Chapter 20
Self-Awareness of Cloud Applications

Alex Tosup, Xiaoyun Zhu, Arif Merchant, Eva Kalyvianaki, Martina Maggio,
Simon Spinner, Tarek Abdelzaher, Ole Mengshoel, Sara Bouchenak

Abstract Cloud applications today deliver an increasingly larger portion of the
Information and Communication Technology (ICT) services. To address the scale,
growth, and reliability of cloud applications, self-aware management and schedul-
ing are becoming commonplace. How are they used in practice? In this chapter,
we propose a conceptual framework for analyzing state-of-the-art self-awareness
approaches used in the context of cloud applications. We map important applica-
tions corresponding to popular and emerging application domains to this conceptual
framework, and compare the practical characteristics, benefits, and drawbacks of
self-awareness approaches. Last, we propose a roadmap for addressing open chal-
lenges in self-aware cloud and datacenter applications.

Alexandru Iosup
Delft University of Technology, the Netherlands, e-mail: A. Iosup@tudelft.nl

Xiaoyun Zhu
Futurewei Technologies, CA, USA, e-mail: xiaoyzhu@yahoo.com

Arif Merchant
Google, Inc., CA, USA, e-mail: aamerchant@google.com

Eva Kalyvianaki
Imperial College of London, UK, e-mail: Evangelia.Kalyvianaki.l@city.ac.uk

Martina Maggio
Lund University, Sweden, e-mail: mmart imay@gmail .com

Simon Spinner
University of Wuertzburg, Germany, e-mail: simon.spinner@uni-wuerzburg.de

Tarek Abdelzaher
University of Illinois at Urbana Champaign, IL, USA, e-mail: zaher@illinois.edu

Ole Mengshoel
CMU Silicon Valley at the NASA Ames Research Center, PA, USA, e-mail: ole .mengshoel@
sv.cmu.edu

Sara Bouchenak
INSA Lyon, France, e-mail: sara.bouchenak@insa-1lyon.fr

567

568 ITosup et al.

20.1 Introduction

Cloud computing is the Information and Communication Technology (ICT) paradigm
under which services are provisioned by their users on demand, with payment cov-
ering only what is actually used. Cloud users can today lease infrastructure, plat-
form, software, and others “as a service”, from commercial clouds such as Amazon,
Azure, Google, and SAP. Governments and entire industries are building large-scale
datacenters that are and will increasingly host cloud computing applications. At the
same time, data becomes an integral part of cloud computing: by 2017, over three-
quarters of our personal and business data will reside in datacenters, according to
a recent IDC report [32]. Cloud applications, often consumed by users as services,
already represent over 10% of the entire ICT market in Europe [15]. Netflix, whose
users consume a large fraction of the global Internet traffic, relies on ICT services
from Amazon Web Services (AWS)'. The market, growing in size, diversity of ap-
plications, and sophistication, already exceeds hundreds of millions of users and, as
a consequence, $100 billion world-wide [10]; the cloud market will likely contribute
over 100 billion Euro to the European GDP in 2020 [15]. At this scale and with this
importance, human management of datacenter resources is prohibitively expensive
and, often, too error-prone. Thus, the use of self-awareness techniques to manage
cloud applications is increasingly more present. In this chapter, we analyze the use
of self-awareness in cloud computing and its applications.

Cloud applications raise a complex management challenge, derived from the
goals of three main stakeholders: application users, application operators, and cloud
operators. Each of these stakeholders has different requirements, which are often
conflicting. For example, application users could demand that an interactive ap-
plication is always responsive, even under bursty arrivals of user-issued requests.
To meet this demand, application operators could require that enough capacity is
always provided by cloud operators, yet only want to pay for what is actually con-
sumed. Tension arises between performance and other requirements, including the
cost of operations. As a consequence, the management challenge is to optimize non-
trivial efficiency metrics and to meet complex service level agreements (SLAs), to
an extent that already exceeds the capabilities of human management.

We investigate in this chapter the current state of self-awareness in cloud com-
puting, and in particular datacenter-based cloud applications. Our goals are to intro-
duce practical cases of self-awareness in such applications; to present a conceptual
framework for analyzing state-of-the-art self-awareness approaches used in prac-
tice; to map already important and emerging application domains to the conceptual
framework of self-awareness approaches used in practice, and analyze similarities
and differences, benefits and costs of self-awareness approaches; and to identify and
analyze open challenges in self-aware cloud applications, and propose a roadmap for
advancing the state-of-the-art. The main contribution is structured as follows.

In Section 20.2, we introduce a framework for the analysis of self-awareness
techniques used in cloud computing and its applications. Our framework consists of

! Details: https://aws.amazon.com/solutions/case-studies/netflix/.

20 Self-Awareness of Cloud Applications 569

a structured way to analyze the types of applications, of problems, and of approaches
for which self-awareness is relevant in practice. The framework also structures the
analysis of directions for future research. Although the framework is currently built
for the analysis of self-awareness in cloud applications, and thus is adapted to the
operational conditions in cloud computing (metrics, stakeholders, etc.), the frame-
work could be extended to other domains. We show the usefulness of this framework
by applying it in practice, with the results presented in the next sections.

In Section 20.3, we focus on eight popular or emerging application domains, with
important commercial, scientific, governance, and other societal impact. Although
any application domain is applicable, the market volume and the number of users,
today or in the foreseeable future, are important criteria for selecting the application
domains for this chapter. Among the selected applications are business applications,
compute-intensive and data-intensive batch processing, data-stream processing, on-
line gaming, partial processing, and cyber-physical applications. Some of these ap-
plications, such as online gaming, partial processing, and cyber-physical applica-
tions are emerging in terms of number of users and adoption of cloud technology.
We also include in this section the workloads generated by the datacenters them-
selves, which can be seen as overhead, but are already consuming large amounts of
resources and must meet complex, albeit internal, SLAs.

In Section 20.4, we identify ten types of problems that are already addressed
by self-awareness techniques, including recovery planning, resource autoscaling,
runtime architectural reconfiguration and load balancing, fault-tolerance in dis-
tributed systems, energy-proportionality, workload prediction, performance isola-
tion, diagnosis and troubleshooting, discovery of application topology, and intru-
sion detection and prevention. Some of these problems, such as autoscaling, energy-
proportionality, performance isolation, and intrusion detection and prevention, have
developed a new form or even appeared specifically in the context of cloud comput-
ing.

In Section 20.5, we identify and analyze seven types of self-awareness ap-
proaches used in practice: feedback control based techniques, metric optimization
with constraints, machine learning based techniques, portfolio scheduling, self-
aware architecture reconfiguration, and stochastic performance models. Although
none of these approaches are unique to cloud computing, their adaptation to cloud
computing and its applications is non-trivial.

In Section 20.6, we identify and analyze four directions for future use of self-
awareness approaches for cloud computing and its applications. We focus on di-
rections that are not only needed for practical applications, but for which we can
envision the next research steps and that the results of this research can be put in
practice in the following three to five years.

Our survey of applications, problems, self-awareness approaches, and open chal-
lenges in self-awareness is by far not exhaustive. However, we study for each broad
types with existing popularity and likely future impact. Moreover, we envision that
the approach we take in this work will also be useful for studying other types.

570 ITosup et al.

This chapter is the result of original work by the authors, and in particular the
survey started during the Dagstuhl Seminar 15041, “Model-driven Algorithms and
Architectures for Self-Aware Computing Systems”.

20.2 Overview of the Framework

We propose a framework for understanding the practice of using self-awareness
techniques in managing and scheduling of cloud applications. This framework fol-
lows the structure of a natural discussion about the field, with three main ques-
tions and a format for answering them that is conductive to surveying the field. The
first question focuses on specific applications: Which cloud applications raise the
challenges that self-awareness techniques are particularly good in addressing? An-
swering this question requires an understanding of the nature and characteristics
of self-awareness challenges that affect such cloud applications. Thus, the second
question is Which are the important self-awareness challenges for cloud applica-
tions? As a third question, Which are the self-awareness approaches that address
the self-awareness challenges in this context? Last, a fourth question focuses on
the future: Assuming a research horizon of 3-5 years, what are the most promising
directions for future research in enabling self-aware cloud applications?

Answering the first three questions is sufficient to yield a survey of cloud applica-
tions whose self-awareness challenges are addressed or resolved in practice by self-
awareness approaches (techniques, methods, best-practices, or even entire method-
ologies). For example, mapping all the different japplication-challenge-approach
paths; can create a survey of the entire space. Then, it is easy to group together
applications raising the same challenge; similarly, self-awareness approaches that
address the same challenge can be grouped together. The survey is practical, in that
a complete “application-challenge-approach” path can be directly considered by the
practitioner.

The first three questions in our framework are also necessary. There are hun-
dreds of application fypes commonly used in software engineering practice, as in-
dicated for example by the extensive taxonomy of Forward and Lethbridge [21].
Thus, surveying without the guidance of specific applications provided by the first
question could lead to a variety of self-awareness challenges and approaches, all
with the merit of being applicable, but without much proof of use in cloud context.
Without the specific problems provided by the second question, the self-awareness
techniques could be used in a variety of cases, limited only by the creativity of the
designer and by the difficulty of proving their benefit for practical use. Thus, lim-
iting the survey to the set of challenges that are currently addressed in the context
of cloud applications is necessary; we address this through the combined expertise
of the authors regarding the field. Last, although many self-awareness techniques
already exist, not all have yet been applied to cloud settings. Thus, surveying could
go well beyond the scope of the third question, and generic techniques that may not
work well (enough) in practice will also be surveyed.

20 Self-Awareness of Cloud Applications 571

The framework also structures the analysis of directions for future research. We
leverage here the collective expertise of the authors, in which important questions
are proposed by individuals and discussed by the community. By iterating this pro-
cess, we believe the community can propose and refine its own most important goals.
The results of the first iteration are shared with everyone interested to help the com-
munity make progress, through the text in Section 20.6.

20.3 Types of Applications

In this section, we present the following eight types of applications that already
benefit from the use of self-awareness techniques.

Enterprise applications

Computing-intensive batch processing
Data-intensive batch processing

Data-stream processing

Workloads generated by datacenter operations
Online gaming

Partial and delayed processing
Cyber-physical applications

PN B LD =

Each of these selected applications is already popular, or generates a significant
amount of revenue, or is critical to the operation of many businesses, or uses a
significant amount of resources, or is promising to emerge as such; often, the appli-
cations we select have a combination of these characteristics.

