Chapter 21

Software Architectures for Self-Protection in
IaaS Clouds

K. R. Jayaram, Aleksandar Milenkoski and Samuel Kounev

Abstract In this chapter, we focus on software architectures for self protection
in TaaS clouds. TaaS clouds, especially hybrid clouds are becoming increasingly
popular because of the need for developers and enterprises to dynamically in-
crease/decrease their use of computing resources to adapt quickly to market forces
and customer demands, reduce costs and increase fault tolerance. However, the
adoption of public IaaS and hybrid clouds by enterprises is slower than expected
because current hybrid cloud infrastructures do not provide scalable and efficient
mechanisms to prevent software tampering, configuration errors and ensure the
trustworthiness and integrity of the software stack executing a hybrid application
workload; or to enforce governmental privacy and audit regulations by ensuring
that remote data and computation do not cross specified geographic boundaries. We
discuss recent research on integrating intrusion detection systems in IaaS infrastruc-
tures, as well as hardware-rooted integrity verification and geographic fencing to
address the concerns outlined above.

21.1 Introduction

Enterprises have been adopting cloud computing in a variety of different abstrac-
tion levels, namely Software-, Platform- and Infrastructure-as-a-Service systems
and in different deployment models (Private, Public, Hybrid, and Community). Se-
curity/protection issues/concerns associated with cloud computing differ according
the the abstraction-level and deployment model but fall into two broad categories:

K. R. Jayaram
IBM T. J. Watson Research Center, e-mail: jayaramkr@us.ibm.com

Aleksandar Milenkoski
University of Wurzburg e-mail: aleksandar.milenkoski@uni-wuerzburg.de

Samuel Kounev
University of Wuerzburg e-mail: samuel .kounev@uni-wuerzburg.de

603

604 Jayaram et al.

e security issues faced by cloud providers (organizations providing software-,
platform-, or infrastructure-as-a-service via the cloud) and

e security issues faced by their customers (companies or organizations who host
applications or store data on the cloud).

The responsibility for security and protection, thus goes both ways, however it is
often the responsibility of the provider to:

e (as much as possible) ensure that their infrastructure is secure and that client
data and applications are protected

e make it easy for the customer to take measures to fortify their application; and
encourage the use of strong passwords and authentication methods as general
policy in their cloud

Before discussing system and software architectures for self-protection in cloud
computing, let us address the main security threats faced by enterprise applications
deployed in the cloud. We focus on threats that arise due to the cloud, i.e., they add
to threats already faced by the application when it is deployed in a private datacenter
in a customer-facing scenario. It is generally recommended that information secu-
rity controls be selected and implemented according and in proportion to the risks,
typically by assessing the threats, vulnerabilities and impacts. While cloud security
concerns can be grouped into any number of dimensions, some are outlined below:

e Configuration and patching errors. The extensive use of virtualization in
cloud infrastructures brings unique security concerns for tenants of a public, pri-
vate and hybrid cloud services. Virtualization alters the relationships between
applications and the underlying hardware; especially given the fact that even
networking functions are virtualized in modern datacenter. The virtualization
layers themselves have to be properly configured, managed and secured. Spe-
cific concerns include compromises to the virtualization layer, especially the
hypervisor. For example, a breach in the administrator workstation with the
management software of the virtualization software can cause the whole data-
center to go down or be reconfigured to an attacker’s liking. Typically the cloud
provider asks the customer to “trust” that the provider has performed all the
necessary configurations, patching, etc. accurately. However, instead of blindly
“trusting” the cloud provider, a better approach is to follow the classic “trust,
but verify” paradigm, where the cloud provider offers some visibility into the
internal configuration and attests to its correctness and security compliance.

e Software tampering. When an organization elects to store data or host appli-
cations on the public cloud, it loses its ability to have physical access to the
servers hosting its information. As a result, potentially business sensitive and
confidential data is at risk from insider attacks. According to a recent Cloud
Security Alliance report, insider attacks are the third biggest threat in cloud
computing. Therefore, cloud service providers must ensure that thorough back-
ground checks are conducted for employees who have physical access to the
servers in the data center. Additionally, data centers must be frequently moni-
tored for suspicious activity. But, such manual methods may not always be ef-

21 Software Architectures for Self-Protection in IaaS Clouds 605

fective. We need automated integrity verification of the software stack executing
applications in the cloud. A key hurdle to increased adoption of cloud comput-
ing infrastructures is concern about the security of the software stack executing
the workload. In a survey of large enterprises by Forrester, 46% of respondents
indicated that “Ensuring that the security policies on applications, operating
systems and workloads are the same in the public cloud as our data center” as
a key hurdle for increased adoption of cloud computing infrastructures. There
is broad agreement that verbal or written assurances of cloud providers in ad-
vertisements and service-level agreements regarding security and compliance
are not sufficient. Encryption of all data and homomorphic computations can
assure data confidentiality only if the code performing encryptions does not
maliciously do something else with the data. Certificates of computation based
on probabilistically checkable proofs (PCPs) and trusted computing platforms
based on said proofs are still not practical, requiring customization for each
application and incurring high overheads.

¢ Isolation and Security Management. In order to conserve resources, cut costs,
and maintain efficiency, cloud service providers often store more than one cus-
tomer’s data on the same server. As a result, there is a chance that one user’s
private data can be viewed by other users (possibly even competitors). To han-
dle such sensitive situations, cloud service providers should ensure proper data
isolation and logical storage segregation. A cloud self-protection architecture
is effective only if the correct defensive implementations are in place. An effi-
cient self-protection architecture should recognize the issues that will arise with
security management. The security management addresses these issues with se-
curity controls. These controls are put in place to safeguard any weaknesses in
the system and reduce the effect of an attack.

o Identity management : Every enterprise will have its own identity manage-
ment system to control access to information and computing resources. Cloud
providers either integrate the customer’s identity management system (e.g., En-
terprise Kerberos) into their own infrastructure, using federation or SSO tech-
nology, or provide an identity management solution of their own (e.g., Open-
Stack KeyStone).

