public cloud.

Table IV contains the metric results for the four con-

figurations. Configuration B exhibits the lowest accuracyO
metric value, whereas Configuration D achieves the lowest

accuracyU result and is less than 5% of the experiment time in

an underprovisioned state. All configurations exhibit a negative

jitter value as there are more demand changes than supply

changes.

The aggregated metric values (see Section III-C) for equal

weights are shown in Table V. As expected from the visual

representation, Configuration B achieves the highest elastic

speedup result, with C, D, and A following Note that the

percentage of SLO violating requests is not correlated with

the elastic speedup metric, as the former depends on the

timeshareU value and the amount of requests sent during

under-provisioned states.

Summary: The BUNGEE elasticity benchmark approach

was applied to a complex realistic load scenario and ranked

different platforms and configurations according to the exhib-

ited degree of elasticity. Both the Platform Analysis and the

overall benchmarking methodology delivered reproducible and

meaningful results.

VI. CONCLUSIONS

This paper presented a set of metrics for capturing the

accuracy and timing aspects of elastic platforms. It provided a

metric aggregation method and showed how it can be adapted

to personal preferences. It described the novel elasticity bench-

marking approach BUNGEE and showed its evaluation in

a scenario of realistic complexity. It was shown that the

proposed metrics and benchmarking methodology are able to

rank elastic platforms and configurations on an ordinal scale

according to their exhibited degree of elasticity for a given

domain-specific and realistic load profile.

As part of future work, we plan to support other resource

types besides virtual machines (scale out), e.g., CPU cores

(scale up) or main memory. Furthermore, we plan to quantify

the impact of proactive/predictive elasticity mechanisms on the

elasticity metric values.

VII. ACKNOWLEDGMENTS

The European Union’s Seventh Framework Programme

funded parts of this research under grant agreement 610711.

This research has been supported by the Research Group6 of

the Standard Performance Evaluation Corporation (SPEC)7.

Amazon Web Services supported this research by a Research

Grant award.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A View
of Cloud Computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, Apr.
2010. [Online]. Available: http://doi.acm.org/10.1145/1721654.1721672

6SPEC Research: http://research.spec.org
7SPEC: http://www.spec.org



[2] T. Lorido-Botran, J. Miguel-Alonso, and J. Lozano, “A review of
auto-scaling techniques for elastic applications in cloud environments,”
Journal of Grid Computing, vol. 12, no. 4, pp. 559–592, 2014. [Online].
Available: http://dx.doi.org/10.1007/s10723-014-9314-7

[3] G. Galante and L. C. E. d. Bona, “A Survey on Cloud
Computing Elasticity,” in Proceedings of the 2012 IEEE/ACM Fifth
International Conference on Utility and Cloud Computing, ser. UCC
’12. Washington, DC, USA: IEEE Computer Society, 2012, pp.
263–270. [Online]. Available: http://dx.doi.org/10.1109/UCC.2012.30

[4] B. Jennings and R. Stadler, “Resource Management in Clouds:
Survey and Research Challenges,” Journal of Network and Systems
Management, pp. 1–53, 2014. [Online]. Available: http://dx.doi.org/10.
1007/s10922-014-9307-7

[5] A. Li, X. Yang, S. Kandula, and M. Zhang, “CloudCmp: Comparing
Public Cloud Providers,” in Proceedings of the 10th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’10. New York,
NY, USA: ACM, 2010, pp. 1–14. [Online]. Available: http:
//doi.acm.org/10.1145/1879141.1879143

[6] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a Catalogue of Metrics for
Evaluating Commercial Cloud Services,” in Grid Computing (GRID),
2012 ACM/IEEE 13th International Conference on, Sept 2012, pp.
164–173. [Online]. Available: http://dx.doi.org/10.1109/Grid.2012.15

[7] D. Chandler, N. Coskun, S. Baset, E. Nahum, S. R. M. Khandker,
T. Daly, N. W. I. Paul, L. Barton, M. Wagner, R. Hariharan,
and Y. seng Chao, “Report on Cloud Computing to the OSG
Steering Committee,” Tech. Rep., Apr. 2012. [Online]. Available:
http://www.spec.org/osgcloud/docs/osgcloudwgreport20120410.pdf

[8] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is
the Weather Tomorrow?: Towards a Benchmark for the Cloud,” in
Proceedings of the Second International Workshop on Testing Database
Systems, ser. DBTest ’09. New York, NY, USA: ACM, 2009, pp. 9:1–
9:6. [Online]. Available: http://doi.acm.org/10.1145/1594156.1594168

[9] T. Dory, B. Mejı́as, P. V. Roy, and N.-L. Tran, “Measuring Elasticity for
Cloud Databases,” in Proceedings of the The Second International Con-
ference on Cloud Computing, GRIDs, and Virtualization, 2011. [Online].
Available: http://www.info.ucl.ac.be/∼pvr/CC2011elasticityCRfinal.pdf

[10] R. F. Almeida, F. R. Sousa, S. Lifschitz, and J. C. Machado, “On
Defining Metrics for Elasticity of Cloud Databases,” in Proceedings of
the 28th Brazilian Symposium on Databases, 2013. [Online]. Available:
http://sbbd2013.cin.ufpe.br/Proceedings/artigos/sbbd shp 12.html

[11] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a Consumer Can
Measure Elasticity for Cloud Platforms,” in Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering, ser.
ICPE ’12. New York, NY, USA: ACM, 2012, pp. 85–96. [Online].
Available: http://doi.acm.org/10.1145/2188286.2188301

