|
| -

Kai Sachs

Performance Modeling and
Benchmarking of

Event-Based Systems

Bildnachweis zur Titelseite:

Urheber Andreas Arnold
Quelle TU Darmstadt

Performance Modeling and Benchmarking of
Event-Based Systems

Vom Fachbereich Informatik
der Technischen Universitat Darmstadt
genehmigte

DISSERTATION

zur Erlangung des akademischen Grades
eines Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von

Kai Sachs
aus Bad Homburg v.d. Hohe

Referenten:
Prof. Alejandro P. Buchmann, PhD, TU Darmstadt
Prof. Jean Bacon, PhD, University of Cambridge

Darmstadt 2010, Darmstadter Dissertation D17

To Anna-Lena and my family.

Abstract

Event-based systems (EBS) are increasingly used as underlying technology in many mission
critical areas and large-scale environments, such as environmental monitoring and location-
based services. Moreover, novel event-based applications are typically highly distributed and
data intensive with stringent requirements for performance and scalability. Common ap-
proaches to address these requirements are benchmarking and performance modeling. How-
ever, there was a lack of general performance modeling methodologies for EBS as well as test
harnesses and benchmarks using representative workloads for EBS. Therefore, this thesis fo-
cused on approaches to benchmark EBS as well as the development of a performance modeling
methodology. In this context, novel extensions for queueing Petri nets (QPNs) were proposed.
The motivation was to support the development and maintenance of EBS that meet certain
Quality-of-Service (QoS) requirements.

To address the lack of representative workloads we developed the first industry standard
benchmark for EBS jointly with the Standard Performance Evaluation Corporation (SPEC) in
whose development and specification the author was involved as a chief benchmark architect
and lead developer. Our efforts resulted in the SPECjms2007 standard benchmark. Its main
contributions were twofold: based on the feedback of industrial partners, we specified a compre-
hensive standardized workload with different scaling options and implemented the benchmark
using a newly developed complex and flexible framework. Using the SPECjms2007 benchmark
we introduced a methodology for performance evaluation of message-oriented middleware plat-
forms and showed how the workload can be tailored to evaluate selected performance aspects.
The standardized workload can be applied to other EBS. E.g., we developed an innovative
research benchmark for publish/subscribe-based communication named jms2009-PS based on
the SPECjms2007 workload. The proposed benchmarks are now the de facto standard bench-
marks for evaluating messaging platforms and have already been used successfully by several
industrial and research organizations as a basis for further research on performance analysis
of EBS.

To describe workload properties and routing behavior we introduced a novel formal defini-
tion of EBS and their performance aspects. Furthermore, we proposed an innovative approach
to characterize the workload and to model the performance aspects of EBS. We used oper-
ational analysis techniques to describe the system traffic and derived an approximation for
the mean event delivery latency. We showed how more detailed performance models based
on QPNs could be built and used to provide more accurate performance prediction. It is the
first general performance modeling methodology for EBS and can be used for an in-depth
performance analysis as well as to identify potential bottlenecks. A further contribution is a
novel terminology for performance modeling patterns targeting common aspects of event-based
applications using QPNs.

To improve the modeling power of QPNs, we defined several extensions of the standard
QPNs. They allow us to build models in a more flexible and general way and address several

limitations of QPNs. By introducing an additional level of abstraction, it is possible to dis-
tinguish between logical and physical layers in models. This enables to flexibly map logical
to physical resources and thus makes it easy to customize the model to a specific deployment.
Furthermore, we addressed two limiting aspects of standard QPNs: constant cardinalities and
lack of transition priorities.

Finally, we validated our methodology to model EBS in two case studies and predicted
system behavior and performance under load successfully. As part of the first case study we
extended SIENA, a well-known distributed EBS, with a runtime measurement framework and
predicted the runtime behavior including delivery latency for a basic workload. In the second
case study, we developed a comprehensive model of the complete SPECjms2007 workload.
To model the workload we applied our performance modeling patterns as well as our QPN
extensions. We considered a number of different scenarios with varying workload intensity
(up to 4,500 transaction / 30,000 messages per second) and compared the model predictions
against measurements. The results demonstrated the effectiveness and practicality of the
proposed modeling and prediction methodology in the context of a real-world scenario.

This thesis opens up new avenues of frontier research in the area of event-based systems.
Our performance modeling methodology can be used to build self-adaptive EBS using auto-
matic model extraction techniques. Such systems could dynamically adjust their configuration
to ensure that QoS requirements are continuously met.

Zusammenfassung

Ereignisbasierte Systeme (EBS) gewinnen bei der Implementierung von hochverteilten Sys-
temen und geschéftskritischen Anwendungen als Basistechnologie zunehmend an Bedeutung.
Durch ihren hohen Verteilungsgrad und die Datenintensitat stellen solche Anwendungen hohe
Anspriiche an die verwendeten Techniken, beispielsweise an die Skalierbarkeit und Perfor-
mance der zugrundeliegenden Systeme. Verbreitete Ansétze zur Analyse und Bewertung dieser
Systemeigenschaften sind Performance-Modelle und Benchmarks. Allerdings fehlen bisher
generelle Ansatze fiir die Evaluierung von EBS sowie die dazu bendtigten Testumgebungen
und Benchmarks mit reprasentativen Lastmodellen. Hieraus leitet sich die Notwendigkeit und
der Schwerpunkt dieser Arbeit ab, die sich auf die Entwicklung einer allgemeinen Methodik
zur Performance-Modellierung sowie Benchmarks fiir EBS konzentriert. In diesem Zusam-
menhang werden auch Erweiterungen fiir Queueing Petri Netze (QPN) vorgeschlagen. Ziel ist
die Entwicklung von Methodiken, die es erlauben, bei dem Entwurf und Betrieb von EBS die
Servicequalitiat vorherzusagen, zu iiberwachen und somit garantieren zu konnen.