e Physical security : Cloud service providers physically secure the IT hardware
(servers, routers, cables etc.) against unauthorized access, interference, theft,
fires, floods etc. and ensure that essential supplies (such as electricity) are
sufficiently robust to minimize the possibility of disruption. This is normally
achieved by serving cloud applications from ‘world-class’ (i.e. professionally
specified, designed, constructed, managed, monitored and maintained) data cen-
ters.

e Application security : Application security (short: AppSec) encompasses mea-
sures taken throughout the code’s life-cycle to prevent gaps in the security pol-
icy of an application or the underlying system (vulnerabilities) through flaws
in the design, development, deployment, upgrade, or maintenance of the appli-
cation. This includes measures against software tampering, where an attacker
modifies an existing application’s runtime behavior to perform unauthorized ac-

606 Jayaram et al.

tions; exploited via binary patching, code substitution, or code extension. This
also includes preventing unauthorized access to administration interfaces; unau-
thorized access to configuration stores; retrieval of clear text configuration data;
lack of individual accountability; over-privileged process and service accounts

While there are many types of defense mechanisms behind a cloud self-protection
architecture, they are broadly classified into:

e Deterrent mechanisms : These techniques are intended to reduce attacks on a
cloud system. Much like a warning sign on a fence or a property, deterrent
controls typically reduce the threat level by informing potential attackers that
there will be adverse consequences for them if they proceed. (Some consider
them a subset of preventive controls.)

e Prevention mechanisms : Preventive controls strengthen the system against in-
cidents, generally by reducing if not actually eliminating vulnerabilities. Strong
authentication of cloud users, for instance, makes it less likely that unauthorized
users can access cloud systems, and more likely that cloud users are positively
identified.

o Detection mechanisms : Detection mechanisms are intended to detect and react
appropriately to any incidents that occur. In the event of an attack, a detective
control will signal the preventative or corrective controls to address the issue.
System and network security monitoring, including intrusion detection and pre-
vention arrangements, are typically employed to detect attacks on cloud systems
and the supporting communications infrastructure.

e Corrective mechanisms : Corrective controls reduce the consequences of an in-
cident, normally by limiting the damage. They come into effect during or after
an incident. Restoring system backups in order to rebuild a compromised sys-
tem is an example of a corrective control.

In this chapter, we focus on software architectures for self protection in IaaS
clouds. IaaS clouds, especially hybrid clouds are becoming increasingly popular
because of the need for developers and enterprises to dynamically increase/decrease
their use of computing resources to adapt quickly to market forces and customer
demands, reduce costs and increase fault tolerance. However, the adoption of hy-
brid clouds by enterprises is slower than expected because current hybrid cloud in-
frastructures do not provide scalable and efficient mechanisms to prevent software
tampering, configuration errors and ensure the trustworthiness and integrity of the
software stack executing a hybrid application workload; or to enforce governmental
privacy and audit regulations by ensuring that remote data and computation do not
cross specified geographic boundaries.

In traditional data centers, workloads and data were often static and had a hard
binding to the physical systems on which they resided and executed. However, vir-
tualization has made the migration of data and computing resources across phys-
ical hosts easy. Virtual machine (VM) migration is performed by datacenter and
cloud management systems for a host of reasons including load balancing, con-
solidation and during maintenance. A private datacenter can employ sophisticated

21 Software Architectures for Self-Protection in IaaS Clouds 607

cluster management middleware and algorithms to reliably identify the location of
physical servers on which the data and workloads reside during initial placement
and migration, and can put security policies in place to ensure that the management
middleware is not compromised. But, this is infeasible in current IaaS cloud imple-
mentations, because it would require the cloud provider to expose its systems to a
customer/developer who may be malicious.

Organizations considering hybrid clouds however need to produce audit trails of
data and application movement, as well as carry out effective forensics when the oc-
casion demands it. In particular, the workload location identification and attestation
capability needs to be verifiable and auditable by the customer and/or his designated
third party; and preferably anchored in hardware. These capabilities enable work-
load and data boundary control in hybrid clouds, effectively conferring users control
over where workloads and data are created, where they are run, and where they mi-
grate to for performance, optimization, reliability, and high- availability purposes.

Given the enormous overheads involved in proof carrying code and in PCP-
based verifiable computation, in real-world deployments, ensuring trust in the public
TaaS cloud’s software stack (hypervisor, VM, and libraries) often involves software
integrity verification — checking whether specific “known bug-free” or formally
verified/model-checked versions of hypervisors, OS and libraries are used by the
TaaS provider, preventing injection of malicious code into the software stack and
preventing low-level attacks on the hypervisor like those involving root kits. Hence
a self-protection architecture should provide:

e Ability for developers to specify, at a high level, the integrity requirements of
the software stack executing his applications/workloads

e Ensure compliance at runtime by certifying the integrity of the software stack
through certificates verifiable by the developer or a third party trusted by him.

e Allow the specification of geographic locations and boundaries pertaining to
computations in both IaaS and PaaS applications, and ensure their compliance
during placement of virtual machines (at the start of execution) and during VM
lifecycle events like re-sizing, migration and fault-recovery.

e Perform all the available tasks at the scale of massive data centers and IaaS
clouds, which contain hundreds of thousands of virtual machine instances.

21.2 Intrusion Detection Systems

An intrusion detection system (IDS) is a device or software application that mon-
itors network or system activities for malicious activities or policy violations and
produces reports to a management station. IDS come in a variety of flavors and
approach the goal of detecting suspicious traffic in different ways. There are net-
work based (NIDS) and host based (HIDS) intrusion detection systems. NIDS is a
network security system focusing on the attacks that come from the inside of the
network (authorized users). When we classify the design of the NIDS according to
the system interactivity property, there are two types: on-line and off-line NIDS.

608 Jayaram et al.

On-line NIDS deals with the network in real time; it analyses TCP/IP and UDP
packets and applies some rules to decide if there exists an attack or not. Off-line
NIDS deals with stored data and runs some analytics on the data to decide if it an
attack or not. Some systems may attempt to stop an intrusion attempt but this is
neither required nor expected of a monitoring system. Intrusion detection and pre-
vention systems (IDPS) are primarily focused on identifying possible incidents, log-
ging information about them, and reporting attempts. In addition, organizations use
IDPSes for other purposes, such as identifying problems with security policies, doc-
umenting existing threats and deterring individuals from violating security policies.
IDPSes have become a necessary addition to the security infrastructure of nearly
every organization using cloud computing systems.