20.3.1 Enterprise Applications

Description: We reuse the definition of enterprise applications proposed by Shen
et al.: “the user-facing and backend services, generally supporting business de-
cisions and operations and commonly contracted under strict SLA requirements,
whose downtime or even just low performance will lead to reduced productivity,
loss of revenue, customer departure, or even legal actions. These workloads in-
clude enterprise multi-tier applications, and business-critical workloads that often
include applications in the solvency domain or other decision-making tools. Other
applications that characterize business-critical workloads are email, collaboration,
database, ERP, CRM, and management services, when used in conjunction with
other workloads.” [71]

572 ITosup et al.

20.3.1.1 Multi-Tier Enterprise Applications

Application components: Multi-tier enterprise applications refer to those web-
based business applications that each comprises a collection of cooperating compo-
nents, organized as multiple logical tiers. The most common three-tier architecture
consists of a presentation tier, an application tier, and a database tier. The presen-
tation tier receives requests from the clients, the application tier handles the busi-
ness logic, and in turn interacts with the database tier to obtain and store persistent
data. Examples of such applications including Enterprise Resource Planning (ERP)
and Customer Relationship Management (CRM) are often subject to an interactive
workload. Different types of requests often incur different loads on the system (e.g.,
read- vs. write-intensive transactions, compute- vs. data-intensive workloads). The
multi-tier architecture makes it challenging to implement self-awareness schemes
for such applications, as there may be complex control flows between the different
tiers, and each tier may have different resource requirements and performance bot-
tlenecks. With the trend towards service-oriented architectures, the different tiers
are often split into different services, making the control flow even more complex.

Metrics of interest: Availability - the percentage of time the application service
remains up and running; reliability - the ratio of successful requests to the total
number of requests; performance - characterized by such metrics as throughput (re-
quests/sec) and request response times; resource (CPU, memory, I/O) utilization of
the underlying system; and cost - metrics related to financial or energy cost.

Typical problems: Performance isolation and service differentiation, tradeoff
between multiple metrics of interest, diagnosis and troubleshooting, dynamic load
balancing, end-to-end service level assurance, and autoscaling of resources.

Typical self-aware elements: Metric optimization [50], machine learning [57,
77], feedback control [36,50,67], stochastic performance models [5,73], and statis-
tical estimation [47] are the main approaches researchers have applied to help create
self-aware multi-tier applications.

20.3.1.2 Business-Critical Applications

Application components: Business-critical workloads often include applications
that provide support for decision-making, such as Monte Carlo simulations, finan-
cial and other types of modeling applications programmed as tightly coupled paral-
lel jobs of relatively small size, but also the regular management services described
in Section 20.3.1.1. It is typical for the system user to not specify the applications,
due to privacy and business secrecy. Instead, users request service expressed only
in SLA terms, e.g., number and size of virtual machines, generally provisioned for
long periods of time and operated by the users IT team. The current practice in the
datacenter is to require engineering confirmation for the most important provision-
ing and allocation decisions, especially at the initial installation of the long-running
virtual machines. Self-aware resource management and scheduling tools [75] pro-
vide advice that engineers may take into account.

20 Self-Awareness of Cloud Applications 573

Metrics of interest: Various traditional metrics, including latency and through-
put, and reliability and system load. Risk-related metrics, such as the risk score [75],
which expresses the risk of significant under-performance and thus penalties paid by
the service operator to the service user, and loss of trust.

Typical problems: Reduce the risk of performance degradation; use resources
efficiently; avoid system overload and unavailability.

Typical self-aware elements: Portfolio scheduling [75], topology-aware re-
source management [75]%, prediction of runtimes and resource occupancy, bin-
packing-based optimization [27].

20.3.2 Compute-Intensive Batch Processing

Description: Compute-intensive batch processing includes workloads where com-
putation, rather than data I/O and movement, consumes the largest portion of the
runtime and of the consumed resources, and is thus the main focus of resource man-
agement and scheduling. This type of applications has evolved much over the past
few decades, from select few users running large parallel jobs on supercomputers
(late 1980s — early 1990s), to practically every research and engineering lab run-
ning in multi-cluster grids many small, independent tasks [33], integrated through
scripts into mostly compute-intensive jobs (mid-1990s to today). These bags of tasks
(BoTs), which are effectively conveniently parallel implementations of scientific
and engineering workloads (e.g., simulations), have emerged as a response to the
shift from expensive supercomputers that offered high performance and availabil-
ity, to commodity hardware that crashes often. Since the early 2000s, workflows
of inter-dependent tasks, where dependencies are expressed programmatically and
inter-task data transfers occur through batch transfers of (typically POSIX) files,
have also become increasingly more common in practice [33,35].

20.3.2.1 Compute-Intensive Batch Processing In Clusters

Application components: Workloads include bags of predominantly sequential
tasks and small-scale parallel jobs (in engineering and research labs).

Metrics of interest: Throughput, response time/bounded slowdown, makespan
for BoTs and normalized schedule length for workflows.

Typical problems: Increase throughput, reduce response time, and in particular
the (bounded) slowdown/makespan for BoTs and the (normalized) schedule length
for workflows. Balance performance and cost.

Typical self-aware elements: Traditional techniques for dynamic and adaptive
scheduling and resource management. Flagship projects include Condor, Globus,
and, more recently, Mesos.

2 Commercial products in this domain are scarce. Notable products include VMware’s open-source
Project Serengeti http://www.vmware.com/hadoop/serengeti

574 ITosup et al.

20.3.2.2 Compute-Intensive Batch Processing In and Across Datacenters

Application components: At the scale of entire datacenters and in multi-datacenter
environments, that is, on the order of 10,000 to over 100,000 machines, load is sub-
mitted by thousands of users. Workloads come from scientific computing, financial,
engineering, and other domains, and are dominated by bags of tasks of highly di-
verse sizes and resource demands [33].

Metrics of interest: User metrics are similar to those in the cluster context, but
also include aggregate measures of the fraction of deadlines and throughput goals
satisfied under extreme conditions such as large-scale failures and flash crowds.
Energy costs. Metrics interesting to datacenter administrators include scalability,
availability, load balance, and achievable utilization.

Typical problems: Load balancing, particularly across data centers. Handling
dynamic load variations, likely due to normal bursty behavior, time-of-day effects,
and failures. Enabling high resource utilization without adverse impact on perfor-
mance and with performance isolation across the workloads of many diverse users.

Typical self-aware elements: Resource management that is aware of dynamic
loads, service-level objectives, and failure/maintenance issues. Examples include
automatic job queue reconfiguration [17], self-aware job managers [33], and large-
scale datacenter management systems [66].

20.3.3 Data-Intensive Batch Processing

Description: There is a plethora of application domains including commercial ap-
plications, retail and science domains, that generate big data (large volume, high
variety, low veracity, etc.) Data-intensive batch processing involves systems to pro-
cess sets of big data without interactive data-processing sessions. Such processing
is performed by a cluster of compute nodes of data that are typically stored on dis-
tributed storage, with intermediary results stored in-memory or on disks local to
each node. The nodes collectively execute software that coordinates the distribu-
tion and computation of the data sets across the cluster according to the processing
semantics. We classify these systems into the following two categories.

20.3.3.1 MapReduce-Based Data-Intensive Batch Processing

Application components: MapReduce is a popular programming model for devel-
oping and executing distributed data-intensive and compute-intensive applications
on clusters of commodity computers. A MapReduce job is an instance of a running
MapReduce program and is comprised of Map and Reduce tasks. Tasks are executed
according to the programming model, but embed functions (code) provided by the
user. High performance and fault-tolerance are two key features of typical MapRe-

20 Self-Awareness of Cloud Applications 575

duce runtime environments. They are achieved by automatic task scheduling; data
placement, partitioning and replication; and failure detection and task re-execution.

The MapReduce model has proven to be versatile in industry, where it is used
for many Big Data tasks including log processing, image processing, and machine
learning. For example, MapReduce has been used to learn conditional probability
tables of Bayesian Networks (BNs). Both traditional parameter learning (complete
data) and the classical Expectation Maximization algorithm (incomplete data) can
be implemented within the MapReduce model [6].

Metrics of interest: Performance metrics such as job response time and through-
put (jobs/minute), and data input and output (IOPS); reliability - measured as the
ratio of successful MapReduce job requests to the total number of requests; various
cost metrics; other low-level MapReduce metrics related to the number, length, and
status (i.e., success or failure) of MapReduce jobs and tasks.

Typical problems: Performance and dependability guarantees, trading-off be-
tween multiple metrics of interest. Chains and workflows of MapReduce jobs are
useful, but could be difficult to manage and troubleshoot. Vicissitude—workflows of
MapReduce jobs lead to diverse challenges, by stressing different system resources
at different or even the same time. Workloads can be dominated by a few MapRe-
duce jobs, used periodically or in bursts.

Typical self-aware elements: Performance models and management [68], self-
aware architecture reconfiguration [25].

20.3.3.2 Other Data-Intensive Batch Processing

Application components: Many programming models for data-intensive batch pro-
cessing, and significantly different from MapReduce, exist today: Spark, Naiad,
Ciel, etc. Such systems rely on functional, imperative, or dataflow models to ex-
press computations, and may be general or highly specialized.

Metrics of interest: Response time, recovery time, and cost. Some these sys-
tems, such as Naiad, are also designed to support low-latency results, to provide
support to process data and deliver results in near-real-time.

Typical problems: Handling workload variations and data recovery after ma-
chine failures. Synchonization of data state when processing spans many nodes. For
graph processing, the algorithm but also its input data set affect performance signif-
icantly, but predicting how is challenging. Auto-scaling is very challenging, due to
the possible need to transfer large state.

Typical self-aware elements: Recovering from failures. Scaling to additional
nodes to handle workload variations and arbitrary computation.

576 ITosup et al.

20.3.4 Data-Stream Processing

Description: We observe an avalanche of data continuously generated from various
sources such as sensor networks, business operations, web applications, and social
networks. There is a pressing need to process such data in real-time. For example,
several companies like Facebook and LinkedIn used to analyze their daily web logs
to better support their operations [64], but are shifting to real-time analysis.

Application Components: Data stream processing (DSP) involves the real-time
processing of data that are continuously generated from several distributed sources
at time-varying rates. Data analysis is represented via user queries that describe the
type of processing users wish to operate over source data. DSP queries are typically
represented by directed dataflow graphs where vertices correspond to operators and
directed edges indicate the flow of data among operators. Each operator typically
corresponds to certain parts of the query processing—often associated with well
defined semantics such as joins, aggregates, filters, etc. Finally, queries are deployed
on a cluster of nodes, referred to as data stream processing systems (DSPSs).

Metrics of interest: Primarily, query performance on a DSP is measured via
the delivery of low-latency and high-throughput results regardless of the workload
demands and their time-based variations.

Typical problems: Dynamic workload and operator diversity (e.g., different se-
mantics), load balancing in datacenters (e.g., System S, SPQR [38], Soda), architec-
tural reconfiguration and performance isolation in cloud environments [7, 28, 60].

Typical self-aware elemets: Optimization models for resource allocation and
placement [38] and CPU-based heuristics to trigger scale-out operations [7].

20.3.5 Workloads Generated by Datacenter Operations

Description: Unlike the other applications described in this section, this workload
is created by the system itself, as response to real-input workloads, in particular to
give probabilistic operational guarantees. Typical workloads here are the product
of backup, logging, checkpointing, and recovery systems. Although needed to meet
declarative specifications of the availability, durability, and recovery time require-
ments, these workloads cause significant reliability-related overheads that need min-
imization. For example, on the order of 20% of the resources are currently wasted
on failures and spent for recovery in large-scale infrastructure [14].