Aufgrund des Mangels an repréisentativen Lastmodellen fiir EBS wurde im Rahmen dieser
Arbeit gemeinsam mit der Standard Performance Evaluation Corporation (SPEC) der erste
Industriestandardbenchmark fiir EBS entwickelt, wobei der Autor als leitender Entwickler
und Architekt mafigeblich an der Spezifikation und Umsetzung beteiligt war. Diese Zusam-
menarbeit resultierte im SPECjms2007 Benchmark, bei dem insbesondere zwei Beitréige her-
vorzuheben sind - das standardisierte Lastmodell und ein neuentwickeltes Benchmark-Frame-
work. Basierend auf dem Feedback der Industriepartner wurde ein umfangreiches standar-
disiertes Lastmodell mit verschiedenen Skalierungsmoglichkeiten spezifiziert. Dieses Lastmo-
dell wurde mit Hilfe des Frameworks als Benchmark implementiert. In dieser Arbeit wird
anhand des Benchmarks eine Methodik zur Performance-Evaluierung von nachrichtenorien-
tierter Middleware hergeleitet, bei der das Lastmodell zur Analyse verschiedener Performance-
relevanter Aspekte eingesetzt wird. AuBerdem wird am Beispiel des jms2009-PS Benchmarks
fiir Publish/Subscribe-basierte Umgebungen illustriert, wie das standardisierte Lastmodell zur
Evaluierung verschiedenartiger EBS eingesetzt werden kann. SPECjms2007 hat sich heute als
Industriestandardbenchmark fiir die Evaluierung nachrichtenbasierter Plattformen etabliert
und wird erfolgreich von diversen Industrie- und Forschungsorganisationen eingesetzt.

Zur Beschreibung der Eigenschaften des Lastmodells und des Routing-Verhaltens innerhalb
eines EBS wird eine formale Definition von ereignisbasierten Systemen und ihren Performance-
Aspekten eingefithrt. Als einer der Hauptbeitrage dieser Arbeit wird ein neuartiger Ansatz
zur Charakterisierung von Lastmodellen und der Modellierung von Performance-relevanten
Aspekten eines EBS vorgestellt. Dieser erlaubt es einerseits mit analytischen Techniken
die Systemlast zu beschreiben und die durchschnittliche Lieferlatenz eines Ereignisses zu
schatzen. Andererseits wird gezeigt, wie man mit Hilfe von QPNs detaillierte Performance-
Modelle (mit einem hoheren Detaillierungsgrad) definieren kann, die zu sehr genauen Perfor-
mancevorhersagen fithren. Insgesamt handelt es sich dabei um die erste generische Methodik

iii

zur Performance-Modellierung von EBS und kann sowohl fiir Performance-Analysen als auch
fiir die Identifizierung potentieller Engpésse eingesetzt werden. Ein weiterer Beitrag ist eine
neue Terminologie zur Beschreibung von Performance-Modellierungspattern, mit dem Ziel, all-
gemeine Eigenschaften von ereignisbasierten Anwendungen anhand von QPNs zu beschreiben.

Um die Modellierungsmoglichkeiten von QPNs zu verbessern, wurden mehrere Erweiterun-
gen fiir QPNs vorgeschlagen. Diese erlauben es, flexiblere und generische Modelle zu bauen
und beseitigen einige Beschrankungen von QPNs. So wurde eine zuséatzliche Abstraktions-
ebene eingefiihrt, damit in den Modellen zwischen logischer und physikalischer Ebene unter-
schieden werden kann. Dies ermoglicht, physikalische Ressourcen logischen Ressourcen dy-
namisch zuzuordnen und Modelle mit nur geringem Anderungsaufwand an spezifische Umge-
bungen anzupassen. Des Weiteren wurden Losungen erarbeitet, wie QPNs erweitert werden
konnen, um konstante Kardinalitidten sowie Prioritaten fiir Transitionen zu unterstiitzen.

Die eingefithrte Modellierungsmethodik wurde in zwei Fallstudien validiert, in denen das
Verhalten und die Performance zweier Systeme erfolgreich vorhergesagt wurde. Bei der ers-
ten Fallstudie wurde SIENA, ein bekanntes verteiltes EBS, um ein Framework zur Messung
der Laufzeitperformance erweitert. Fiir ein einfaches Szenario wurde das Laufzeitverhal-
ten inklusive der Lieferlatenzen von Ereignissen erfolgreich prognostiziert. Im Rahmen der
zweiten Fallstudie wurde ein detailliertes Modell des kompletten SPECjms2007 Lastmodells
hergeleitet. Dabei kamen die in dieser Arbeit eingefiihrten Performance-Modellierungspattern
sowie die QPN Erweiterungen zum Einsatz. Modellvorhersagen fiir verschiedene Szenarien
mit unterschiedlichen Lastenintensitdten (bis zu 4 500 Transaktionen / 30 000 Nachrichten
pro Sekunde) wurden mit Messungen verglichen und haben die Effektivitdt und Anwendbarkeit
der vorgeschlagenen Methodik im Kontext eines realen Szenarios bestatigt.

Diese Arbeit legt ein umfassendes Fundament fiir die weitere Forschung im Bereich von
ereignisbasierten Systemen. So kann beispielsweise die eingefiihrte Performance-Modellierungs-
methodik dazu eingesetzt werden, mit Hilfe automatischer Modellgenerierungstechniken selbst-
anpassende Systeme zu entwickeln. Ein solches System kann sich dynamisch an verédnderte
Umgebungseinfliisse anpassen, um die definierte Servicequalitiat zu garantieren.

Acknowledgements

Looking back at my years as a PhD candidate, I am very thankful for all the support I have
received from numerous people. Without them, this thesis would not have been accomplished
in its present form. I would like to take the opportunity to express my gratitude to Prof.
Alejandro Buchmann, Ph.D., my supervisor. His advice and expertise not only added to my
research experience but also encouraged me to pursue several projects. I am also thankful to
Prof. Jean Bacon, Ph.D., for taking over the part of the second reviewer and her detailed
feedback on this thesis.