IDPSes typically record information related to observed events, notify security
administrators of important observed events and produce reports. Many IDPSes can
also respond to a detected threat by attempting to prevent it from succeeding. They
use several response techniques, which involve the IDPS stopping the attack itself,
changing the security environment (e.g. reconfiguring a firewall) or changing the
attack’s content

21.2.1 NIDS

Network Intrusion Detection Systems (NIDS) are placed at a strategic point or
points within the network to monitor traffic to and from all devices on the net-
work. An NIDS performs an analysis of passing traffic on the entire subnet, and
matches the traffic that is passed on the subnets to the library of known attacks.
Once an attack is identified, or abnormal behavior is sensed, the alert can be sent
to the administrator. An example of an NIDS would be installing it on the subnet
where firewalls are located in order to see if someone is trying to break into the
firewall. Ideally one would scan all inbound and outbound traffic; however doing
so might create a bottleneck that would impair the overall speed of the network.
OPNET and NetSim are commonly used tools for simulation network intrusion de-
tection systems. NID Systems are also capable of comparing signatures for similar
packets to link and drop harmful detected packets which have a signature matching
the records in the NIDS. Providing NIDS systems is typically the responsibility of
the IaaS cloud provider.

It is important to emphasize that the wide adoption of virtualization, a key en-
abling technology of cloud computing, has lead to the emergence of the practice
of deploying conventional NIDS as virtualized network functions (VNFs); that is, a
network-based IDS may be deployed in a designated VM and configured to tap into
the physical network interface card used by all VMs (see Chapter 22). Thus, the IDS
can monitor the network activities of all VMs at the same time while being isolated
from, and transparent to, their users.

21 Software Architectures for Self-Protection in IaaS Clouds 609

21.2.2 HIDS

Host Intrusion Detection Systems (HIDS) run on individual hosts or devices on the
network. A HIDS monitors the inbound and outbound packets from the device only
and will alert the user or administrator if suspicious activity is detected. It takes
a snapshot of existing system files and matches it to the previous snapshot. If the
critical system files were modified or deleted, an alert is sent to the administrator to
investigate.

In the case of [aaS clouds, HIDS should be deployed at both the hypervisor-level
and virtual-machine level. In contrast to HIDS deployed at virtual-machine level,
providing HIDS at hypervisor-level is a responsibility of the [aaS cloud provider.

Typical IaaS cloud IDS architectures have to provide good visibility into the
state of the monitored host, while still providing strong isolation for the IDS, thus
lending significant resistance to both evasion and attack. Typical hypervisor-based
approaches leverage virtual machine monitor (VMM) technology. This mechanism
enables the IDS to be placed external to the host it is monitoring, into a completely
different hardware protection domain, providing a high-confidence barrier between
the IDS and an attacker’s malicious code. The VMM also provides the ability to
directly inspect the hardware state of the virtual machine that a monitored host is
running on. The VMM provides the ability to interpose at the architecture interface
of the monitored host, yielding even better visibility than normal OS-level mech-
anisms by enabling monitoring of both hardware and software level events. This
ability to interpose at the hardware interface also allows the IDS to mediate inter-
actions between the hardware and the host software, allowing it to perform both
intrusion detection and hardware access control.

An IDS running outside of a virtual machine only has access to hardware-level
state (e.g. physical memory pages and registers) and events (e.g. interrupts and
memory accesses), generally not the level of abstraction where we want to rea-
son about IDS policies. Typical hypervisor based IDSes leverage three properties of
VMMs:

e Isolation : Software running in a virtual machine cannot access or modify the
software running in the VMM or in a separate VM. Isolation ensures that even if
an intruder has completely subverted the monitored host, he still cannot tamper
with the IDS.

e Inspection : The VMM has access to all the state of a virtual machine: CPU
state (e.g. registers), all memory, and all I/O device state such as the contents
of storage devices and register state of I/O controllers. Being able to directly
inspect the virtual machine makes it particularly difficult to evade a VMM IDS
since there is no state in the monitored system that the IDS cannot see.

e Interposition : Fundamentally, VMMs need to interpose on certain virtual ma-
chine operations (e.g. executing privileged instructions). A VMM IDS can
leverage this functionality for its own purposes. For exam- ple, with only mini-
mal modification to the VMM, a VMM IDS can be notified if the code running
in the VM attempts to modify a given register. VMMs offer other properties that

610 Jayaram et al.

are quite useful in a VMM IDS. For example, VMMs completely encapsulate
the state of a virtual machine in software. This allows it to easily take a check-
point of the virtual machine. Using this capability we can compare the state of
a VM under observation to a suspended VM in a known good state, easily per-
form analysis off-line, or capture the entire state of a compromised machine for
forensic purposes.

21.3 Trustworthy Geo-Fenced IaaS and Hybrid Clouds

This section described recent research on trustworthy geographically fenced hy-
brid clouds (TGHC), a generic, scalable and extensible middleware system to auto-
matically bridge the gap between applications with their integrity and geo-fencing
policies, and raw hardware infrastructure. It describes TGHCs modularly, by (a)
outlining the challenges in certifying the trustworthiness of cloud computing infras-
tructures and in geo-fencing computation, including scalability limitations of exist-
ing solutions, (b) presenting scalable mechanisms to transform bare metal servers
into trusted IaaS computing pools through integrity measurement, management
and monitoring that leverage open, off-the-shelf hardware technologies like Intel
TPM, (c) introducing workload specification languages to specify integrity and geo-
fencing policies on hybrid workloads, and (d) extending IaaS systems to ensure that
workload bursting from private data centers to public clouds uses trusted comput-
ing pools and respects geographic boundaries during initial placement of virtual
machines (VMs) and further migration. TGHCs are expected to be:

e Generic, targeted at a variety of distributed applications programmed in differ-
ent languages and employing different software architectures e.g., event-based
and loosely coupled, service oriented and tightly coupled, legacy software, etc.

e Fine-grained and Flexible, offering developers the flexibility to chose between
two granularities in their specification of integrity and “trustworthiness” poli-
cies, i.e., either using (1) application level abstractions like classes, components,
executables or (2) using IaaS abstractions like VMs, VM pools/patterns.

e Scalable, enabling it to be applied to modern distributed applications and de-
ployed to real world clouds.

e FEasy to use, requiring minimal effort from the developer, and requiring no more
effort than the specification of integrity and geo-location policies in a high-level
policy language/template and no more runtime configuration than state of the
art orchestration systems like Puppet, Chef, etc.