20.3.5.1 Addressing Failures in the Datacenter

Application components: Implementing data redundancy for availability and dis-
aster tolerance results in some of the largest workloads in datacenters, especially
regarding data transfer and storage. Resources consumed may include disk and tape

20 Self-Awareness of Cloud Applications 577

capacity and bandwidth; CPU and memory for redundancy operations (such as en-
coding); and network bandwidth within and across datacenters.

Metrics of interest: Availability (expected fraction of time that a desired data
object will not be accessible); durability (annual data loss rates, MTTDL); amount
of data lost during failures (e.g., how far a checkpointed system will need to rewind);
recovery time (how long it will take to recover back to a normal operating state).

Typical problems: Recovery planning by selecting the combination of redun-
dancy techniques to meet reliability requirements; designing a schedule of backup
operations to fit resource availability and limit interference with other workloads;
designing a schedule of recovery operations after a large-scale failure while en-
abling diagnosis (see Section 20.4.1).

Typical self-aware elements: Automated designers combine multiple resilience
techniques to meet reliability and recovery requirements within resource limita-
tions. Both deterministic and stochastic models [42] are used to represent the moni-
tored workload levels and changes, component failure rates, and the reliability pro-
vided by the resilient system. Design methods include machine-learning-based tech-
niques, mathematical optimization and meta-heuristic techniques [24, 40].

20.3.5.2 Addressing Failures at Exascale

Application components: The future exascale machines, which will exceed 1 ex-
aflop sustained performance (so, 2-3 orders of magnitude larger than today’s Top500
machines) exacerbate the problems and pose important scale challenges to the as-
pects observed in Section 20.3.5.1. Checkpointing and other mechanisms designed
for this scale operate with waves or hierarchies of periodic or triggered operations,
either partial or for the entire system, that affect CPU, memory, network, and storage
resources.

Metrics of interest: same as for Section 20.3.5.1; also energy and human re-
source costs (e.g., does recovery require human resources?).

Typical problems: Recovery planning and general automatic recovery approaches
are the key challenge in the field, possibly aided by advanced workload prediction,
with current approaches leading to poor energy proportionality (high energetic cost).
Containment, including performance isolation is important, because correlated (e.g.,
cascading) failures can cause significant problems to other components and appli-
cations than affected by the original failure. Diagnosis and troubleshooting pose
important challenges, because at this scale applications can have over a million con-
current threads of execution and are very difficult to debug; even error identification
and reporting are important challenges in exascale systems.

Typical self-aware elements: Various methods, surveyed in a recent overview
of the field [72], among which: stochastic performance models, to trade-off re-
computation of results for stored backups and checkpoints; and, from another re-
search community, redundancy of execution [2], of all or of critical tasks, and on all
or a selection of more reliable resources, to reduce the effects of failures efficiently.

578 ITosup et al.

20.3.6 Online Gaming

Description: Hundreds of online games (OGs) entertain over 250,000,000 online
players, in a global market that generates over 30 billion Euros yearly. Massivizing,
which means to scale efficiently while meeting strict SLAs, is the biggest chal-
lenge of massively multiplayer online games (MMOGs). We consider here only the
resource management for the in-game virtual world, excluding external processes
such as gaming analytics (similar to Sections 20.3.3 and 20.3.4) and game-content
generation (not standardized). There are many types of online games, among which
the most popular are online social games (OSG); First-Person Shooters (FPS) and
Real-Time Strategy games (RTS); and Massively Mutiplayer Online Role-Playing
Games (MMORPG).

Metrics of interest: In general, response time, cost of operation, performance
variability impact as aggregate performance penalty (own metric), time- and space-
varying reliability or availability.

Typical problems: Reduce cost. Balance cost-performance. Impact of perfor-
mance variability. Unavailability at critical time or for the critical component.

20.3.6.1 Datacenter-based Approaches

Application components: The most popular OSGs (e.g., the FarmVille series and
Clash of Clans) have over 100 million daily active users, and hundreds of OSGs
attract over 1 million daily active users. OSGs use multi-tier web applications (de-
scribed earlier) with hundreds of thousands to millions of concurrent yet short-lived
user sessions. Their populations can fluctuate significantly over time, especially dur-
ing initial deployment and after their peak popularity is gone [55]. MMORPG:s (e.g.,
World of Warcraft, Destiny) commonly use geographically distributed clusters of
servers to support (multi-)hour game sessions. FPS games, e.g., the Call of Duty se-
ries, and RTS games, e.g., the StarCraft and DotA series, typically use servers to run
independent game instance that run for a few tens of minutes; often, these servers
are hosted by gaming-friendly datacenters.

Typical self-aware elements: Self-aware provisioning of resources from data-
centers, especially in hybrid clouds, using workload prediction and modeling. Cost-
aware operation. Portfolio scheduling [69]. Availability on demand [70].

20.3.6.2 Offloading of Mobile Interactive Applications

Application components: An emerging application in this space is that of mobile
games that use clouds as offloading target. The structure of such an application is
typically a workflow or dataflow, where tasks have inter-dependencies and typically
execute iteratively (the input-update-synchronize cycle common in game design).
Some or all tasks can be offloaded to the cloud. For example, cloud gaming appli-

20 Self-Awareness of Cloud Applications 579

cations could offload all update tasks to the cloud and stream back to the mobile
device a video rendering of the current game status.

Metrics of interest: The general metrics, plus energy costs, and metrics relating
to more complex costs of operation (e.g., roaming and other special rates).

Typical problems: the general online gaming problems, plus focus on energy.

Typical self-aware elements: Applications may offload only (a part of) compu-
tation, data acquisition, or another resource-consuming part. Several, but not many,
feedback and reconfiguration techniques, and stochastic performance models to ad-
dress which part to offload, where, and how already exist [56, 76].

20.3.7 Partial and Delayed Processing

Description: Cloud applications have functional requirements on the computations
hey should perform and non-functional requirements on the additional properties
they should have. Some of these requirements can be expressed as incremental re-
quirements on application behavior. For example, the accuracy of the answer and
the reliability of the operation could be bounded in stages. In partial processing,
applications can gradually downgrade user experience to avoid system saturation.

Partial and delayed processing addresses such requirements. For example, rec-
ommendation engines used by online shops to offer end users suggestions of similar
products are often highly demanding on computing resources [46]. Using a partial
input instead of the entire database of choices can lead to acceptable recommenda-
tions for both users and system. With delayed processing, applications can extend
their response time to cope with overload conditions [37] or dynamically vary re-
source allocations to batch processing jobs to increase overall utilization. [51].

Metrics of interest: Typically, (bounded) response time: the latency experienced
by the users or the latency to deliver results in real-time data stream processing.
Also, reliability, and cost to produce the results.

Typical problems: In addition to traditional requirements, dynamic loads and
variable number of users, making dynamic resource provisioning necessary [62].
Unexpected events and potential failures, such as large load spikes, software and
hardware failures, and lack of performance isolation during workload consolidation.

Typical self-aware elements: For partial processing, enabling and disabling op-
tional components on the fly, which leads to bounded response time [13, 44] and
ability to address multiple failures [45]. Stochastic performance models can help in
analyzing the tradeoffs in use of content vs. capacity requirements, in use of content
vs. response time, and in (iterative) response accuracy vs. response time.

In some cases, extending the response time slightly (e.g., a few seconds every
hour) is typically unnoticeable for users, but solving this optimization problem with
flexible constraints can significantly reduce the impact of overloads [37,51].

580 ITosup et al.

20.3.8 Cyber-Physical Applications

Description: In cyber-physical system (CPS) applications [61], a computing sys-
tem interacts with the physical world in some non-trivial manner. While originally
exemplified by closed embedded systems, such as industrial automation, the scope
of CPS applications has grown over the years to include larger open systems such as
disaster response, medical applications, energy management, and vehicular control.

Metrics of interest: There are two often conflicting evaluation metrics for CPS
applications: safety and performance. Attaining higher performance often requires
greater coupling between components, but such coupling introduces complexity and
pathways for failure propagation which may compromize safety.

Typical problems: A self-aware architecture should offer ways to meet both
safety and performance requirements despite the conflict between them. Adaptation
is needed to attain good tradeoffs, as discussed in the examples below.

20.3.8.1 Medical Applications

Application components: Consider a future implanted smart insulin pump for a
diabetis parient. Multiple control mechanisms may be present that take measure-
ments of activity levels from accelerometers and measurements of sugar levels in
the bloodstream to modulate insulin delivery. While inner control loops will run lo-
cally, there is an opportunity to perform some predictive optimization in the cloud
based on context derived from user location, synch’ed calendar, and other factors.
Decisions on where to execute which functionality at what time may be revisited
dynamically to adapt to different network and patient conditions, as well the current
control objectives (see Section 20.5.1 for details).

Metrics of interest: The safety requirement may specify that the pump shall
never overdose the patient (which could be fatal). A performance requirement may
specify that the pump should predictively adapt its output depending on the person’s
activity and food intake. The predictive aspect is key, because the human body has
too large of a response time for purely reactive (feedback) control schemes to offer
tight sugar regulation.

Typical Problems: Attaining better predictions requires exploitation of more
information. Acquisition of this additional information comes at the cost of having
to connect to other less reliable subsystems (e.g., the cloud), creating dependencies
that may act as pathways for failure propagation and hence safety violations. Hence,
a conflict manifests between performance and safety.

Typical self-aware elements: The need to reconcile safety and performance
gives rise to a new type of adaptation, where the system toggles between meet-
ing performance objectives and meeting safety objectives, depending on current
state. In the nominal (normal operation) state, the system optimizes performance.
However, when system approaches boundaries of safety, the objective switches to
enforcement of safety, even if performance is affected. This approach is commonly
referred to as the Simplex architectural pattern. For example, when the insulin pump

20 Self-Awareness of Cloud Applications 581

observes large deviations in patient’s blood sugar levels, it may switch to a simple
PID control mode based only on trusted local sensors and disconnect itself from the
less reliable cloud inputs that might be offering bad predictions.

20.3.8.2 Vehicular Applications

Application components: Vehicles are an interesting and emerging case study for
CPSs. Up until now, development has focused on making the individual more au-
tonomous. While this trend continues, we believe there will be an increasing em-
phasis on (i) communication between vehicles of different degrees of autonomy;
(i1) careful sharing of CPS information resources; and (iii) system health manage-
ment [8].

Metrics of interest: Safety requirements might be that a vehicle shall avoid hit-
ting other vehicles or pedestrians; traffic signs shall be obeyed. Performance re-
quirements could be to minimize fuel consumption and travel time.

Typical problems: Better performance may be achieved by exploiting global
information, typically from a cloud service. The service might include a database
of all traffic signs, estimates of current traffic conditions, and a schedule of traffic
signals. This information can be used to plan itineraries and driving speeds such
that fuel, trip time, and other passenger preferences are optimized. To ensure safety,
however, only reliable sensors that are local to the car should be used in making
decisions. However, these sensors have only a local view and may miss various
performance optimization opportunities.

Typical self-aware elements: To attain a good tradeoff between safety and per-
formance, a local override mechanism is needed to take control when a safety re-
quirement is about to be violated. For example, if the perceived state at an approach-
ing intersection is different from that reported by the cloud (e.g., light is red, not
green), the local override should take over and manage the car based on local sen-
sors only. The idea is to use the subset of most reliable information only, when the
system state is close to a safety violation boundary, while exploiting additional less
reliable sources for optimization in other states.