I would like to thank Dr. Samuel Kounev. In all those years, Samuel has not only become
a great colleague and mentor but also a very close friend to me. It has always been and still
is a pleasure to work with him. I appreciate his vast knowledge, patience and support that
allowed us to master many challenges together, such as organizing conferences, writing papers
and developing new benchmarks.

I would like to thank the members of the Database and Distributed Systems Group and
the Descartes Research Group for all the helpful feedback on my work and for creating such a
pleasant working environment. Special thanks to Pablo Guerrero and Stefan Appel for all the
fruitful discussions, their constructive feedback on my work and for collaborating with me in
several interesting projects related to benchmarking and performance modeling. Many thanks
to Astrid Endres, Jun.-Prof. Dr. Dimka Karastoyanova and Khalid Nawaz who were excel-
lent officemates and friends; to Christof Leng, Max Lehn and Wesley Terpstra who provided
insights in peer-to-peer computing and the challenges in highly distributed environments; to
Sebastian Frischbier who was running several performance tests using SPECjms2007; and to
Arthur Herzog, Dr. Christian Lang, Christian Seeger, Daniel Jacobi, Dr. Ilia Petrov and Dr.
Patric Kabus who discussed with me challenges and provided constructive feedback. Special
thanks to Marion Braun for her kindness in all the years.

Further, I owe my thanks to Dr. Annika Hinze for our joint work on the definition of
event-based applications and to Dr. Christof Bornhévd and Dr. Mariano Cilia for working on
ECA rule engines.

Thanks also to the SPEC organization and committees; especially to Dianne Rice and
Kathy Powers from the SPEC office; Bernhard Riedhofer, Enno Folkerts, Harald Miiller and
Dr. Jens Happe from SAP; John Henning, Saraswathy Narayan, Steve Realmuto, Tom Daly
and Walter Bays from Oracle; David Rogers, David Schmidt and Klaus Lange from HP;
Clebert Suconic and Tim Fox from Red Hat; Gary Tully from Fuse Source and Tim Dunn
from IBM. Our collaborations and exchange helped me to give my research practical relevance.

I would like to thank my students Eva Twellmeyer, Florian Dorr, Frank Heimburger, Liisel
Murre, Manuela Miiller, Michael Schneider, Stephan Butterweck and Yves Njipwo Nguenda
for their hard work on many interesting research projects in the field of event-based systems,
benchmarking and performance modeling.

Special thanks to Barbara and Martin for their constructive and detailed comments on the
manuscript of this thesis. I am also very grateful to my parents Carina and Wilhelm and my
sisters Angrieni and Raissa for their endless support and encouragement. Finally, my very
best thanks to Anna-Lena. Without her continuous support, this thesis would not exist.

Contents

1 Introduction
1.1 Motivation
1.2 Problem Statement . . .

1.3 Approach and Contributions of This Thesis
1.3.1 Contributions in Performance Engineering
1.3.2 Contributions in the Area of Benchmarking

1.3.3 Summary

1.3.4 Related Activities and Publications.

1.4 Thesis Organization . .

2 Background
2.1 Event-Based Systems . .

2.2 Technology Platforms of Event-Based Systems

2.2.1 Active Databases

2.2.2 Continuous Queries, Stream Processing
2.2.3 Materialized Viewso
2.2.4 Message-Oriented Middleware (MOM)
2.2.5 Distributed Event-Based Systems (DEBS)
2.2.6 Reactive Middleware Lo
2.3 Introduction to Queueing Petri Nets,

2.4 Concluding Remarks . .

3 Related Work

3.1 Performance Modeling of Event-Based Systems
3.2 Benchmarking of Event-Based Systems
3.3 Patterns in Performance Modeling 0L

3.4 Concluding Remarks . .

Performance Engineering of Event-Based Systems

4.1 Modeling Methodology for EBS

4.1.1 Formal Definition

4.1.2 Analysis of the Event Routing Behavior
4.1.3 Estimation of Event Service Times
4.1.4 System Operational Analysis,
4.1.5 Performance Model Construction and Evaluation
4.2 Performance Modeling Pattern

4.3 Extensions of QPNs . .

4.3.1 Mapping of Logical to Physical Resources

vii

11
12
12
13
13
21
21
22
26

27
27
29
33
33

4.3.2 Non-Constant Cardinalities of Transitions

4.3.3 Priority of Transitions L
4.3.4 Tool Extension
4.4 Concluding Remarks Lo
Benchmarking of Event-Based Systems
5.1 SPECjms2007 - A Standard Benchmark
5.1.1 Workload Requirements and Goals of the
SPECjms2007 Benchmark 000
5.1.2 Workload Scenario Lo
5.1.3 Modeled Interactions Lo
5.1.4 SPECjms2007 Workload Characterization
5.1.5 Benchmark Implementation
5.2 Case Study I: SPECjms2007
5.2.1 Experimental Setting.
5.2.2 Horizontal and Vertical Scaling
5.2.3 Customized Vertical Workloads
5.2.4 Publish/Subscribe Messaging
5.2.5 P2P Messaging
5.2.6 Conclusions of the SPECjms2007 Case Study
5.3 jms2009-PS - A Publish / Subscribe Benchmark
5.3.1 Configuration Parameters
5.4 Case Study II: jms2009-PS
5.4.1 Imtroduction
5.4.2 Test Scenarios Lo
5.4.3 Experimental Results oo
5.5 Concluding Remarks
Performance Modeling of EBS - Case Studies
6.1 DEBS Case Study
6.1.1 Scenario
6.1.2 Setup
6.1.3 Experimental Results
6.1.4 Conclusions L
6.2 Modeling SPECims2007
6.2.1 Introduction
6.2.2 Modeling SPECjms2007
6.2.3 Experimental Evaluation 000000,
6.2.4 Conclusion
6.3 Concluding Remarks