21.3.1 A Modular Hybrid IaaS Cloud

Figure 21.1 illustrates the architecture of TGHCs:

21 Software Architectures for Self-Protection in IaaS Clouds 611

Application-level integrity
and geo-location policies

rl Trusted Geo-Fenced "App" Platform l

Certification/ H)g)ri?qW;)rktload Workload Specifcation +
rchestrator l—> : e
Attestation Authority (HyOrch) 'megmv;ofiice}gsFenmng

Distributed Applications +

Trusted Geo-tagged laa$S Infrastructure
TaaS Workload
Orchestrator
[Secury]+—>[Compie |

<—> Networking

Private Cloud

Fig. 21.1: A high level overview of our Trusted Geo-Fenced Hybrid Clouds Vision

1. An IaaS infrastructure based on open standards, where the integrity and ge-
ographic location of each component — VM provisioning, migration, network
provisioning, block and object storage, etc. — is attested by certification author-
ities and can be trusted by developers and enterprises (modulo their trust in
certification authorities).

2. Hybrid IaaS orchestration middleware, which leverages the infrastructure above
to (a) enable the specification of integrity and geo-location policies at the level
of IaaS cloud abstractions, i.e., using VM instances, virtual LANs, monitor-
ing components and patterns, and (b) ensure compliance with said policies at
all stages during the lifetime of the pattern by certifying bare metal compute
infrastructure and the entire software stack executing on them — hypervisors,
libraries, guest OS in VM instances, etc., along with the application binaries.

3. Ensure that the design and implementation of the components above is extensi-
ble and modular, enabling future design of trustworthy hybrid application plat-
forms, that use the trusted IaaS cloud. This paper, however, focusses on trusted
hybrid TaaS, and describes the research challenges in engineering hybrid geo-
fenced application platforms.

21.3.2 Trusted Geo-Tagged laa$ Infrastructure

As illustrated by Figure 21.1, a trusted geographically tagged IaaS infrastructure
forms the basis of TGHCs. It consists of a trusted pool of servers running a trusted
software stack, on which both customer workloads and management systems (i.e.
those responsible for workload placement, migration, network provisioning, secu-

612 Jayaram et al.

rity and storage) are executed. Each server in this trusted computing pool (TCP)
runs a trusted software stack, i.e., the infrastructure ensures that neither the hyper-
visor, operating system or any of the packages on it have been maliciously modified
and are “known-good” versions, as specified by the developer. Furthermore, the in-
frastructure measures the integrity of all additional patches, application code and
application middleware (e.g., web servers, database servers) that are loaded at run
time and attests their integrity to an attestation service run by a trusted third party.

The key challenge is to perform all these functions automatically. We propose us-
ing hardware-based security techniques to ensure the integrity of the software stack
on the trusted IaaS. Specifically, Section 21.3.4 describes how we leverage off-the-
shelf hardware chips (Trusted Platform Modules or TPMs) to measure the integrity
of hypervisors, operating systems and software packages and interact with the at-
testation service to get these measurements checked against those supplied by the
manufacturer of the operating system or hypervisor. Section 21.3.7 describes how
TPMs can be further leveraged to securely store and transmit geographic location
tags to the attestation service. Scalability of both measurement and attestation is
key, because a trusted computing pool can potentially contain thousands of servers.
Hardware-rooted attestation helps reduce trust placed in cloud providers, because
the customer can use the attestation service to independently verify the integrity and
geo-location of the servers executing his workloads.

21.3.3 IaaS Orchestration Middleware

The next component, as illustrated by Figure 21.1 is the IaaS workload orchestrator,
which interacts with the trusted geo-tagged compute pool, the third party attesta-
tion service and optionally, a workload specification from the developer. The IaaS
cloud provider deploys the workload orchestrator on a trusted server, i.e., the cloud
provider first uses the techniques mentioned above and detailed in Section 21.3.4 to
boot a trusted operating system on a server and certify it to the attestation service.
Then, it employs the techniques described in Section 21.3.4 to verify the integrity of
the workload binares and deploys the workload on the trusted server connecting it
to the attestation service. If the developer prefers to specify the public cloud portion
of his hybrid cloud application as a pattern of virtual machines, e.g., using template
languages like OpenStack HOT, the IaaS workload orchestrator parses this specifi-
cation and interacts with the attestation service to determine the subset of nodes in
the TaaS provider’s datacenter that are trusted in the geographic location specified
by the developer. Then orchestrator then deploys the VMs on trusted nodes while
respecting geographic boundaries, and instantiates the public cloud component of
the application. Furthermore, all subsequent elastic scaling and VM migration only
occurs on trusted servers and respects geographic boundaries (geo-fencing).

21 Software Architectures for Self-Protection in IaaS Clouds 613

21.3.4 Converting Raw Servers to Trusted Servers

The first step in engineering TGHCs is to create a pool of trusted servers that can be
managed by the [aaS management software, especially the laaS workload orchestra-
tor. Converting raw servers to trusted servers involves leveraging and extend the best
ideas from all existing system integrity verification techniques. A modular approach
can be employed to create a trusted server, by starting from a small piece of trusted
code stored securely in a crypto processor to boot a trusted operating system and
hypervisor; and then modularly use the trusted OS to validate all software packages
on the server.