[12] E. Folkerts, A. Alexandrov, K. Sachs, A. Iosup, V. Markl, and C. Tosun,
“Benchmarking in the Cloud: What It Should, Can, and Cannot Be,”
in Selected Topics in Performance Evaluation and Benchmarking, ser.
Lecture Notes in Computer Science, R. Nambiar and M. Poess, Eds.
Springer Berlin Heidelberg, 2012, vol. 7755, pp. 173–188. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-36727-4 12

[13] B. Suleiman, “Elasticity Economics of Cloud-Based Applications,”
in Proceedings of the 2012 IEEE Ninth International Conference on
Services Computing, ser. SCC ’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 694–695. [Online]. Available: http:
//dx.doi.org/10.1109/SCC.2012.65

[14] J. Weinman, “Time is Money: The Value of “On-Demand”,” 2011,
(accessed July 9, 2014). [Online]. Available: http://www.joeweinman.
com/resources/Joe Weinman Time Is Money.pdf

[15] C. Tinnefeld, D. Taschik, and H. Plattner, “Quantifying the
Elasticity of a Database Management System,” in DBKDA
2014, The Sixth International Conference on Advances in Databases,
Knowledge, and Data Applications, 2014, pp. 125–131. [Online].
Available: http://www.thinkmind.org/index.php?view=article&articleid=
dbkda 2014 5 30 50076

[16] N. R. Herbst, S. Kounev, and R. Reussner, “Elasticity in Cloud Comput-
ing: What it is, and What it is Not (short paper),” in Proceedings of the
10th International Conference on Autonomic Computing (ICAC 2013).

USENIX, June 2013. [Online]. Available: https://www.usenix.org/
conference/icac13/elasticity-cloud-computing-what-it-and-what-it-not

[17] A. Weber, N. R. Herbst, H. Groenda, and S. Kounev, “Towards
a Resource Elasticity Benchmark for Cloud Environments,”
in Proceedings of the 2nd International Workshop on Hot Topics
in Cloud Service Scalability (HotTopiCS 2014), co-located with the

5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014). ACM, March 2014. [Online]. Available: http://sdq.ipd.kit.
edu/research/publications/#WeHeGrKo2014-HotTopicsWS-ElaBench

[18] J. G. von Kistowski, N. R. Herbst, and S. Kounev, “LIMBO: A Tool For
Modeling Variable Load Intensities (Demo Paper),” in Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering
(ICPE 2014). ACM, March 2014. [Online]. Available: http://dx.doi.
org/10.1145/2568088.2576092

[19] ——, “Modeling Variations in Load Intensity over Time,” in
Proceedings of the 3rd International Workshop on Large-Scale Testing
(LT 2014), co-located with the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE 2014). ACM, March 2014.
[Online]. Available: http://dx.doi.org/10.1145/2577036.2577037

[20] M. Kuperberg, N. R. Herbst, J. G. von Kistowski, and R. Reussner,
“Defining and Quantifying Elasticity of Resources in Cloud Computing
and Scalable Platforms,” Karlsruhe Institute of Technology (KIT),
Tech. Rep., 2011. [Online]. Available: http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000023476

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing, ser. SoCC ’10. New
York, NY, USA: ACM, 2010, pp. 143–154. [Online]. Available:
http://doi.acm.org/10.1145/1807128.1807152

[22] D. Shawky and A. Ali, “Defining a Measure of Cloud
Computing Elasticity,” in Systems and Computer Science (ICSCS),
2012 1st International Conference on, Aug 2012, pp. 1–5. [Online].
Available: http://dx.doi.org/10.1109/IConSCS.2012.6502449

[23] K. Huppler, “Performance Evaluation and Benchmarking,” R. Nambiar
and M. Poess, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch. The
Art of Building a Good Benchmark, pp. 18–30. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-10424-4 3

[24] P. J. Fleming and J. J. Wallace, “How Not to Lie with Statistics:
The Correct Way to Summarize Benchmark Results,” Commun.
ACM, vol. 29, no. 3, pp. 218–221, Mar. 1986. [Online]. Available:
http://doi.acm.org/10.1145/5666.5673

[25] K. Huppler, “Benchmarking with Your Head in the Cloud,” in
Topics in Performance Evaluation, Measurement and Characterization,
ser. Lecture Notes in Computer Science, R. Nambiar and M. Poess,
Eds. Springer Berlin Heidelberg, 2012, vol. 7144, pp. 97–110.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-32627-1 7

[26] A. Weber, “Resource Elasticity Benchmarking in Cloud
Environments,” Master’s Thesis, Karlsruhe Institute of Tech-
nology (KIT), Karlsruhe, Germany, 2014. [Online]. Available:
http://sdqweb.ipd.kit.edu/publications/pdfs/Weber2014.pdf

[27] B. Schroeder, A. Wierman, and M. Harchol-Balter, “Open Versus
Closed: A Cautionary Tale,” in Proceedings of the 3rd Conference on
Networked Systems Design & Implementation - Volume 3, ser. NSDI’06.
Berkeley, CA, USA: USENIX Association, 2006, pp. 18–18. [Online].
Available: http://dl.acm.org/citation.cfm?id=1267680.1267698

[28] E. Freeman, S. Hupfer, and K. Arnold, JavaSpaces Principles, Patterns,
and Practice, ser. Java series. Addison-Wesley, 1999.

[29] P. Shivam, V. Marupadi, J. Chase, T. Subramaniam, and S. Babu,
“Cutting Corners: Workbench Automation for Server Benchmarking,”
in USENIX 2008 Annual Technical Conference on Annual Technical
Conference, ser. ATC’08. Berkeley, CA, USA: USENIX Association,
2008, pp. 241–254. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1404014.1404032

[30] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn, “Self-adaptive
Workload Classification and Forecasting for Proactive Resource
Provisioning,” Concurrency and Computation: Practice and Experience,
2014. [Online]. Available: http://dx.doi.org/10.1002/cpe.3224