Conclusions and Outlook
7.1 Ongoing and Future Work

80

82

83

87

97
104
104
105
106
107
111
113
115
116
118
118
118
120
121

123
123
123
124
124
125
125
125
126
130
136
136

139

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3
5.4
9.5

A (Distributed) Event-based System L. 3
Event Notificationinan EBS 10
Point-to-point messaging. Lo 13
Example for Pub/Sub Messaging. 13
Subscription Models 14
Subscription Models (cont.) oL o 15
Router Network of REBECA [155] 21
QPN Notation 24
A QPN Model of a Central Server with Memory Constraints (reprinted from [26]). 25
Response Time (RT) in Traditional Request / Reply and in EBS 36
System Topology e 37
High-Level System Model. 43
Modeling Non-Poisson Event Publications. 44
Firing of Transition ¢; in Mode pf oL oL 45
Modeling Network Connections. 45
Standard Queue Pattern 48
Standard Pub/Sub Pattern - Fixed Number of Subscribers. 49
Standard Pub/Sub Pattern - Configurable No. of Subscribers 51
Example for Pattern 3o 52
Pattern 3 using an Enqueuer for Incoming Events 55
Time-Controlled Pull Pattern 56
Time-controlled Pull Pattern 59
Pull Pattern - Resource-Controlled I, 61
Modeling a Thread Pool o 63
Pull Pattern - Resource-Controlled IT. 64
Time Window Pattern 67
Load Balancer - Random, 69
Load Balancer - Round Robin 70
Load Balancer - Queueingo 72
Physical and Logical Layers, 74
Example for Priority of Transitions 75
Overview of the Workload Scenario and its Roles 83
Interaction 1 - Communication between SM and DC 84
Interaction 2 - Communication between SP and DC 84
Workflow of the SPECjms2007 Interactions 85
Locations for Horiz. Topology 94

ix

5.6

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

5.24
5.25
5.26

5.27
5.28
5.29

5.30
5.31
5.32
5.33

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2

Horiz. Topology Message Mix, 94
Proportions of the Interactions based on Msg. Throughput 94
Proportions of the Interactions based on Msg. Traffic in KBytes 94
Horizontal Topology: # msg. sent 94
Message Traffic in Kbytes o o 94
Vert. Topology Message Mix, 96
Vertical Topology: # msg. sent L L L. 97
Message Traffic in Kbytes oo 97
Proportions of the Interactions based on Msg. Throughput 97
Proportions of the Interactions based on Msg. Traffic in KBytes 97
Driver Framework 98
Formal Measurement Points during SPECjms2007 Run [214] 100
Output of Run Time Reporter 101
Experimental Environmento 000000000 104
Measurement Results for Horizontal Experiments 105
Measurement Results for Vertical Experiments 105
Measurement Results for Customized Vertical Experiments with P2P Messaging 106

Measurement Results for Customized Vertical Experiments with Pub/Sub Mes-

SAZING . . . L L Lo e e e 107
Scenario 1: NPNTND Pub/Sub Messaging with Increasing Number of Consumers108
Scenario 2: NPNTND Pub/Sub Messaging with Increasing Message Size 109
Scenario 3: NPNTND Pub/Sub Messaging with Varying Number of Producers

and Consumers e e e 110
Scenario 4: PTD Pub/Sub Messaging with Increasing Number of Consumers . 111
Scenario 5: NPNTND vs. PTD Pub/Sub Messaging 112
Scenarios 1 and 2: NPNT vs. PT P2P Messaging with Increasing Number of

QUEUES o e e 113
Scenario 3: PT P2P Messaging with Increasing Message Size 114
Experimental Environment00 0oL 118
Considered Scenarios 119
Experimental Resultso 120
Broker Topology e 124
Model of Interaction Drivers 127
Models of Interactions 3, 4,5, 6 and 7 128
Model of Interaction 1 129
Model of Interaction 2 129
Experimental Environmento 000000000 130
Distribution of the Message Size 132
Server CPU Utilization and Message Traffic for Customized Vertical Topology . 133
Model Predictions Compared to Measurements for Scenarios 1, 2 and 3 134
Open Research Issues L 142

Benchmark Aspects 143

List of Tables

2.1
2.2

4.2

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12

6.1
6.2
6.3
6.4
6.5

Message-Oriented Middleware, State: March 2010. 17
Standards for MOMSs 20
Performance Modeling Patterns L. 46
Message Types Used in The Interactions 88
Parameters for Message Size Calculation 89
Message Groups (MG) 90
Interaction Rates for the Horizontal Topology 93
Message Sizes in KByte 95
Topology Message Mix e 96
Interaction Rate Scaling Factors for the Vertical Topology 96
Audit Tests e 102
Configuration for Pub/Sub Scenarios L. 108
Configuration for P2P Scenarios, 111
Configuration Parameters Supported for Each Message Type 116
Target Destination Options 117
Broker Throughput (msg. /sec) 125
Delivery Latency (ms) 125
Scenario Transaction Mix 131
Relative Server CPU Load of Interactions 133
Detailed Results for Scenarios 1,2 and 3 135

xi

List of Acronyms

Acronym | Meaning

)\;’k Arrival Rate at which events of type t, published by publisher k£ arrive at
node j.