20.4 Types of Problems

In this section, we identify the following ten types of problems that affect cloud
applications, and that can benefit from the use of self-awareness techniques.

1. Recovery planning

Autoscaling of resources

Runtime architectural reconfiguration and load balancing
Fault-tolerance in distributed systems
Energy-proportionality and energy-efficient operation
Workload prediction

SAINARE e N

582 ITosup et al.

7. Performance isolation

8. Diagnosis and troubleshooting

9. Discovery of application topology
10. Intrusion detection and prevention

20.4.1 Recovery Planning

Context: Enterprise storage systems are designed to be resilient to failures, but
when a large failure occurs—for example, a datacenter level failure—recovery is
a complex process, and frequently involves some application downtime. It is impor-
tant to recover the most important applications quickly; but What is the sequence of
recovery operations that will minimize the damage? [40] and What can prevent the
failure from reactivating? [72]

Problem: When an enterprise storage system experiences a large failure, critical
applications must be recovered quickly, even at the expense of additional downtime
for less important applications. Administrators are under stress, and have little time
to design the best sequence of recovery operations, and the default methods may be
far from optimal, since each failure can be different. Preventing the re-occurrence
of the failure, for example by isolating, reconfiguring, or micro-rebooting the failed
component, also requires careful planning. A self-aware recovery system that under-
stands the failures, the criticality of the applications to be restored, and the possible
recovery options, can propose or automatically execute a customized recovery plan.

Expected Advancement: By codifying the recovery operations, the cost of
downtime for applications, and what is needed to bring each application back up
so that future failures are also avoided, it is possible to model many possible re-
covery plans. An automated system can select an optimal schedule that balances
recovery targets with cost and resource waste.

Expected Impact on Application Types: A recovery planning optimizer should
be integrated with the overall mechanisms for managing backups, failures, and re-
lated workloads in datacenters (see Section 20.3.5.1). Clearly, the availability of re-
sources (e.g., inter-datacenter bandwidth) impacts the recovery process, and should
be planned accordingly. In the other direction, the design of the backup and restore
mechanisms should be visible to the recovery planner in a way that enables intro-
spection, modeling, and updates when the mechanisms or the applications change.

20.4.2 Autoscaling of Resources

Context: Many applications are subject to time-varying workloads. For instance,
workloads of internet and enterprise applications typically contain time patterns
(e.g., day vs. night, seasonal effects), long-term trends (e.g., increasing customer
base), and bursts (e.g., flashcrowds of interest for content).

20 Self-Awareness of Cloud Applications 583

Problem: As a consequence of time-varying workloads, sizing a system for the
expected peak workload is very inefficient (by orders-of-magnitude!) and may be in-
feasible if the workloads are hardly predictable. Therefore, a system should be able
to dynamically acquire and release resources (e.g., number of replicated VMs) as re-
quired for serving the current workload with a certain level of performance. Target
levels for the application performance may be specified in Service-level Agreements
(SLAs). Cloud computing provides the required flexibility to dynamically change
the amount of resources allocated to applications. However, scaling controllers in
state-of-the-art cloud platforms are following simple trigger-based approaches (e.g.,
if “utilization is above a given threshold, add one VM”), lacking knowledge about
the structure and behavior of the application. Moreover, few are able to respond to
rapid, bursty load transitions [23]. Scaling controllers when data processes require
non-trivial management, for example for big data processing (see Section 20.3.3)
are even more difficult to design [25].

Expected Advancement: A certain self-awareness of the system is required to
take acceptable or even optimal decisions about when to scale an application ver-
tically or horizontally and by what amount of resources; about which part of an
application to scale if the application is comprised of multiple tiers, components or
tasks, or concurrent threads of execution; about which (part of the) application to
ensure against the risk of under-performance or failure; etc. Ideally, the self-aware
system will be able to enforce high-level objectives as specified in SLAs (e.g., end-
to-end response times and maximum risk of SLA breaches).

Expected Impact on Application Types: Autoscaling affects resource provi-
sioning in both multi-tier enterprise applications (Section 20.3.1), and component-
based applications such as data-intensive batch processing (Section 20.3.3), data
stream processing (Section 20.3.4), and datacenter-based online gaming (Section 20.3.6.1).
This allows the auto-scaled applications to meet their quality of service goals in spite
of increased workload demands.

20.4.3 Runtime Architectural Reconfiguration and Load
Balancing

Context: For many of the applications we describe in Section 20.3, the conditions
they are operating under can change at runtime. These include workloads from users
or other systems interacting with the application, resource usage pattens of the ap-
plication itself, component failures from the hosting platform, as well as competing
demands from other applications sharing the same infrastructure.

Problem: In contrast to autoscaling, which keeps the same architecture while
changing the scale of the system, architectural reconfiguration is a family of tech-
niques that reconfigure some architectural components of the overall system. When
workload changes occur, the current architecture of the system may become obso-
lete. For example, even if individual virtual clusters can auto-scale, the overall ar-
chitecture of how the virtual clusters are deployed on the physical infrastructure also

584 ITosup et al.

need self-aware capabilities. A self-aware architecture should reconfigure and man-
age its components, for example by resizing its queues and changing their schedul-
ing policies, or by changing the paths for sharing loads between different queues.

Another common problem in managing a cluster of resources (e.g., servers or
storage devices) is how to automatically balance the load across the cluster. This
involves migrating workloads from one server or device to another quickly and
without any downtime to the applications. Load blancing can also happen among
multiple clusters running similar or different workloads.

A further complication can arise in data centers with thousands of hosts and
services where some services have affinity or anti-affinity constraints. For example,
a service and its backup service should not reside on the same host (anti-affinity),
while it is perferred to have a user interface service and its corresponding DB service
on the same host (affinity). It is a challenge to maximize the utilization of the servers
while providing a high-quality user experience and not violating these constraints.

Expected Advancement: Runtime reconfiguration and load balancing typically
require solving an online optimization problem, whose objective involves specific
performance or availability metrics. First, for each type of applications, such met-
rics need to be identified, collected, and calculated in real time. Second, we need to
develop techniques for quantifying the cost of each reconfiguration step (e.g., an ar-
chitectural change or a VM migration) and for weighing the cost against the benefit
of the reconfiguration. Thrid, we need frameworks for dealing with the fundamental
tradeoff between faster response and stability. Finally, advances on load rebalancing
optimization under affinity or anti-affinity constraints are expected, especially with
the ever increasing scale and complexity of such problems.

Expected Impact on Application Types: Runtime reconfiguration benefits es-
pecially applications who are not negatively impacted by the duration and other
costs of reconfiguration. Among such applications are batch processing applica-
tions, either compute-intensive (Section 20.3.2) or data-intensive (Section 20.3.3),
and some data-stream processing applications (Section 20.3.4).

20.4.4 Fault-Tolerance in Distributed Systems

Context: Due to ever-increasing scale and complexity, hardware and software faults
(which lead to errors, which may lead to a failure) in cloud computing infrastruc-
tures are the norm rather than the exception [4]. This is why many from the appli-
cation classes introduced in Section 20.3 include fault-tolerance techniques, such as
replication, early in their design.

Problem: Failures in cloud infrastructures are often correlated in time and
space [22,79], which means they a failure may affect tens to hundreds of nodes,
or even entire datacenters. Therefore, it may be economically inefficient for the ser-
vice provider to provision enough spare capacity for dealing with all failures in a
satisfactory manner. When correlated failures occur, the service may saturate, i.e., it
can no longer serve users in a timely manner. This in turn leads to dissatisfied users,

20 Self-Awareness of Cloud Applications 585

that may abandon the service, thus incurring long-term revenue loss to the service
provider. Note that the saturated service causes infrastructure overload, which by
itself may trigger additional failures, thus aggravating the initial situation. Hence,
a mechanism is required to deal with rare, cascading failures, that feature tempo-
rary capacity shortage. The main problem is to maintain bounded response times
in the presence of failure, while wasting an acceptable amount of resources (to-
day, about 20% of the entire capacity, but the goal for exascale systems is to waste
under 2% [72]). The problem of fault handling also includes a component about pre-
venting fault re-occurrence, which includes elements of diagnosis, troubleshooting,
isolation, and (micro-)rebooting. [72]

Expected Advancement: Advances are expected in the use of control theory
with the brownout approach, in smart load-balancing using knowledge gained with
control, in self-checking and self-diagnosing, and in self-reconfiguration and in
smart decisions about micro-reboots. Using these techniques, the applications per-
form better at hiding faults from the user, as measured in the number of timeouts a
user would observe.

Expected Impact on Application Types: This problem affects request-response
applications (Section 20.3.7).

20.4.5 Energy-Proportionality and Energy-Efficient Operation

Context: A problem tightly related to autoscaling is one of energy proportionality.
Workloads in many applications are becoming more data-centric. In other words,
the data volume, and not the algorithmic complexity, is becoming the primary con-
tributor to resource consumption. Single pass algorithms are used on most streaming
data, and their complexity is largely linear in the data size. Moving data across ma-
chines is therefore very expensive, compared to the cost of data processing.

Problem: It is hard to design systems where resources operate at capacity all the
time. Necessarily, some resources will not be fully utilized. Solution such as au-
toscaling could become prohibitively expensive if they involve frequent data move-
ment. On the other hand, in the absence of autoscaling, some machines will not be
fully utilized. This operating mode exposes a problem with most current data center
hardware; namely, energy proportionality (or, rather, lack thereof). A server that is
only 30% utilized may be using 80% of the energy needed at full load. One needs
to design solutions where energy consumption shrinks proportionally to load.

Expected Advancement: Attaining energy proportionality in data-centric appli-
cations is challenging. It requires algorithms that minimize unnecessary data move-
ment, while performing autoscaling. These algorithms must amortize cost of data
movement over time [49]. The latter may require a prediction of future data access
patterns [39].

Expected Impact on Application Types: Energy proportionality will benefit
both data-centric multi-tier enterprise applications and stream processing applica-

586 ITosup et al.

tions by allowing them to operate in a more energy efficient manner while minimiz-
ing the need for data movement.

20.4.6 Workload Prediction

Context: The increased volume of data involved in modern cloud applications sug-
gests that initial data placement will play a big role in application performance and
energy consumption. Improper placement will create future load imbalance (e.g.,
if many popular items are collocated) or needlessly increase energy consumption
(e.g., if infrequently accessed items are placed together with some frequently ac-
cessed ones thus preventing machines from being turned off). Chapter 18 discusses
these issues in further detail, from both a time-series and a machine learning per-
spective.

Problem: In (nearly) stateless services, such as those serving static Web pages, a
load balancer can rectify imbalance simply by distributing future requests in a more
equitable fashion. In applications where moving data is costly, it is harder to predict
computing load because such load has a substantial data affinity. Hence, data place-
ment dictates where computation runs. Getting the placement right in the first place
becomes important. This motivates techniques for predicting future access patterns
to data items at the time these items first enter the system and are stored [39].