21.3.4.1 A Hardware Root of Trust

In current cloud computing systems, security (including malware prevention, de-
tection, and remediation) is handled primarily by software — either at the operating
system level or by the cloud management, authentication and authorization systems.
This requires customers to place higher levels of trust in cloud providers. A better
approach is the creation of a root of trust at foundational layer of the system —
hardware. Like other proposals [13], we use the Trusted Platform Module (TPM)
chip [11], a standard crypto-processor established by the Trusted Computing Group
(TCG) [10] to instantiate a root of trust at every server. Then, that root of trust grows
upward, into and through the operating system, applications, and services layers.
TPM provides many security functions including special registers, called Platform
Configuration Registers (PCRs) [11] which hold various measurements in a shielded
location in a manner that prevents spoofing. Most laptops and desktops have been
sold with a TPM module since 2006, and server motherboards are increasingly in-
corporating TPM chips.

21.3.4.2 OS + Hypervisor Boot Integrity

Most existing solutions for trustworthy clouds, including the EU TClouds [2] project
the proposal by Intel [13] use trusted boot [9] based on trusted BIOS code — Intel
Trusted Execution Technology (TXT) code [3, 13]. The TPM chip containing the
TXT code is manually installed into servers in a data center. When OS booting
starts, TXT measures (hashes) the initial boot code, and commits the measurement
to the TPM chip, which stores the measurement in PCRs. TXT measures the next
piece of code to be executed and extends a platform configuration register (PCR) in
the TPM based on the measurement in the PCR before the control is transferred to
the next program loaded during the boot process. If each new code module loaded
during the booting process in turn measures the next one before transferring control,
there is a chain of trust established. If this measurement chain continues through
the entire boot sequence, the resultant PCR values will reflect the measurement of
all files used. TXT and TPM can attest (prove) this measurement to a third party

614 Jayaram et al.

by signing the measurement with a private key known only inside the TPM. The
corresponding public key can be used by the third party (attestation server) to verify
the signature, and thus the measurement of the boot code. To protect against replay
of measurements, the attestation protocol uses cryptographic nonces. The TPM is
designed so that once a measurement is added to a PCR register, no operating system
or user-level software can reset or remove the value; only a hardware reboot resets
the chip, and thus restarts the booting process, re-instantiating the root of trust. This
trusted This measurement before execution model therefore leads to a chain of trust
that is observable by the attestation service.

In trusted boot, measurements can be of code, data structures, configuration, in-
formation, or anything that can be loaded into system memory. To further protect
the integrity of the measurements, hash measurements are not written to PCRs, but
rather a PCR is “extended” with a measurement. This means that the TPM takes the
current value of the PCR and the measurement to be extended, hashes them together,
and replaces the content of the PCR with that hash result. The effect is that the only
way to arrive at a particular measurement in a PCR is to extend exactly the same
measurements in exactly the same order. Therefore, if any module being measured
has been modified, the resulting PCR measurement will be different and thus it is
easy to detect if any code, configuration, data, etc. that has been measured had been
altered or corrupted. However, this mechanism has scalability issues when applied
to a large ensemble of machines in a data center, which we address in the following
sections. We explain two alternatives, and then propose a mechanism for scalable
verifiability.

21.3.4.3 Verifiability, but no Scalability with Native TXT

Trusted boot using Intel TXT and TPM, in their existing forms, can be used to prove
the integrity of the operating system and hypervisor and all subsequent software
packages that are installed on them to perform various functions (e.g, profiling, ssh,
web server, etc.), as proposed by, e.g., [2] and [13]. If the chain of measurements
during the boot process is kept by the attestation service in a software maintained
list, it can be attested and verified, by the attestation service against the signed PCR
value. If at any point, a piece of code is malicious, the model guarantees that the
measurement of the malicious code is included in the list. Any attempt by malicious
code to modify the measurement list would cause the validation to fail.

However, this approach used by [13] and [2] simply does not scale. The at-
testation service, which has to check the measurements should have a list of all
possible “known-good” measurements for all versions of all operating systems, and
all versions of each trusted software package, but also all combinations of operat-
ing systems and subsets of software packages. This is because of the way trusted
boot extends integrity measurements in PCRs — assuming that there are K operating
systems and each operating system has at most P compatible packages, each server
may chose to install an operating system and any subset of the P packages. So, the
attestation server has to store O(2") hash measurements for each OS, and the check

21 Software Architectures for Self-Protection in IaaS Clouds 615

the measurement reported by the TPM chip against these. The size of the whitelist
is consequently O(K x 2%). The attestation server has to perform this checking for
thousands of machines in a data center, and should accommodate multiple versions
of packages to be of any real use.

To alleviate this, there have been proposals to modify TXT to record the sequence
in which each code module is hashed and send the sequence to the attestation server.
Then the attestation server can compute expected integrity measurement by hash-
ing the p < P stored hash measurements corresponding to the p packages actually
installed by the server containing TPM and TXT. Although, this only requires the
storage of O(K x P) hash measurements, it still has scalability limitations — we cre-
ated a whitelist database for recent Fedora and RHEL distributions (Fedora 15 -
19, and RHEL 6). One such typical release has over 5000 available packages, with
around 400,000 files. In addition, these packages are frequently updated within a
release. The kernel packages are particularly large, each containing some 3,000 ker-
nel modules, and each was updated on average 10 - 20 times. After a few months,
the database grew to over 30GB, growing progressively slower, and exceeding the
partition allocated for it.

21.3.4.4 Scalability, but no Verifiability with Linux IMA

A popular integrity model is secure boot [12], which stores one or more public keys
in the TPM chip. The keys can only be updated with physical presence. Secure boot
assumes that all code is signed (which is reasonable for most modern software sys-
tems), and the public keys stored in the TPM are used to appraise (verify) signatures
on the boot code, and if the signatures are not correct, the boot is terminated. Se-
cure boot can also root a chain of trust, in which each stage verifies the signature
on the next stage. The Linux integrity subsystem also supports digital signature ap-
praisal with the IMA-appraisal module [7], thus extending the secure boot chain of
trust up into the Linux file systems. Digital signatures provide both integrity and au-
thenticity, and they do so in a much more scalable way than simple measurements.
However, this creates the problem of managing keys in the TPM module. Due to the
fact that they can be updated only with physical presence, it is difficult to add or re-
move software vendors to a cloud application. One way to get around this is to sign
all files with just the TaaS cloud provider’s private key, but that defeats the whole
purpose of reducing trust in the cloud provider. Also, secure boot model does not
provide a hardware rooted attestation to a third party, so a centralized management
system cannot tell if a system has been compromised.