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

AS Application Server/s

CB Component-Based

CEP Complex Event Processing

CGSPN Colored Generalized Stochastic Petri Net

CPN Colored Petri Net

D Durable

DBMS Database Management System

DBS Database Server

DC Distribution Center

DDS Data Distribution Service for Real-time Systems

DEBS Distributed Event-Based Systems

EBS Event-Based Systems

ECA Event-Condition-Action

EDA Event-Driven Architecture

EJB Enterprise Java Bean

EPTS Event-Processing Technical Society

ESB Enterprise Service Bus

FCFS First-Come-First-Serve (scheduling strategy)

FIFO First-In-First-Out

FW Fire Weight

GB Giga Byte

GC Garbage Collection

GSPN Generalized Stochastic Petri Net

HLQPN High-Level Queueing Petri Net

HQ Headquarters

HQPN Hierarchical Queueing Petri Net

HTTP Hypertext Transfer Protocol

11D Independent and Identically Distributed (random variables)

IR Injection Rate

IS Infinite Server (scheduling strategy)

1T Information Technology

xiii

Acronym | Meaning

Java EE Java Enterprise Edition Platform

Java SE Java Standard Edition Platform

JCP Java Community Process

JDBC Java Database Connectivity

JMS Java Messaging Service

JRE Java Runtime Environment

JVM Java Virtual Machine

KByte Kilo Byte

LAN Local Area Network

LB Load balancer

LBC Load balancing component

LCFS Last-Come-First-Served (scheduling strategy)

LLQPN Low-Level Queueing Petri Net

LQN Layered Queueing Network

MB Mega Byte

MDB Message-Driven Bean

MG Message Group

MOM Message-Oriented Middleware

MQ Message Queue

ms Millisecond

msg Message

ND Non-Durable

NP Non-Persistent

NT Non-Transactional

OLTP Online Transaction Processing

OMG Object Management Group

(ON) Operating System

P Persistent

pP2p Point-To-Point

PE Performance Engineering

PerfMP Performance Modeling Pattern

PN (Ordinary) Petri Net

PO Purchase Order

PS Processor-Sharing (scheduling strategy)

P& S Performance and Scalability

Pub/Sub Publish / Subscribe

Q Queue

QN Queueing Network

QoS Quality-of-Service

QPN Queueing Petri Net

Ry Response Time of resource res of events of type t at node / connection j.

RMI Remote Method Invocation

RPC Remote Procedure Call

RR Round-Robin (scheduling strategy)

Si5° Mean Service Time of resource res of an event of type ¢ at node / connection
7.

sec Second

Acronym | Meaning

SLAs Service Level Agreements

SM Supermarket

SP Supplier

SPEC Standard Performance Evaluation Corporation

SPEC-OSG | SPEC’s Open Systems Group

SPE Software Performance Engineering

SPN Stochastic Petri Net

SQL Structured Query Language

ST Subscription Type

SuT System Under Test

T Transactional

TD Target Destination

TPC Transaction Processing Performance Council

UML Unified Modeling Language

u;ies Utilization of resource res at node j

Vjt’lC Relative Arrival Rate(Visit Ratio) of an event of type t published by pub-
lisher k visits at node .

WAN Wide Area Network

X! Throughput

xvi

Chapter 1

Introduction

1.1 Motivation

Event-based systems (EBS) have been gaining attention in many domains of industry. With
the advent of ambient intelligence and ubiquitous computing, many new applications of
EBS have been proposed [101], for example, in the areas of transport information monitor-
ing [15,206], event-driven supply chain management [1,33,196], ubiquitous (wireless) sensor en-
vironments [2,30,179], environmental monitoring, ambient assisted living, and location-based
services [35,59,100,102]. Many of these novel event-based applications are highly distributed
and data intensive and hence pose some serious performance and scalability challenges. With
the increasing popularity of EBS and their gradual adoption in mission critical areas, perfor-
mance issues are becoming a major concern. The performance and scalability of event-based
middleware (used to process real-time event data) are of crucial importance for the successful
adoption of such applications in the industry, and methodologies are needed to guarantee an
adequate quality-of-service (QoS) level.

As a consequence, EBS have to be subjected to a rigorous performance analysis at all
stages of an application’s life cycle. To meet QoS requirements, techniques for predicting
system performance as a function of configuration and workload are needed. Common per-
formance metrics of interest are, for example, expected event notification latency as well as
utilization and message throughput of the various system components (e.g., event brokers,
network links). Since the components of EBS are loosely coupled and communicate asyn-
chronously, the understanding of these metrics may differ from traditional performance engi-
neering. However, obtaining such information is essential in order to determine the optimal
system topology, configuration, and capacity for providing adequate QoS to applications at
a reasonable cost. Moreover, given the dynamics of most EBS applications, it is important
that the performance of the system is continuously monitored and analyzed during operation
to help anticipate changes in the workload and take corrective actions to ensure that QoS
requirements are satisfied.

The goal of this thesis is to develop novel approaches to analyze and predict the behavior of
EBS and their performance and scalability under load. To achieve this, we focus on workload
characterization, benchmarking and performance modeling.

2 Chapter 1. Introduction

1.2 Problem Statement

EBS are often used in business critical environments and thus their reliability is crucial for
the whole IT infrastructure. A certain QoS level has to be ensured. Since EBS are loosely
coupled, highly distributed, data intensive and often heterogeneous systems, this is a very
challenging task. The dynamics of most EBS applications and their underlying middleware
makes it difficult to monitor and analyze system performance during operation. Closely related
to EBS is the publish-subscribe paradigm that is nowadays used as a building block in major
new software architectures and technology domains such as enterprise service bus (ESB), en-
terprise application integration (EAI), service-oriented architecture (SOA) and event-driven
architecture (EDA) [50,51,101]. Modern EBS are implemented using several technology plat-
forms such as centralized systems based on message-oriented middleware (MOM), e.g., IBM
WebSphere and TIBCO Rendezvous, or large-scale distributed event-based systems (DEBS),
e.g., SIENA [40], Hermes [179] or REBECA [154]. Several standards such as Java Message
Service (JMS) [221], Advanced Message Queuing Protocol (AMQP), and Data Distribution
Service (DDS) have been established and are supported by middleware vendors.