Expected Advancement: Self-awareness techniques that can understand and
represent efficiently the state of the system. Collecting and summarizing monitor-
ing data at the scales expected for cloud computing infrastructures and workloads is
challenging, yet needed. Proper data access pattern prediction techniques will mini-
mize the need for moving data unnecessarily, and hence improve both performance
and energy consumption of data centers. For example, data predicted to be of no
further interest could be moved proactively to servers that operate in more aggres-
sive energy saving modes, or are in places that are harder to cool, hence saving
energy. Similarly, data predicted to be popular could be partitioned among a suffi-
cient number of servers, reducing the chances of developing hotspots and needing to
relocate some of the data to other machines. To conclude, increasing awareness for
the lowest possible cost is an important trade-off that remains largely unexplored.

Expected Impact on Application Types: Most cloud computing applications
will benefit from some form of workload prediction.

20.4.7 Performance Isolation

Context: Support for multi-tenancy is an important feature of clouds. For example,
SaaS offerings are typically implemented by multi-tenant application architectures.
Multi-tenancy means that different tenants from separate organizations are sharing
the same application instance and see their own tenant-specific view of the data

20 Self-Awareness of Cloud Applications 587

and functionality. Thus, the operator of a SaaS provider can increase the efficiency
compared to running separate application instances.

Problem: The tenants of a cloud service may, unwillingly or even willingly,
affect the operation of the system and thus each other. If one tenant exceeds its
shared portion, or if the services are oversubscribed and the rightful tenants access
the service simultaneously, the performance as experienced by the other tenants can
fluctuate or even depreciate significantly. Likely because of (lack of) performance
isolation, SaaS, but also PaaS and IaaS clouds, can experience high variability in the
performance of their service [34].

Expected Advancement: To ensure performance isolation in such disruptive
scenarios, per-request admission control is required, that automatically throttles
users exceeding their quota to avoid breaking the SLAs of other tenants.

Expected Impact on Application Types: Multi-tier enterprise applications in
a cloud environment need both performance isolation among different application
instances (e.g., on [aaS) [50,58] or different tenants of the same application instance
(e.g., on SaaS) [47].

20.4.8 Diagnosis and Troubleshooting

Context: When an application or service goes down or fails to reach the service
level objective (SLO) regarding its end-to-end performance, one needs to engage in
the process of diagnosis and troubleshooting.

Problem: The key problem is to identify the faulty component that has caused the
failure, or the associated performance bottleneck that has led to the service degrada-
tion. This can be challenging due to the increasingly more complex and distributed
nature of modern applications, their growing space of configurations, the typically
time-varying workload demands, and the applications’ dependency on a variety of
hardware resources, such as processors, memory, storage and network I/O devices,
as well as software resources, such as locks, threads, and connection pools.

Expected Advancement: Traditionally, maintenance personnel, system admin-
istrators or datacenter operators perform diagnosis and troubleshooting manually,
using a combination of logs, performance charts, best practices menus, and their do-
main knowledge, which is time consuming and error prone. With the utilization of
self-awareness techniques, we should build management services that can automat-
ically determine the likely causes of failures or performance problems [43,77,78].

Expected Impact on Application Types: Applications from enterprise multi-
tier systems to networked cyber-physical front-ends can benefit from automatic di-
agnosis and troubleshooting, resulting in shorter durations of failures or service-
level violations, and reduced cost in management and operations. Prior work ad-
dresses system health management, including diagnostics and prognostics capabili-
ties [52,63,65], application troubleshooting [43], and troubleshooting uncoordinated
self-aware managers [30].

588 ITosup et al.

20.4.9 Discovery of Application Topology

Context: Automatic discovery of application topology or runtime architecture is a
required feature for any mature application performance monitoring or management
solutions, according to the Gartner APM Conceptual Framework.

Problem: The problem here is to automate the process of identifying the rela-
tionship and dependency among individual application components at runtime, as
well as how they are mapped to the physical infrastructure (e.g., servers), with no or
only minimum input from human operators.

Expected Advancement: To solve the above problem, one needs to implement
real-time, fine-grained tracing of individual transactions as they traverse through
the execution paths of the application. Such monitoring solutions can be passive
or require intrumentation at the kernel, middleware, or application level. Statistical
techniques for inferring correlations or discovering dependencies are often needed.

Expected Impact on Application Types: Having access to an accurate appli-
cation topology can help diagnose or debug performance degradations and dis-
cover hidden performance bottlenecks in multi-tier enterprise applications (Sec-
tion 20.3.1.1) during their operation or help identify potential root causes of ob-
served failures through event correlation.

20.4.10 Intrusion Detection and Prevention

Context: In cloud environments, different applications coming from diverse orga-
nizations may share the same physical resources. Depending on the cloud service
model (IaaS, PaaS, or SaaS), the data-center owner has different levels of control
over the executed application and their configuration. Vulnerabilities in the infras-
tructure software (e.g., hypervisors) or in shared services (e.g., storage services) can
be exploited to widen an attack from any application to any other virtual machine in
the same infrastructure. For instance, attackers may rent virtual machines (in case
of public clouds) or exploit vulnerabilities of applications (e.g., private website) to
get access to sensitive data (e.g., e-commerce system with credit card data) in other
virtual machines in the same cloud environment.

Problem: The detection and prevention of attacks in a cloud environment re-
quires a classification of cloud workloads (either using application or network
probes) into benign and malicious ones. False positives can result in unnecessary
actions countering attacks, which may have negative effects on the applications.

Expected Advancement: A self-aware system automatically learns to distin-
guish between benign and malicious workloads and can filter out false positives.
Furthermore, the system is able to react to attacks and adapt itself to ensure its
self-protection capabilities. For more details on quantifying the self-protection ca-
pabilities of self-aware systems we refer the reader to Chapter 14.

20 Self-Awareness of Cloud Applications 589

Expected Impact on Application Types: All application types running in a
cloud are potential targets for attacks. Prior work in this area aimed at automatic
workload anomaly detection and at enabling self-healing capabilities of systems.

20.5 Types of Approaches

In this section, we identify and analyze the following seven types of self-awareness
approaches used in practice to address the problems identified in the previous sec-
tion.

Feedback control-based techniques
Metric optimization with constraints
Machine learning-based techniques
Portfolio scheduling

Self-aware architecture reconfiguration
Stochastic performance models

Other approaches

NNk LD =

20.5.1 Feedback Control-Based Techniques

Description: Control theory is a branch of mathematics that studies how to influ-
ence the behavior of dynamical systems [48]. Based on a formal model of the target
system in the form of equations (for time-based control) or automaton (for event-
based control), control theory provides principles for how to synthesize a controller
that would regulate the behavior of the system and obtain prescribed properties.

Expected Impact: Although control theory was invented to deal with physical
systems, the same principles have been successfully applied to many different ap-
plication domains in computing systems [29], including resource allocation [36,50],
application performance via bounded response times [37, 44], reliability [19], and
fault tolerance [7,45], stream processing [38], and big data [18].

Details: A controller should provide the following properties [12,20]:

e Setpoint Tracking. A setpoint refers to the goals to be achieved. For example, a
system is considered responsive when its user-perceived latency is sub-second.

o Transient behavior. This concerns how the setpoint is reached by the system.

e Robustness. The controller should be able to cope with inaccurate measure-
ments, delayed data, or other uncertainties not captured in the system model.

e Disturbance rejection. The closed-loop system should reach its goal in spite of
other disturbing actions happening simultaneously in the system.

These properties are often translated into the corresponding control properties of
stability, no overshooting, quick settling time and robustness to model errors and
disturbances.

590 ITosup et al.

Use Cases: There have been many published studies of developing self-awareness
capabilities using feedback control based techniques.

One broad application area has been resource management in computing sys-
tems. For example, [36] describes a control-based approach to assign CPU resource
shares of virtualized web server applications. This approach emphasizes the CPU
allocation around periods of workload changes and uses H” filters to minimize
the maximum controller error. The work also extends previous work on optimal
configurations for CPU-resource entitlement of virtualized multi-tier web applica-
tions. More recently [67], a control-theoretic approach was described to provide per-
formance, dependability and cost guarantees for online cloud services, with time-
varying workloads. The approach is validated through case studies and extensive
experiments with online services hosted on Amazon EC2. One case study demon-
strates SLA guarantees for a cluster-based multi-tier e-commerce service. In [50],
application managers automatically learn a quantitative model that correlates app-
level performance with resource utilizations and use control theory to derive the op-
timal resource control settings (limits, reservations) for individual virtual machines
such that the multi-tier application can achieve its performance target. Finally, [20]
generalizes and automates core allocation based on various metrics. The approach
provides formal guarantees on the application behavior in spite of external distur-
bances like additional load on the machine. This shows the versatility of feedback
control as an approach for building self-aware and self-adaptive systems.

Another broad application area for feedback control is cyber-physical systems
(see Section 20.3.8). Feedback control is central in smart grids [16], intelligent
transportation, modern critical care units, etc. Parameters and offsets of local loops
might be obtained from remote repositories. The critical need for these applications
typically requires continued, correct operation even in the presence of connectiv-
ity problems to the cloud, bad data, and other failures, which often leads to joint
investigation of control and safety.

20.5.2 Metric Optimization with Constraints

Description: System design, configuration, and management decisions often come
down to a choice between various options. Self-aware systems can reason about the
impact of different choices, but that still leaves the question of which choice best
achieves the system goal. Optimization techniques require first a formal specifica-
tion of the system objective and the constraints under which the system operates,
and then a solution that attempts to optimize the objective. Solution methods can be
exact or approximate, depending upon the situation, but the explicit specification of
goals is essential.

Expected Impact: Using optimization techniques for system decisions has sev-
eral advantages [41]. First, it guarantees clarity: system decisions often come down
to choosing between conflicting goals, and specifying an objective forces the de-
signer to explicitly choose how much weight to assign to them. Secondly, when

20 Self-Awareness of Cloud Applications 591

approximate solution techniques are used. It enables a quantitative evaluation of
how far the results are from the optimal. Thirdly, it allows use of the enormous tool-
box of optimization techniques that already exists, allowing the system designer to
focus on the design aspects.

Details: System designer sometimes use ad hoc heuristics to make system de-
cisions, on the basis that specifying there are conflicting, sometimes intangible re-
quirements that are hard to quantify, and the heuristics produce results that are “good
enough”. However, it is then unclear what “good enough” means, or if the heuristics
in fact achieve it. Expressing the trade-offs into a common currency — whether exe-
cution time, throughput, monetary cost, or a utility function — enables a definition of
goodness. A wide variety of optimization techniques can be applied, depending on
the formulation and requirements: mathematical optimizations, such as linear pro-
gramming or mixed integer programming; constraint programming, if only a feasi-
ble solution is required; meta-heuristic techniques such as simulated annealing or
genetic algorithms, when the optimization problem cannot be solved exactly in the
available time; or other approximate optimization techniques that bound the error in
the resulting solution.