21.3.4.5 Scalable Verifiability

A better approach is to use Intel’s TXT technology to measure and attest the boot
loader, kernel and hypervisor code, along with the public keys of all trusted soft-
ware and data vendors. If all public keys are stored in one file, the attestation

616 Jayaram et al.

server should only store O(K) measurements, assuming that there are K (boot-
loader+kernel+hypervisor) combinations. Further, integrity verification of the soft-
ware packages can be accomplished by checking their digital signatures with the
public keys of trusted software vendors through Linux’s IMA appraisal module.
This does not require developers to exclusively use software signed by the laaS
provider and also scales to a large number of software packages and versions by
avoiding the storage of 27 measurements. However, the TPM module is required in
the physical compute host to certify the host’s integrity to the attestation service, and
verifying digital signatures through IMA does not accomplish this. Consequently,
the IaaS provider and user should only trust hypervisors and operating systems with
IMA code that verifies the digital signature of each executable before loading it dur-
ing the boot process or before executing it in response to user needs. In other words,
the way to ensure that the operating system/hypervisor on a server does not exe-
cute untrusted code is to (1) choose operating systems with kernels that check the
signatures of all executables and do not have mechanisms to circumvent the digital
signature verification process, and (2) verify that the server has booted one of the
said kernels at runtime by measuring its integrity through TXT and attesting to the
same through a trusted third party attestation service. Once this is done, the booted
kernel ensures that all subsequent software is digitally signed obviating the need
to individually attest the hash of each package. Hardware-rooted attestation helps
reduce trust placed in cloud providers, because the customer can use the attestation
service to independently verify the integrity and geo-location of the servers exe-
cuting his workloads. Furthermore, such techniques protect against and detect any
attack on persistent data (files), regardless of whether it comes through the main
processor’s network interface or the management modules interface. Even a remote
root is unable to forge a valid signature. This is because of the trusted BIOS code
(TXT) which hashes each component during the boot process to boot a secure ker-
nel, which subsequently doesn’t allow any unsigned program to execute. Hence, at-
tacks are impossible unless the attacker has the ability to break strong cryptographic
primitives. ¢

21.3.5 vTPMs and VM Launch Integrity

Through trusted hypervisor boot, we can ensure the integrity of pre-launch and
launch components on a platform, from the BIOS to the operating system and hy-
pervisor. However, no specific claims can be made about the virtual machines being
launched, other than indicating that they are being launched on a measured and at-
tested hypervisor platform. Although virtual machine monitors (VMM) or hypervi-
sors are naturally good at isolating workloads from each other because they mediate
all access to physical resources by virtual machines, they cannot by themselves at-
test and assert the state of the virtual machine that is launched. Each virtual machine
launched on a virtual machine manager and hypervisor platform can benefit from a
hardware root of trust by storing its launch measurements in the TPM. However, this

21 Software Architectures for Self-Protection in IaaS Clouds 617

requires virtualizing the TPM, with a virtual TPM (vTPM) for each of the virtual
machines. Each of these virtual TPM (vTPM) instances then emulates the functions
of a hardware TPM.

One approach is to use the open-source IBM vIPM [1] system for TGHCs. It’s
is to provide a TPM functionality to a virtual guest operating system. This allows
programs to interact with a TPM in a virtual system the same way they interact with
a TPM on the physical system. Each guest gets its own unique, emulated, software
TPM. However, each of the vTPM’s secrets (Keys, NVRAM, etc) are managed by a
vTPM Manager domain, which seals the secrets to the Physical TPM. If the process
of creating each of these domains (manager, vIPM, and guest) is trusted, the vIPM
subsystem extends the chain of trust rooted in the hardware TPM to virtual machines
in the hypervisor. Each major component of vITPM is implemented as a separate
domain, providing secure separation guaranteed by the hypervisor.

Once vIPMs are instantiated, the launch of guest operating systems can be
trusted and so can the packages installed on the guest operating systems. This is
done using the scalable verifiability technique presented in Section 21.3.4.5.

21.3.6 Scalable Third Party Attestation

The attestation server is typically managed by a trusted third party (TTP). Each
server in a trusted infrastructure pool connects to the attestation server to provide
TXT integrity measurement hash values, which are then checked by the attestation
server against its database of integrity measurements. The most common attesta-
tion server is Intel’s OpenAttestation server (OAT) which uses a mysqgl database
to store hash values. The attestation server can be run either by a TTP or by the
developer himself, if the IaaS cloud provider is willing to trust the developer with
cryptographically secure hashes of its operating systems, software and hypervisors.
This is not uncommon, especially in aerospace, defense and other sensitive work-
loads from governmental agencies. The main drawback of the existing OAT server
and its implementation is that it still requires storage of hashes of all combinations
of operating systems and software packages (27) as discussed above, and that it is
a standalone server which is neither highly available nor elastic. To scale to trusted
TaaS pools, these mechanisms for scalable verifiability have been incorporated into
Intel’s OAT implementation, while additionally replacing the storage layer with a
distributed three-way replicated key-value store (HyperDex), running on servers that
have been manually verified to be trustworthy.

21.3.7 Trusted Geo-Location

The next step in engineering TGHCs is to identify the geographic location of each
trusted server and to be able to certify its location to a trusted third party that also

618 Jayaram et al.

attests to the integrity of the software stack. In turn, cloud management software
uses the trusted server location information to enforce constraints of sensitive appli-
cations with geo-fencing requirements. Geo-fencing ensures that the requirements
on geographic boundaries are not violated and, furthermore, if violations are de-
tected, that appropriate remedial actions are taken. In this section, we first outline
an existing manual location provisioning technique, and propose an RFID-based
geo-location technique to reduce trust placed in a cloud provider. Manual location
provisioning and the use of RFID tags described below are the only two solutions
currently feasible using off-the-shelf hardware.