A major task of system architects, developers and deployment managers is to choose ade-
quate technologies and deploy the EBS in such a way that the QoS requirements are fulfilled.
While developing, deploying, and maintaining event-based applications (and their underlying
middleware), the following questions are often raised:

e What performance would the system exhibit for a given deployment topology, configu-
ration, and workload scenario?

e What is a typical workload scenario?

e What would be the expected notification and subscription delays as well as the utilization
of the various system components (e.g., brokers, network links)?

e What maximum load (number of publishers and subscribers, event publication rates)
would the system be able to handle without breaking the service level agreements?

e What would be the optimal number of brokers and the optimal system topology?

e Which components would be most utilized as the load increases and when are they
potential bottlenecks?

e Will the event-based middleware scale for future loads?

e Which product offers the best performance for a certain workload scenario?

Benchmarks and performance modeling techniques help answering these questions. How-
ever, there is a lack of test harnesses and benchmarks using representative workloads for EBS.
The same applies to performance models. Only a few approaches for modeling EBS have
been published and they have limitations such as unrealistic assumptions or scalability issues.
Furthermore, most traditional performance modeling techniques have not yet been evaluated
using EBS. As far as the author of this thesis knows, neither an EBS benchmark implementing
a real-world workload nor a performance modeling methodology focusing on EBS was available
when this thesis effort was started.

1.3. Approach and Contributions of This Thesis 3

WAN

[N}
Il
11}
Il

Figure 1.1: A (Distributed) Event-based System

1.3 Approach and Contributions of This Thesis

In this section, we summarize the results of this thesis. First, we provide a brief overview of
these results in the area of performance engineering. Second, we discuss those that lie within
the area of benchmarking of EBS. We summarize our contributions and conclude this section
with an overview of related activities and publications.

1.3.1 Contributions in Performance Engineering

Modeling EBS is challenging because of the decoupling of the communicating parties, on the
one hand, and the dynamic changes in the system structure and behavior, on the other hand.
If a request is sent in a traditional request/reply-based distributed system, it is sent directly
to a given destination. This makes it easy to identify the system components and resources
involved in its processing. In contrast, when an event is published in an EBS, as illustrated
in Figure 1.1, it is not addressed to a particular destination, but rather routed along all
those paths that lead to event consumers. The event might have to be processed by multiple
system nodes on its way to consumers and it is difficult to predict in advance which nodes
will be involved in delivering the event. Moreover, individual events published by a given
producer might be routed along completely different paths, visiting various sets of system
nodes. Another difficulty stems from the fact that every time a new subscription is created
or an existing one is modified, this might lead to significant changes in the system behavior.
Thus, the dynamics of EBS require that workload characterization be done on a regular basis
in order to reflect changes in the system configuration and workload.

We proposed a novel approach to workload characterization and performance modeling
of EBS, aiming to address the above challenges. We developed a workload model based on
monitoring data that captures the system routing behavior and resource consumption at a
level that allows us to use this information as an input to performance models. The workload
model we proposed does not make any assumptions about the algorithms used at the event

4 Chapter 1. Introduction

routing and overlay network layers of the system. Using the workload model and applying
operational analysis techniques, we were able to characterize the message traffic and determine
the utilization of system components. This in turn enabled us to derive an approximation
of the mean event delivery latency. For more accurate performance prediction, we proposed
detailed performance models based on queueing Petri nets (QPNs). Furthermore, we discussed
how different features of EBS can be reflected in performance models and introduced eleven
performance modeling patterns for the most common settings and features of EBS. We used
QPNs as a modeling technique to illustrate the patterns. However, several of our patterns are
not (or only with high effort) convertible with standard QPNs.

To solve these shortcomings and limitations, and to increase modeling flexibility without
increasing its complexity, we developed several new features for QPNs:

1. The ability to have multiple queueing places share the same physical queue
We used this feature to implement the concept of mapping logical to physical resources.

2. Support of Non-Constant Cardinalities in Transitions
3. Priority Support for Transitions

Our extensions allow building QPNs in a more flexible and general way. The concept of
mapping logical to physical resources is implemented in the QPME / SimQPN software tools.

Our modeling approach is the first to provide a comprehensive methodology for workload
characterization and performance modeling of EBS that is applicable to a wide range of
systems. It allows the modeling of individual message flows and interactions in an EBS. This
methodology helps identify and eliminate bottlenecks and ensure that systems are designed
and sized to meet their QoS requirements. We demonstrated our approach in two case studies:

Case Study I: A case study using the SIENA publish/subscribe system with a basic work-
load comprising a single message type was carried out. The SIENA publish/subscribe
system was enhanced with self-monitoring functionality. We instrumented the system
to monitor and collect the event publication rates and routing probabilities needed for
characterizing the workload. The workload model thus generated was used as input for a
QPN model of the system, which was analyzed by means of simulation. The model pre-
dictions were compared against measurements on the real system and the modeling error
was below 5% for all metrics considered. This case study served as a proof-of-concept,
confirming the effectiveness of the proposed methodology.

Case Study II: While the results of the first case study are promising, they do not reveal
whether the proposed modeling methodology scales to realistic systems providing perfor-
mance predictions with reasonable accuracy. Therefore, we presented a second case study
of a representative state-of-the-art event-driven application. We applied our modeling
approach and extended it to address the issues that arise when considering a complex
and realistic application. The application we chose is the SPECjms2007 standard bench-
mark, which is designed to be representative of real-world event-driven applications. We
developed a comprehensive model of the complete workload including the persistent
layer, point-to-point, and publish/subscribe communication, and evaluated its accuracy
in a commercial middleware environment. By means of the proposed models, we were
able to predict the performance of the modeled application accurately for scenarios un-
der realistic load conditions with up to 30 000 messages exchanged per second (up to
4500 transaction per second). To the best of our knowledge, no models of representative
systems of this size and complexity exist in the literature.

1.3. Approach and Contributions of This Thesis 5

The modeling technique presented can be exploited as a powerful tool for performance
prediction and capacity planning during the software engineering lifecycle of event-driven
applications. We published our performance modeling methodology in [132] including case
study I. In [131] we published a survey of currently available modeling techniques for EBS.