Use Cases: Examples of the use of optimization in systems include Maestro [54],
where online optimization was used with feedback-control to provide performance
differentiation between applications in a disk array, and Janus [3], where offline op-
timization was used to determine allocation of flash resources to workloads. Meta-
heuristic techniques have been used for finding the sequence of recovery operations
to use after a failure to minimize the cost of the downtime [40] and for designing a
redundancy configuration for large enterprise storage systems, in order to minimize
the overall cost of the system including operating overheads and potential downtime
costs.

Another example from the commercial world is the VMware Distributed Re-
source Scheduler (DRS) [27], a widely used feature in the VMware vCenter man-
agement software. DRS manages a set of virtual machines running on a cluster
of physical hosts and performs dynamic load balancing to avoid hot spots and im-
prove application performance, by solving an online optimization problem with hill-
climing heuristics and by taking into account the cost/benefit tradeoff of each move.

Finally, this approach can be applied to the applications described in Sec-
tion 20.3.4. For example, the SQPR query planner [38] allocates physical resources
of heterogeneous clusters to data stream processing queries. SQPR models query ad-
mission, allocation and stream reuse as a single constrained optimization problem
and solves an approximate version to achieve scalability. The SQPR approach mon-
itors the resource utilization across the cluster and performance progress of running
queries to decide on queries’ placement and allocation. SQPR adapts to operating
conditions through continuous monitoring and modelling of cluster and queries per-
formance. SQPR uses an off-the-shelf optimization solver for optimal solutions.

592 ITosup et al.

20.5.3 Machine Learning-Based Techniques

Description: Machine learning is the science of using data to “uncover an underly-
ing process” [1]. More specifically, it involves designing, implementing, and validat-
ing a set of algorithms that can extract insights from data regarding the relationships
among objects and events, often captured in the form of statistical models.

Expected Impact: Besides the successful application of machine learning to
financial applications, e-commerce, and medical applications, there has been a great
deal of research in the past decade on leveraging machine learning based techniques
to creating self-awareness for business critical applications (Sec. 20.3.1).

Details: Supervised learning, unsupervised learning, and reinforcement learning
are the three main types of machine learning approaches. They are commonly ap-
plied to perform clusting, classification, and prediction, using a variety of statistical
models, including decision trees, regression models, neural networks, Bayesian net-
works, or support vector machines.

A system that utilizes machine learning typically has the following components:

e Sensors. Software or hardware modules that measure and collect metrics of
interest for the target system or process.

e Preprocessor. Raw data collected from systems are rarely perfect. It is not un-
common to have missing data from certain components or during certain peri-
ods of time, or data corrupted during collection. Such data need to be “cleaned
up” or aggregated before being fed into an analysis engine.

o Analyzer. This is where statistical learning algorithms are being run, on top of
the collected data, to extract relationships, and to built models that can represent
the learned behavior in a concise form.

e Reporter/Predictor. This is where the insights gained from data are presented
to human operators in the forms of alerts, charts, or dashboards. Alternatively,
the model learned can be used to generate predictions for the target system or
metrics, or to recommend remediation actions.

Use Cases: In [9], Tree-Augmented Bayesian Network (TAN) models are
learned on top of instrumentation data collected from a three-tier Internet service
to automatically identify the top system-level metrics that have likely contributed to
the observed violation of service level objectives (SLOs).

In [57], an autoscaling system employs reinforcement learning to automatically
learn the performance behavior of a multi-tier application when instances of an elas-
tic tier are added or removed, and then uses the knowledge to scale the application
horizontally as its workload demand varies over time.

20.5.4 Portfolio Scheduling

Description: Traditional scheduling policies are designed a specific workload, and
sometimes even for specific applications within a workload; in practice, reuse of old

20 Self-Awareness of Cloud Applications 593

and adoption of new scheduling policies happens rarely. Instead, portfolio schedul-
ing, which is a self-aware and self-expressive technique, considers a set (portfolio)
of scheduling policies, from which it selects at the appropriate moments (e.g., pe-
riodically) the policy which promises the best results for the current and expected
conditions. In this way, the portfolio scheduler combines the strengths of each indi-
vidual policy in its portfolio, which also means that designers of scheduling policies
can focus on simpler policies that do not need to address every type of workload.

Expected Impact: Portfolio schedulers promise to deliver performance at least
as good as any of their constituent policies, without poor performance when the
workload changes. In this context, performance includes traditional performance
metrics, such as application response time and system utilization, and non-traditional
metrics, such as availability, cost-performance efficiency [11], and risk of SLA vio-
lations [75], etc.

Details: The concept of portfolio scheduling derives from economics, where
stock brokers can use portfolio theory to select policies for managing their stocks, to
balance risks and rewards. For cloud applications, portfolio scheduling uses the fol-
lowing four-stage iterative process. In the configuration stage, the portfolio sched-
uler is equipped with a set of scheduling policies. Then, the portfolio scheduler
goes through a selection stage, which results in the selection of an optimal policy;
through an application stage, which results in applying the optimal policy to the
current scheduling problem (queue) and in monitoring the results; and through a
reflection stage, where stale policies are possibly eliminated and the portfolio can
compare its operation relative to the goals of the system. The next cycle can be trig-
gered periodically or, if enough resources allow for timely completion of stages,
whenever an even can lead to system reconfiguration (e.g., at the arrival of a new
request in the system).

Use Cases: Portfolio scheduling has been used for business-critical applications,
with a focus on reducing the risk of SLA violations [75]. The selection stage is
simulation-based, online, and applied after each arrival of a job and periodically. The
optimal policy, from the policies included in the portfolio, is then applied until the
next selection occurs. The results obtained by applying this portfolio scheduler on
the workloads of a real cloud provider indicate that this portfolio scheduler is better
than its constituent policies, but also that the initial configuration of the portfolio is
very important.

Portfolio scheduling has been used for onling gaming applications, but only
tested under laboratory, albeit realistic, conditions [69]. Here, the portfolio is config-
ured with various typical online scheduling policies, but also with an optimal solver
of a linear integer problem; in the selection stage, the portfolio is given a limited
amount of time to decide.

594 ITosup et al.

20.5.5 Self-Aware Architecture Reconfiguration

Description: Self-aware architecture reconfiguration is a family of techniques that
can re-configure at runtime the architecture of the system or of the application.

Expected Impact: The generality of this approach is an advantage, but also
makes the actual impact difficult to predict in advance. By affecting the essence
of the entire system, this approach can affect every metric and virtually every ap-
plication. When applied to applications, this approach can change the operational
characteristics of the application. This approach addresses the runtime architectural
reconfiguration problem.

Details: By monitoring the environment and the (queued) workload, by predict-
ing the performance of the system or application, and by reflecting on the overall
goals of the system or application, self-aware architecture reconfiguration leads to
changing of operational characteristics (queue size and policy, structure of applica-
tion components), but also the way in which the system or application operate (e.g.,
how queues share load).

Use Cases: Koala-C [17], which services the Dutch research cloud DAS4, cre-
ates a system with multiple queues, which can be instructed to shed load to only one
other or a group of other queues. Each queue is aimed to run jobs of a specific run-
time (job size). If a job scheduled by a queue does not finish in the time allocated for
that queue (exceeds the job size for that queue), it is stopped and moved to a queue
of larger size. The approach does not require any prior knowledge about the input
workload. Instead, each job is submitted to the queue(s) servicing the shortest job;
larger jobs traverses progressively the chain of queues, with probabilistic guarantees
in terms of performance and wasted resources. (Queues can also be equipped with
autoscaling mechanisms.) Another use case [31] is that of the cloud provider Blue
Yonder: through a parameterized application performance model, a set of modeled
adaptation points, and an adaptation model, the Blue Yonder applications can adjust
their resources to workload changes and can share resources between customers.

20.5.6 Stochastic Performance Models

Description: Stochastic performance models (e.g., Queueing Networks) enable the
prediction of the expected system performance in terms of throughput, response
time and utilization for a given workload. In a self-aware system, these models are
automatically created and maintained in the learning phase.

Expected Impact: In contrast to machine-learning or feedback control based
techniques, they promise the ability to predict also the performance for previously
unseen workloads or configurations which are significantly different to the current
operating point. Stochastic performance models have been applied to dynamically
reconfigure enterprise multi-tier applications for auto-scaling [73] and performance
isolation [47].

20 Self-Awareness of Cloud Applications 595

Details: Classic queueing networks model the computing at processing resources
(e.g., CPU, hard disk, network). Furthermore, extended formalisms, such as Layered
Queueing Networks or Queueing Petri nets, are able to capture the influence of pas-
sive resources (e.g., software or memory resources). In Chapter 16, a more extensive
discussion of stochastic performance models can be found.

Use Cases: In [47], the authors describe a request admission controller for multi-
tenant applications (e.g., SaaS application) that enables performance isolation and
SLA differentiation between tenants. Using a combination of statistical estimation
of resource demands and operational analysis from queueing theory, the admission
control is able to determine the current resource usage of individual tenants and
determine which requests are admitted and which are delayed.

In [73], a controller for vertical CPU scaling of virtualized applications is pre-
sented based on a Layered Queueing Network. The model is dynamically param-
eterized based on monitoring data from the system and also captures contention
effects due to hypervisor scheduling. By using the performance model, oscillating
reconfigurations are avoided and the parameters can be estimated automatically at
runtime.

20.5.7 Other Approaches

A number of other approaches have been developed by related fields, such as design
science [59]. Although these approaches do not share the entire spectrum of char-
acteristics of, for example, control-based systems, they can be seen as proto-self-
awareness approaches. We enumerate in the following several of these approaches.

Other approaches for auto-scaling: For data-intensive batch processing, which
typically has large state, auto-scalers such as Amazon Elastic MapReduce and
FAWKES [25] use various types of system feedback to decide on scaling. Ama-
zon’s approach is based on the topology-aware S3 storage. Focusing on application
semantics, FAWKES considers various types of VMs, including VMs that store data
transiently or permanently. These approaches consider the MapReduce program-
ming model, which has not been designed to enable interactive processing (e.g., for
fast decision making) or tightly coupled data items (e.g., for graph processing).

In the area of data stream processing, systems such as Apache S4 and Storm
exploit intra-query parallelization to scale out operators and eventually handle de-
manding resource requirements per operator. There are two main challenges in op-
erators’ parallelization to support a scalable DSPS, i.e., how to handle operators’
state and when to scale out/in. Existing research has shown that simple heuristics to
detect violations on resource-based thresholds can be used to horizontally scale out
to additional stream processing operators to handle excess load [7,28]. When han-
dling operator state, most systems focus on the parellization of stateless operators.
In [7, 60] different generic approaches to manage the parallelization of both state-
ful and stateless operators are introduced. In [18] an advanced approach to handle
operators state alongside specialized programming primitives is discussed.

596 ITosup et al.

Other approaches for runtime architectural reconfiguration and load bal-
ancing: Better load balancing within a cluster of compute nodes [27] or storage
nodes [26], or between clusters [17], can lead to avoiding hot spots and to improv-
ing the performance of many types of applications, including compute-intensive sci-
entific applications (Section 20.3.2), business-critical applications (Section 20.3.1),
and batch-processing applications (Section 20.3.2). Reconfiguring the system par-
titions, not only in scale but also in the way they interact, can greatly benefit batch
workloads where long and short jobs can coexist [17]. A genetic algorithm for
load rebalancing (GALR) was proposed to deal with affinity or anti-affinity con-
straints [74]. In experiments running the PlanetLab dataset in a cluster up to 300
hosts, GALR performs close to optimality in load rebalancing, within 4-5 seconds.