21.3.7.1 Manual Location Provisioning using the Trusted Platform Module
(TPM)

The TaaS cloud provider administrator or a trusted third party, can securely provi-
sion the location (geo-tag) of the server motherboard (postal code, GPS coordinates,
city/state/country) to the TPM chip on the motherboard when the server is installed
in the cloud data center. There are no hardware changes required in this approach;
the existing TPM takes care of secure storage for the geo-tags. [13] provides an
overview of this proposal — by reusing the PCR22 of the TPM. PCRs are non-
volatile RAM, and consequently the location stored survives re-boots unless PCR22
is manually erased and the TPM re-provisioned. The TCG specifications [9] allocate
PCR22 in the TPM for OS/VMM use, and popular hypervisors like VMWare ESX,
Xen and KVM do not use it for other purposes. The only drawback with manual
provisioning is that it requires the developer to place some trust in the IaaS provider
and its employees — to not physically remove the motherboard and ship it to another
data center.

21.3.7.2 RFID Tags

A solution to slightly reduce the trust placed in an IaaS provider is to use Radio-
frequency identification (RFID) asset tags in servers in combination with a a spe-
cialized hardware tamperproof asset tracker. The asset tracker is installed by a
trusted third party (TTP) in a datacenter and connects to the TTP’s attestation ser-
vice through a network connection separate from the IaaS provider’s network, e.g.,
using a different wired ISP other than the IaaS provider or through high speed wire-
less network (4G LTE) SIM cards or through satellite internet. The tamperproof
asset tracker consists of an RFID tracker, a GPS locator chip and a trusted server
that can read the GPS chip and RFID tracker to communicate with the TTP’s attes-
tation service. Each server in the data center is provisioned with an active secure
RFID asset tag (costs about $30 per tag) which periodically transmits a tupple, con-
sisting of the RFID tag’s identifier and the server motherboard’s universally unique
identifier (UUID), encrypted by a shared key (shared between the active RFID tag
and the tamperproof asset tracker) or through the asset tracker’s public key. The

21 Software Architectures for Self-Protection in IaaS Clouds 619

asset tracker, in turn hashes each of the elements of this tuple and sends them to
the attestation service. TXT is also extended to hash the UUID of the motherboard
which is securely stored in the TPM module and send this to the attestation service,
which can then attest to the location of the server motherboard because it knows the
location of the asset tracker.

21.3.8 Trusted Hybrid laaS

The next step in engineering TGHCs is to transform a group of trusted servers to a
trusted IaaS compute pool, which can be used by a hybrid cloud application. Engi-
neering a trusted IaaS is challenging because of the complexity of the components
of a modern IaaS cloud manager (e.g., OpenStack). We rely on our modular design
approach to realize trustworthy hybrid IaaS clouds as shown in figure 21.2.

Trusted Applications : :{ ?
Trusted Orchestrator >Chain of Trus

Trusted Compute
Manager

Trusted Guest VMs

Trusted Platform

Hardware Root
[AL][CS] [chrusl(TPM)

Trusted infrastructure

T

]
GG
2 T
I8
s 3
28
@

Fig. 21.2: A modular approach to create a trusted cloud using other trusted compo-
nents

TaaS clouds consist of VMs, VM instances and the IaaS management system.
The main function of an IaaS cloud is to instantiate a virtual machine (VM) image
or a pattern of VM images in response to authenticated user requests, and network
the instantiated VMs according to the user’s specifications. Hence, the main com-
ponents of an laaS management system, with examples from the open-source IaaS
platform OpenStack [6] are (1) authentication and identity management (Keystone)
(2) compute provisioning, migration and resource management (Nova) (3) network
provisioning (Neutron), (4) VM image storage and management (Glance), (5) block
and object storage and (6) cloud orchestrator (Heat) and dashboard (Horizon). To
realize a trusted IaaS cloud, each of these components must in turn be made trust-

620 Jayaram et al.

worthy. In this section, we describe how to create a trusted laaS using OpenStack
as an example, and then detail how a trusted IaaS can be used by a hybrid cloud
application.

21.3.8.1 IaaS Management System

For an IaaS cloud to be trusted, its management system should also be trusted. When
the IaaS cloud is set up, trusted servers are set up using the techniques in Sec-
tion 21.3.4. Then, various IaaS management packages are installed on some of these
trusted servers and validated using the scalable attestation techniques described in
Section 21.3.4. The customer, in turn, can verify from the attestation service that
the management components of the IaaS cloud are running on trusted servers. In the
case of OpenStack, Nova, Glance, Swift, Neutron, KeyStone and Horizon are in-
stalled on trusted servers. The open-source nature of OpenStack, whose architecture
and implementation have been vetted by an active community of developers, along
with attestation of its installation through the third party attestation service ensures
that the management layer performs as expected. Thus, the root of trust now extends
to the IaaS management system, thus ensuring the integrity of the IaaS cloud soft-
ware stack. A trusted IaaS cloud may contain both trusted and untrusted servers —
the only requirements are that it contain a non-zero, non-trivial number of trusted
servers and that it execute all its management functions on trusted servers. For this,
the basic capability needed is resource management.

21.3.8.2 Resource Management

A trusted compute pool in an IaaS cloud is simply a collection of trusted servers
obtained from the process outlined in Section 21.3.4. An IaaS cloud typically has
a resource management system, e.g., Nova in the case of OpenStack [5]. These
resource managers have different architectures (centralized vs decentralized) and
matching algorithms to match available resources to requests and reserve resources
for user requests. In this paper, we describe how to implement a trusted computing
pool in a centralized/replicated resource manager like Nova. Nova is centralized be-
cause it uses a single database (mySQL) to store information about all servers and
other components in a data center. When a request (r) arrives at Nova for servers
to schedule VM instances, Nova queries the database for available server capacity,
retrieves matching server resources to allocate to the VM (e.g., 2 cores, 4GB RAM
on server s), reserves these resources for request r, and instantiates the requested
VM on 5. Nova can be replicated, i.e., using replicated mySQL, both for fault toler-
ance/high availability as well as to scale to a large number of servers and VM instan-
tiation/migration requests. Resource allocation then becomes a distributed transac-
tion handled by the replicated mySQL implementation.