1.3.2 Contributions in the Area of Benchmarking

Over the last decade several proprietary and open-source benchmarks for evaluating EBS plat-
forms have been developed and used in the industry (e.g., [8,106,118,213]). Benchmarks not
only help to compare alternative platforms and validate them, but can also be exploited to
study the effect of different platform configuration parameters on overall system performance.
However, for a benchmark to be useful and reliable, it must fulfill several fundamental require-
ments. First of all, the benchmark workload must be designed to stress platforms in a manner
representative of real-world messaging applications. It has to exercise all critical services of-
fered by the platforms and must provide a basis for performance comparisons. Finally, the
benchmark must generate reproducible results without having any inherent scalability limita-
tions. While previous benchmarks for EBS have been employed extensively for performance
testing and product comparisons, they do not meet the above requirements. This lack can be
attributed to the fact that these benchmarks use artificial workloads not reflecting any real-
world application scenario. Furthermore, they typically concentrate on stressing individual
MOM features in isolation and do not provide a comprehensive and representative workload
for evaluating the overall MOM server performance.

To address these concerns, in September 2005, we launched a project at the Standard
Performance Evaluation Corporation with the goal of developing a standard benchmark for
evaluating the performance and scalability of MOM products. The effort continued over a
period of two years and the new benchmark was released at the end of 2007. The benchmark
was called SPECjms2007 and is the first industry standard benchmark for message-oriented
middleware. It was developed under the lead of TU Darmstadt with the participation of IBM,
Sun, BEA, Sybase, Apache, Oracle, and JBoss. SPECjms2007 exercises messaging products
through the JMS standard interface that is supported by all major MOM vendors. The
contributions to the SPECjms2007 benchmark that are also part of this thesis are in the area
of the specification, implementation, and detailed analysis of the SPECjms2007 benchmark.

Based on the feedback of our industrial partners, we specified a standard workload for
message-driven EBS and implemented it using a newly developed flexible framework. The
aim of the SPECjms2007 benchmark is to provide a standard workload and metrics for mea-
suring and evaluating the performance and scalability of MOM platforms. From the beginning
the workload was designed in a parameterized manner with default settings for the industry
standard benchmark and other settings to support research. Based on our analysis of the
demands of benchmarks we presented a list of requirements a benchmark and its workload
has to fulfill: First of all, it must be based on a representative workload scenario that reflects
the way platform services are exercised in real-life systems. The communication style and the
types of messages sent or received by the different parties in the benchmark scenario should
represent a typical transaction mix. The goal is to allow users to relate the observed behavior
to their own applications and environments. Second, the workload should be comprehensive in
that it should exercise all platform features typically used in MOM applications including both
point-to-point (P2P) and publish/subscribe (pub/sub) messaging. The features and services
stressed should be weighted according to their usage in real-life systems. The third require-
ment is that the workload should be focused on measuring the performance and scalability
of the MOM infrastructure. It should minimize the impact of other components and services
that are typically used in the chosen application scenario. For example, if a database was used

6 Chapter 1. Introduction

to store business data and manage the application state, it could easily become the limiting
factor of the benchmark—as experience with other benchmarks has shown [126]. Finally, the
SPECjms2007 workload must not have any inherent scalability limitations. The user should be
able to scale the workload both by increasing the number of destinations (queues and topics)
as well as the message traffic pushed through a destination.

SPECjms2007 provides numerous configuration options to build customized workload sce-
narios. In an extensive analysis of the workload, we discussed the different interactions and
traffic produced by the benchmark and described how to specify a customized transaction
mix by configuring, e.g., message properties such as size, delivery mode, and arrival rate.
We illustrated correlations between the configuration options and presented a methodology
for using a standard benchmark to evaluate the performance of a MOM. We demonstrated
our approach in a comprehensive case study of leading commercial JMS platforms conducting
an in-depth performance analysis of the platform under a number of different workload and
configuration scenarios and illustrated how the workload may be customized to exercise and
evaluate selected aspects of MOM performance.

The SPECjms2007 workload scenario was designed in a general fashion and can be easily
applied to specific types of EBS. For this purpose, we explained how the workload can be im-
plemented for a pure publish/subscribe environment considering jms2009-PS—a benchmark
for publish/subscribe-based communication—as an example. jms2009-PS provides a flexible
framework for performance analysis with a strong focus on research and implements the work-
load using topic-based pub/sub. It allows the user to define complex scenarios in an easy and
flexible way. In a case study we demonstrated how the benchmark can be used as test harness
to compare different topic deployments and analyzed the influence of message filtering.

Both benchmarks are actively used by industry and academia. Since they exercise MOMs
in a realistic way, they are used as benchmarks, as test harnesses, and as reference applications.
Resulting from our efforts on benchmarking and performance analysis, we have established
and maintained several successful collaborations with middleware vendors and academic in-
stitutions: e.g., we cooperated with JBoss and the Apache Foundation to publish official
SPECjms2007 results (reviewed by OSG Java Subcommittee of SPEC!) and Karlsruhe Insti-
tute of Technology [215].

The results of our work focusing on benchmark development and SPECjms2007 (including
workload characterization and framework) were published in [130,198,202,203]. Our method-
ology for performance evaluation using standard benchmarks was introduced in [201]. The
jms2009-PS benchmark is within the focus of [197,199]. An overview of our activities in the
area of MOM benchmarking is provided in [200], and in [12] we demonstrated an approach to
benchmark AMQP-based middleware using SPECjms2007 and jms2009-PS.

1.3.3 Summary

The contributions of this thesis are in the areas of benchmarking and performance engineering
of event-based systems. The main contributions can be outlined as follows:

1. Conceptually:

(a) Analysis and Classification of Benchmark Requirements
An analysis of the requirements that a benchmark and its workload must meet in
order to be meaningful. We deduce a classification for these requirements.