Other approaches for fault-tolerance in distributed systems: Experimental
results demonstrated that using brownout [44] and smart load-balancing [13] ap-
plication can tolerate more replica failures and that the novel load-balancing algo-
rithms improve the number of requests served with optional content, and thus the
revenue of the provider by up to 5%, with high statistical significance [45]. Various
self-testing and self-diagnostic techniques exist (for example, SMART, which is a
commercial technology for hard-disks), but self-repair through self-reconfiguration
and self-rebooting is still a largely open field.

20.6 Open Challenges for Self-Aware Cloud Applications

In this section we focus on identifying and analyzing directions for future research
in developing self-aware cloud applications. We ask questions that we find challeng-
ing, yet promising, that is, whose answers we foresee being put in practice in the
next 3-5 years.

To what extent are self-awareness techniques necessary for cloud applications?
Currently, non-self-aware techniques are prevalent in the management of increas-
ingly large cloud datacenters and their applications. Uncertainty about the need and
possible gains limit adoption of of self-awareness techniques for this setting. Anec-
dotal evidence such as that gathered in this chapter and the existing small controlled
experiments conducted by scientists provide some evidence of the benefit of using
self-awareness techniques, but on their own still cannot provide the needed strong
evidence. Instead, inspired by the evolution of related fields, it would be benefi-
cial to collect and share many operational traces from real-world deployments into
an open-access Trace Archive, and to provide a layer of fundamental understand-
ing and knowledge by analyzing and sharing quantitative information such as the
frequency of self-aware decisions and metrics about their impact. Large-scale ex-
perimental comparisons of self-aware and non-self-aware techniques, published as
both technical material and open-access data, could provide a useful complement
and further the acquisition of fundamental knowledge.

How can self-aware computing and communications enable or improve upon
emerging applications for increasingly capable mobile devices — including smart

20 Self-Awareness of Cloud Applications 597

phones, wearable devices, and IoT devices? Today’s cloud architecture, which re-
lies on the use of a “dumb pipe” sitting between it and a smart edge including in-
creasingly capable mobile devices, is likely to be a productive area for future re-
search [53]. In particular, there is a fundamental limitation in how much power a
wearable or hand-held device can consume before it becomes “too hot to wear”
or “too hot to handle.” Consequently, off-loading to an external computing plat-
form, currently a cloud, becomes attractive. However, given the current Internet and
Telecom system architectures, data from apps need to cross a dumb pipe before it
reaches the cloud. This can be a severely limiting factor, for example when it comes
to supporting emerging applications that need low-latency, high-bandwidth commu-
nications. Examples of such emerging applications include rich media (including
video), unmanned vehicles, and gaming.

How can self-aware computing learn and maintain knowledge of itself if it is sub-
Jject to frequent releases? The development of many popular Internet applications
(e.g., Facebook, Netflix) is characterized by very short release cycles (e.g., daily).
The term DevOps is often used to describe approaches and processes to align devel-
opment and operation of software systems with the goal of continuous delivery of
new versions with new or changed functionality. As a result, such software systems
are often in transient phases where different versions of software run in parallel.

How can self-aware computing learn the characteristics of the workloads and
update the allocation of their resources in a distributed manner with global coor-
dination for efficient use of data center resources? Current cloud data centers span
thousands of physical servers and host tens of thousands of virtual machines run-
ning different workloads. Managing such large systems while satisfying individual
workload performance requirements and making efficient use of cluster resources
is an open challenge. Current scalable approaches use either distributed scheduling
(e.g., Mesos) or optimistic resource allocation using shared state (e.g., Omega [66]).
However, such approaches cannot guarantee global scheduling optimality with re-
spect to multiple (possibly competing) goals across all resources and workloads in
the data center.

Can self-aware computing offer techniques for fully automated root cause anal-
ysis (RCA) that can be applied to a variety of management operations in the cloud?
Over the past decade, the wide deployment of monitoring solutions in data cen-
ters and access to real time telemetry have advanced the art in diagnosis and trou-
bleshooting. At the same time, automated RCA still remains an unsolved puzzle
for operators. This is mainly due to the large number of hardware (compute, stor-
age, networking) and software (OS, hypervisor, container, middleware, application)
components that can potentially contribute to an observed failure or performance
drop, and the complex interactions among them. Furthermore, typical statistical
analysis and learning approaches discover correlations not causality between dif-
ferent metrics or events, and hence can only provide hints for the real root cause.

598 ITosup et al.

20.7 Conclusion

Cloud computing and its applications are already an important branch of ICT, with
interesting benefits and challenges. Due to sheer scale, but also to the increasing
sophistication of both their stakeholders and their infrastructure, clouds and their
applications are increasingly relying on self-aware management techniques. In this
chapter we have proposed a systematic framework to explain existing self-awareness
approaches, and to facilitate the analysis of self-awareness in the future.

Our framework proposes a structured way to analyze the types of self-awareness
approaches used in practice, in cloud computing and its applications. The framework
focuses on the types of applications, of problems, and of approaches relevant to self-
awareness. The framework also structures the discussion and the analysis of open
challenges.

In this chapter, we have used the framework to analyze seven types of self-
awareness approaches used in practice: feedback control based techniques, met-
ric optimization with constraints, machine learning based techniques, portfolio
scheduling, self-aware architecture reconfiguration, and stochastic performance mod-
els. We conduct a systematic survey of self-awareness techniques. We focus on eight
types of applications, among which most are already established, whereas appli-
cations such as online gaming, partial processing, and cyber-physical applications
are still emerging. We analyze ten types of traditional and novel problems. Novel,
we focus on problems that have developed beyond their traditional scope or even
emerged altogether in the space of cloud computing, such as autoscaling, energy-
proportionality, performance isolation, and intrusion detection and prevention. We
also identify four open challenges for self-awareness in cloud computing and its
applications.

The future of this work is in facilitating, for the authors and for the self-awareness
community at large, work addressing the open challenges. We also hope the frame-
work will be used for analyzing other self-awareness approaches, new problems,
and new applications.

Acknowledgements This work is partially supported by the Dutch STW/NWO Veni personal
grant @large and Vidi personal grant MagnaData, by the Dutch national program COMMIT and
COMMissioner sub-project, by the Dutch KIEM project KIESA, by a generous ERO gift from
Oracle, by the European FP7 research project AMADEOS Grant Agreement 610535 on Systems of
Systems, by the Swedish Research Council (VR) for the projects “Cloud Control” and “Power and
temperature control for large-scale computing infrastructures”, and through the LCCC Linnaeus
and ELLIIT Excellence Centers.

References

1. Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. Learning From Data.
AMLBook, 2012.

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Self-Awareness of Cloud Applications 599

. Orna Agmon Ben-Yehuda, Assaf Schuster, Artyom Sharov, Mark Silberstein, and Alexandru

Tosup. Expert: Pareto-efficient task replication on grids and a cloud. In IPDPS, 2012.

. Christoph Albrecht, Arif Merchant, Murray Stokely, Muhammad Waliji, Frangois Labelle,

et al. Janus: Optimal flash provisioning for cloud storage workloads. In USENIX ATC, 2013.

. Luiz Andre Barroso and Urs Holzle. The Datacenter as a Computer: An Introduction to the

Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

. Jean Arnaud and Sara Bouchenak. Performance and Dependability in Service Computing,

chapter Performance, Availability and Cost of Self-Adaptive Internet Services. IGI, 2011.

. Aniruddha Basak, Irina Brinster, and Ole J. Mengshoel. MapReduce for Bayesian network

parameter learning using the EM algorithm. In Proc. of Big Learning: Algorithms, Systems
and Tools, 2012.

. Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. In-

tegrating scale out and fault tolerance in stream processing using operator state management.
In SIGMOD, 2013.

. Arthur Choi, Adnan Darwiche, Lu Zheng, and Ole J. Mengshoel. A tutorial on Bayesian

networks for system health management. In A. Srivastava and J. Han, editors, Data Min-
ing in Systems Health Management: Detection, Diagnostics, and Prognostics. Chapman and
Hall/CRC Press, 2011.

. Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Simons, and Jeff Chase. Correlating

instrumentation data to system states: A building block for automated diagnosis and control.
In OSDI, 2004.

Louis Columbus. Roundup of cloud computing forecasts and market estimates, 2015. Forbes
Tech Report, 2015.

Kefeng Deng, Jungiang Song, Kaijun Ren, and Alexandru Iosup. Exploring portfolio schedul-
ing for long-term execution of scientific workloads in iaas clouds. In SC, 2013.

Yixin Diao, Joseph L. Hellerstein, Sujay Parekh, Rean Griffith, Gail E. Kaiser, and Dan Phung.
A control theory foundation for self-managing computing systems. IEEE J. on Selected Areas
in Communications, 23(12):2213-2222, 2006.

Jonas Diirango, Manfred Dellkrantz, Martina Maggio, Cristian Klein, Alessandro Vittorio Pa-
padopoulos, et al. Control-theoretical load-balancing for cloud applications with brownout.
In CDC, 2014.

E.N. Elnohazy et al. System resilience at extreme scale. White paper. Defense Advanced
Research Project Agency (DARPA) report, 2009.

European Commission. Uptake of cloud in europe. Final Report. Digital Agenda for Europe
report. Publications Office of the European Union, Luxembourg, 2014.

Xi Fang, Satyajayant Misra, Guoliang Xue, and Dejun Yang. Smart grid; the new and im-
proved power grid: A survey. IEEE Communications Surveys Tutorials, 14(4):944-980, 2012.
Lipu Fei, Bogdan Ghit, Alexandru losup, and Dick H. J. Epema. KOALA-C: A task allocator
for integrated multicluster and multicloud environments. In CLUSTER, 2014.

Raul Castro Fernandez, Matteo Migliavacca, Evangelia Kalyvianaki, and Peter Pietzuch. Mak-
ing state explicit for imperative big data processing. In USENIX ATC, 2014.

Antonio Filieri, Carlo Ghezzi, Alberto Leva, and Martina Maggio. Self-adaptive software
meets control theory: A preliminary approach supporting reliability requirements. In ASE,
2011.

Antonio Filieri, Henry Hoffmann, and Martina Maggio. Automated design of self-adaptive
software with control-theoretical formal guarantees. In /CSE, 2014.

Andrew Forward and Timothy C. Lethbridge. A taxonomy of software types to facilitate
search and evidence-based software engineering. In Conference of the Centre for Advanced
Studies on Collaborative Research, page 14, 2008.

Matthieu Gallet, Nezih Yigitbasi, Bahman Javadi, Derrick Kondo, Alexandru Iosup, and Dick
H. J. Epema. A model for space-correlated failures in large-scale distributed systems. In
Euro-Par, 2010.

Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael A. Kozuch. Autoscale:
Dynamic, robust capacity management for multi-tier data centers. ACM Trans. Comput. Syst.,
30(4):14, 2012.

600

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

ITosup et al.