To implement a trusted computing pool, the key idea is to connect the resource
manager to the attestation service to check the veracity of a server’s claims, and

21 Software Architectures for Self-Protection in IaaS Clouds 621

then use trustworthiness and geographic location as additional filters during place-
ment and migration. We have extended Nova to communicate with the attestation
service to verify whether a server that claims to be running a trusted hypervisor
and our scalable attestation software (described in Section 21.3.4) is actually doing
so. Our Nova implementation then stores information in its database about trusted
servers in the computing pool that it manages. Additionally, our Nova also obtains
the geographic location of the server and verifies it with the location reported by
the attestation service. When a VM instantiation request requires a trusted server
in a specific location, our extended Nova modifies its query accordingly to chose a
server that has been attested and filters out untrusted servers. Similarly, during the
migration of a VM, the new physical server should be attested as a trusted server, be-
fore Nova can move a VM to it. Similar techniques can also be used in other cloud
resource managers, like Omega [8], Mesos [4], etc., by connecting the resource
manager to the attestation service, modifying its matching algorithm to distinguish
between trusted and untrusted servers and adding geo-location as a data attribute to
each trusted server.

21.3.8.3 Authentication and Storage Management

The user authentication and identity management components do not need any
changes to work with trusted hybrid IaaS, i.e, KeyStone in the case of OpenStack
does not have to be changed. The image management system (Glance) requires min-
imal changes to ensure that images are stored on trusted geo-located servers, i.e, its
API and functionality are extended to specify the location where an image has to
be stored. The block store and object store should be extended to ensure that (1)
storage requests from a trusted VM instance are handled by and the data stored on a
trusted server, (2) the geo-fencing constraints on storage requests from a trusted VM
remain the same as the constraints on the VM instance, i.e., if a VM is restricted to
execute in the USA, then all its object and block storage resides in the USA.

21.3.8.4 A Trusted IaaS

Though resource management and server management are key components of ev-
ery IaaS cloud, modern TaaS implementations provide several other functionalities,
including but not limited to automatic elastic scaling at the level of virtual machine
instances, floating IPs, security groups, virtual LANs, volume storage, object stor-
age, etc. All such components of the TaaS implementation should be instantiated
on trusted servers. Otherwise, malicious code in the other components of the laaS
system can circumvent the protections offered by the trusted compute pool.

In the case of the OpenStack IaaS platform, this includes all its management
components, including the authentication and security subsystem (KeyStone), im-
age management system (Glance), network management (Neutron), etc. In sum-
mary, we propose to modularly use TPM and our scalable attestation to convert raw

622 Jayaram et al.

servers into trusted servers attested by a trusted third party. Then, we instantiate
OpenStack Nova on one or more trusted servers for resource management, which
communicates with each of the servers and with the attestation service to determine
whether they are a trusted software stack and their geo-location. We then use trusted
Nova to instantiate the other components on trusted servers or trusted Linux VMs.

21.4 Conclusions and Future Research Directions

In this chapter, we have presented two key technologies for self-protection in laaS
clouds, and describe their software architecture. This includes Intrusion Detection
Systems and hardware-rooted integrity verification of software stack executing ap-
plications in the cloud. We have illustrated how these technologies serve as preven-
tive, detective and deterrent controls for the various threats faced by applications
executing in the cloud as outlined in Section 1.

References

1. Stefan Berger, Ramén Caceres, Kenneth A. Goldman, Ronald Perez, Reiner Sailer, and Leen-
dert van Doorn. vtpm: Virtualizing the trusted platform module. In Proceedings of the 15th
Conference on USENIX Security Symposium - Volume 15, USENIX-SS’06, Berkeley, CA,
USA, 2006. USENIX Association.

2. EU Framework 7 — TClouds Project. Trustworthy Clouds Privacy and Resilience for Internet-
scale Critical Infrastructure, 2013. http://www.tclouds-project.eu/index.
php/published-results/public-deliverables.

3. W. Futral and J. Greene. Intel Trusted Execution Technology for Server Platforms, 2014.
http://www.intel.com/content/dam/www/public/us/en/documents/
white-papers/trusted-execution-technology—-security-paper.pdf.

4. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy
Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI’ 11, pages 295-308, Berkeley, CA, USA, 2011. USENIX Association.

5. OpenStack. Nova Developer Documentation, 2014. http://docs.openstack.org/
developer/nova/.

6. OpenStack. OpenStack Architecture, 2014. http:
//docs.openstack.org/training-guides/content/
module001l-ch004-openstack-architecture.html.

7. Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doorn. Design and implementa-
tion of a tcg-based integrity measurement architecture. In Proceedings of the 13th Conference
on USENIX Security Symposium - Volume 13, SSYM’04, pages 16-16, Berkeley, CA, USA,
2004. USENIX Association.

8. Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and John Wilkes. Omega:
Flexible, scalable schedulers for large compute clusters. In Proceedings of the 8th ACM Euro-
pean Conference on Computer Systems, EuroSys ’13, pages 351-364, New York, NY, USA,
2013. ACM.

9. Trusted Computing Group. Trusted Boot, 2014. http://www.
trustedcomputinggroup.org/resources/trusted_boot.

21

10.

11.

12.

13.

Software Architectures for Self-Protection in IaaS Clouds 623

Trusted Computing Group. Trusted Computing Group Web Portal, 2014. http://www.
trustedcomputinggroup.org.

Trusted Computing Group”. Trusted Platform Module Specification, 2014. http://www.
trustedcomputinggroup.org/resources/tpm _main_specification.

R. Wilkins and B. Richardson. UEFI Secure Boot in Modern Computer Security Solutions,
2013. http://www.uefi.org/sites/default/files/resources/UEFI_
Secure_Boot_in_Modern_Computer_Security_Solutions_2013.pdf.

R. Yeluri and E. Castro-Leon. Building the Infrastructure for Cloud Security A Solutions View.
Apress Inc., 2014.