Shravan Gaonkar, Kimberly Keeton, Arif Merchant, and William H. Sanders. Designing de-
pendable storage solutions for shared application environments. [EEE Trans. Dependable
Secur. Comput., 7(4):366-380, 2010.

Bogdan Ghit, Nezih Yigitbasi, Alexandru losup, and Dick H. J. Epema. Balanced resource
allocations across multiple dynamic mapreduce clusters. In SIGMETRICS, 2014.

Ajay Gulati, Chethan Kumar, Irfan Ahmad, and Karan Kumar. BASIL: Automated 10O load
balancing across storage devices. In FAST, 2010.

Ajay Gulati, Ganesha Shanmuganathan, Anne Holler, Carl Waldspurger, Minwen Ji, and Xi-
aoyun Zhu. VMware Distributed Resource Management: Design, implementation, and lessons
learned. VMware Technical Journal, 1(1), 2012.

Vincenzo Gulisano, Ricardo Jimenez-Peris, Marta Patino-Martinez, Claudio Soriente, and
Patrick Valduriez. Streamcloud: An elastic and scalable data streaming system. /EEE Trans.
Parallel Distrib. Syst., 23(12):2351-2365, 2012.

Joseph L. Hellerstein, Yixin Diao, Sujay Parekh, and Dawn M. Tilbury. Feedback Control of
Computing Systems. John Wiley & Sons, 2004.

Jin Heo and Tarek Abdelzaher. Adaptguard: Guarding adaptive systems from instability. In
ICAC, pages 77-86, 2009.

Nikolaus Huber, Jiirgen Walter, Manuel Béhr, and Samuel Kounev. Model-based Auto-
nomic and Performance-aware System Adaptation in Heterogeneous Resource Environments:
A Case Study. In ICCAC, 2015.

IDC. Worldwide and regional public it cloud services: 2013-2017 forecast. IDC Tech Report.
[Online] Available: www . idc.com/getdoc. jsp?containerId=251730, 2013.
Alexandru Iosup and Dick H. J. Epema. Grid computing workloads. IEEE Internet Comput-
ing, 15(2):19-26, 2011.

Alexandru Iosup, Nezih Yigitbasi, and Dick H. J. Epema. On the performance variability of
production cloud services. In CCGrid, 2011.

Gideon Juve, Ann L. Chervenak, Ewa Deelman, Shishir Bharathi, Gaurang Mehta, and Karan
Vahi. Characterizing and profiling scientific workflows. Future Generation Comp. Syst.,
29(3):682-692, 2013.

Evangelia Kalyvianaki and Themistoklis Charalambous. A Min-Max framework for CPU
resource provisioning in virtualized servers using H-infinity Filters. In CDC, 2010.
Evangelia Kalyvianaki, Themistoklis Charalambous, Marco Fiscato, and Peter Pietzuch.
Overload Management in Data Stream Processing Systems with Latency Guarantees. In Feed-
back Computing, 2012.

Evangelia Kalyvianaki, Wolfram Wiesemann, Quang Hieu Vu, Daniel Kuhn, and Peter Piet-
zuch. Sqpr: Stream query planning with reuse. In /ICDE, 2011.

Rini T. Kaushik, Tarek Abdelzaher, Ryota Egashira, and Klara Nahrstedt. Predictive data and
energy management in greenhdfs. In IGCC, pages 1-9, 2011.

Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif Merchant, Cipriano Santos, and Alex Zhang.
On the road to recovery: Restoring data after disasters. In EuroSys, 2006.

Kimberly Keeton, Terence Kelly, Arif Merchant, Cipriano A. Santos, Janet L. Wiener, Xi-
aoyun Zhu, and Dirk Beyer. Don’t settle for less than the best: Use optimization to make
decisions. In HotOS, 2007.

Kimberly Keeton and Arif Merchant. A framework for evaluating storage system dependabil-
ity. In DSN, 2004.

Mohammad M. H. Khan, Hieu Khac Le, Hossein Ahmadi, Tarek F. Abdelzaher, and Jiawei
Han. Troubleshooting interactive complexity bugs in wireless sensor networks using data
mining techniques. ACM Trans. Sen. Netw., 10(2):31:1-31:35, 2014.

Cristian Klein, Martina Maggio, Karl-Erik Arzén, and Francisco Hernandez-Rodriguez.
Brownout: Building more robust cloud applications. In /CSE, 2014.

Cristian Klein, Alessandro V. Papadopoulos, Manfred Dellkrantz, Jonas Durango, Martina
Maggio, et al. Improving cloud service resilience using brownout-aware load-balancing. In
SDRS, 2014.

Joseph A. Konstan and John Riedl. Recommended to you. IEEE Spectum, 2012.

20

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Self-Awareness of Cloud Applications 601

Rouven Krebs, Simon Spinner, Nadia Ahmed, and Samuel Kounev. Resource usage control
in multi-tenant applications. In CCGrid, 2014.

William S. Levine. The control handbook. The electrical engineering handbook series. CRC
Press New York, 1996.

Shen Li, Shiguang Wang, Fan Yang, Shaohan Hu, Fatemeh Saremi, and Tarek Abdelzaher.
Proteus: Power proportional memory cache cluster in data centers. In ICDCS, pages 73-82,
2013.

Lei Lu, Xiaoyun Zhu, Rean Griffith, Pradeep Padala, Aashish Parikh, Parth Shar, and Evgenia
Smirni. Application-driven dynamic vertical scaling of virtual machines in resource pools. In
NOMS, 2014.

Luo Mai, Evangelia Kalyvianaki, and Paolo Costa. Exploiting time-malleability in cloud-
based batch processing systems. In LADIS, 2013.

Ole J. Mengshoel, Mark Chavira, Keith Cascio, Scott Poll, Adnan Darwiche, et al. Probabilis-
tic model-based diagnosis: An electrical power system case study. IEEE Trans. on Systems,
Man and Cybernetics, Part A: Systems and Humans, 40(5):874-885, 2010.

Ole J. Mengshoel, Bob lannucci, and Abe Ishihara. Mobile computing: Challenges and op-
portunities for autonomy and feedback. In Feedback Computing’13, 2013.

Arif Merchant, Mustafa Uysal, Pradeep Padala, Xiaoyun Zhu, Sharad Singhal, and Kang G.
Shin. Maestro: quality-of-service in large disk arrays. In /CAC, 2011.

Alexandru-Corneliu Olteanu, Alexandru Iosup, and Nicolae Tapus. Towards a workload
model for online social applications. In /CPE, 2013.

Alexandru-Corneliu Olteanu, Nicolae Tapus, and Alexandru losup. Extending the capabilities
of mobile devices for online social applications through cloud offloading. In CCGrid, 2013.
Pradeep Padala, Anne Holler, Lei Lu, Xiaoyun Zhu, Aashish Parikh, and Madhuri Yechuri.
Scaling of cloud applications using machine learning. VMware Technical Journal, 2014.
Pradeep Padala, Kai-Yuan Hou, Kang Shin, Xiaoyun Zhu, Mustafa Uysal, Zhijui Wang,
Sharad Singhal, and Arif Merchant. Automated control of multiple virtualized resources.
In Eurosys, 2009.

Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and Samir Chatterjee. A design sci-
ence research methodology for information systems research. J. of Management Information
Systems, 24(3):45-77, 2008.

Zhengping Qian, Yong He, Chunzhi Su, Zhuojie Wu, Hongyu Zhu, et al. Timestream: Reliable
stream computation in the cloud. In EuroSys, 2013.

Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic. Cyber-physical systems: The
next computing revolution. In DAC, 2010.

Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In SOCC, 2012.
Brian Ricks and Ole J. Mengshoel. Diagnosis for uncertain, dynamic, and hybrid domains
using bayesian networks and arithmetic circuits. International Journal on Approximate Rea-
soning, 55(5):1207-1234, 2014.

Matthew A. Russell. Mining the Social Web: Analyzing Data from Facebook, Twitter,
LinkedIn, and Other Social Media Sites. O’Reilly Media, Inc., 1st edition, 2011.

Johann Schumann, K. Y. Rozier, T. Reinbacher, Ole J. Mengshoel, T. Mbaya, and C. Ip-
polito. Real-time, on-board, hardware-supported sensor and software health management for
unmanned aerial systems. In Annual Conf. Prognostics and Health Mgmt. Soc., 2013.

Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
Flexible, scalable schedulers for large compute clusters. In EuroSys, 2013.

Damian Serrano, Sara Bouchenak, Yousn Kouki, Thomas Ledoux, Jonathan Lejeune, et al.
Towards QoS-oriented SLA guarantees for online cloud services. In CCGrid, 2013.

Damian Serrano, Sara Bouchenak, Yousri Kouki, Frederico Alvares de Oliveira Jr, Thomas
Ledoux, et al. SLA guarantees for cloud services. Future Generation Comp. Sys., 2015.

Siqi Shen, Kefeng Deng, Alexandru losup, and Dick H. J. Epema. Scheduling jobs in the
cloud using on-demand and reserved instances. In Euro-Par, 2013.

Siqi Shen, Alexandru Iosup, Assaf Israel, Walfredo Cirne, Danny Raz, and Dick H. J. Epema.
An availability-on-demand mechanism for datacenters. In CCGRID, 2015.

602

71.
72.
73.

74.

75.

76.

7.

78.

79.

ITosup et al.

Sigi Shen, Vincent van Beek, and Alexandru Iosup. Statistical characterization of business-
critical workloads hosted in cloud datacenters. In CCGRID, 2015.

Snir et al. Addressing failures in exascale computing. IJHPCA, 28(2):129-173, 2014.

Simon Spinner, Samuel Kounev, Xiaoyun Zhu, Lei Lu, Mustafa Uysal, Anne Holler, and Rean
Griffith. Runtime vertical scaling of virtualized applications via online model estimation. In
SASO, 2014.

Priya K. Sundararajan, Eugen Feller, Julien Forgeat, and Ole J. Mengshoel. A constrained
genetic algorithm for rebalancing of services in cloud data centers. In CLOUD, 2015.
Vincent van Beek, Jesse Donkervliet, Tim Hegeman, Stefan Hugtenburg, and Alexandru Io-
sup. Mnemos: Self-expressive management of business-critical workloads in virtualized dat-
acenters. I[EEE Computer, 48(7):46-54, 2015.

Qiushi Wang and Katinka Wolter. Reducing task completion time in mobile offloading sys-
tems through online adaptive local restart. In /CPE, 2015.

Pengcheng Xiong, Calton Pu, Xiaoyun Zhu, and Rean Griffith. vPerfGuard: An automated
model-driven framework for application performance diagnosis in consolidated cloud envi-
ronments. In /CPE, 2013.

Yong Yang, Lu Su, Mohammad Khan, Michael Lemay, Tarek Abdelzaher, and Jiawei Han.
Power-based diagnosis of node silence in remote high-end sensing systems. ACM Trans. Sen.
Netw., 11(2):33:1-33:33, 2014.

Nezih Yigitbasi, Matthieu Gallet, Derrick Kondo, Alexandru Iosup, and Dick H. J. Epema.
Analysis and modeling of time-correlated failures in large-scale distributed systems. In GRID,
2010.