IStandard Performance Evaluation Corporation (SPEC) is a non-profit organization whose mission is to
establish, maintain, and endorse standardized benchmarks to evaluate performance for the newest generation
of computing systems. With more than 80 members and associates from industry and academia, SPEC is one
of the world’s largest and most successful performance standardization organizations.

1.3. Approach and Contributions of This Thesis 7

(b) Performance Evaluation Methodology Based on Benchmarks
A new methodology to analyze the performance of messaging middleware using
standard benchmarks.

(c) Performance Modeling Methodology for EBS
A novel approach to model EBS, using queueing Petri nets for predicting system
and performance behavior.

(d) Queueing Petri Net (QPN) Extensions
An extension of the QPN formalism in several ways, e.g., by simplifying the ab-
stractions for modeling logical software entities, such as, message destinations.

2. Practically:

(a) A Novel Representative Workload and Benchmark for EBS
The first standard benchmark for MOM—SPECjms2007:

e Standardized by the Standard Performance Evaluation Corporation (SPEC).
e A comprehensive and representative workload for message-oriented EBS.
e Additionally, a flexible benchmark framework for in-depth analysis.

(b) Performance Evaluation of a State-of-the-Art MOM
A case study of a leading commercial MOM conducting an in-depth performance
analysis of the platform under a number of different workload and configuration
scenarios using the SPECjms2007 standard benchmark.

(c) Performance Modeling Case Studies of EBS

Case Study I: A simple application deployed on a representative DEBS platform.

Case Study II: A complex and realistic application deployed on a representative
MOM.

1.3.4 Related Activities and Publications
Event-Based Applications and Enabling Technologies

In [101], we introduced the basic notions of event processing to create a common understand-
ing, presented the enabling technologies that are used for the implementation of event-based
systems, surveyed a wide range of applications identifying their main features, and discussed
open research issues.

ECA Rule Engines

We demonstrated in [83] an implementation of an ECA rule engine of an embedded system.
Such ECA rule engines provide a flexible environment for supporting the management, re-
configuration, and execution of business rules. However, modeling the performance of a rule
engine is challenging because of its reactive nature. In [84], we presented an analytical per-
formance model for ECA rule engines. We discussed the difficulties in building a performance
model of an ECA rule engine and introduced a novel methodology for the performance eval-
uation of ECA rule engines. We introduced the concept of event paths and showed how ECA
rules can be mapped to queueing networks.

QoS of Event-Based Systems

In [11], we provided a general overview of QoS in event-based systems. We introduced an
architecture that supports different types of QoS in an EBS and discussed the QoS in the
context of MOM and complex event processing (CEP).

8 Chapter 1. Introduction

Statistical Inference and Performance Models

Statistical inference is the process of drawing conclusions by applying statistics to observations
or hypotheses based on quantitative data. The goal is to determine the relationship between
input and output parameters. In [88], we proposed an approach to the statistical inference
of performance models based on observation data. In our case study, we used multivariate
adaptive regression splines (MARS) and genetic optimization to estimate the influence of
message sizes and arrival rates on the system performance of a MOM. We considered message
delivery time, throughput, and resource utilization as part of our analysis.

1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, we provide an overview of the state-of-the-
art and related work in the areas of event-based systems (EBS), performance modeling, and
benchmarking. We discuss the meaning of events and typical applications as well as different
middlewares for EBS. We introduce queueing Petri nets (QPN).

Chapter 3 reviews the related work in the areas of performance modeling of EBS including
the use of patterns in performance modeling. We discuss the current state of EBS benchmark-
ing, especially in the area of message-oriented middleware (MOM), and provide an overview
of previous work and performance studies.

In Chapter 4, we present a methodology for modeling performance aspects of event-based
systems. In the second part of this chapter, we introduce the performance modeling patterns
(PerfMP) for EBS. The PerfMP describe how common interaction patterns and communica-
tion behaviors of EBS can be represented in a performance model. As an example of these
representations, we use QPNs. At the end of the chapter we introduce a set of extensions
for QPNs. These extensions are developed to support the modeling of EBS and component-
oriented software.

In Chapter 5 we start with an analysis of the different requirements a benchmark has to
fulfill and then provide a classification for these requirements. Taking these requirements into
account, we developed the SPECjms2007 benchmark, which is the focus of this chapter. The
complex workload of this benchmark was implemented using a flexible framework with numer-
ous configuration options. Furthermore, we illustrate the different aspects of SPECjms2007 in
detail including a comprehensive workload characterization and a description of the framework.
A case study showing how to apply the SPECjms2007 benchmark to a MOM for analyzing
different performance aspects is provided. The workload is defined based on the experience of
the industrial members of SPEC. Since it is mainly focused on point-to-point communication,
we extended the workload of SPECjms2007 and used the benchmark framework to develop
a performance test harness for publish / subscribe based communication, the jms2009-PS
performance test harness. An introduction to the different features of jms2009-PS and a case
study using jms2009-PS complete the chapter.

In Chapter 6, we combine the results of the previous chapters (area performance modeling,
event-based systems, and benchmarking) and present the results of two case studies where we
apply our modeling methodology to two different scenarios. In the first case study, we apply
the method to a distributed event-based system (DEBS). As workload, we use messages of the
SPECjms2007 scenario. As underlying DEBS, we use SIENA. In the second case study, we
model the complete workload of SPECjms2007 (including different message sizes etc.) using
our PerfMP and extended QPNs.

Finally, the summary and conclusions of this thesis including an outlook for future research
are presented in Chapter 7.

Chapter 2

Background

In this chapter we provide an overview of the state-of-the-art in the area of event-based systems
(EBS) and performance modeling. We discuss the meaning of events and typical applications
as well as different middlewares for EBS and introduce performance models called queueing
Petri nets (QPN).

2.1 Event-Based Systems

For a better understanding of event-based systems we first introduce our understanding of
events and related terms. The following definitions are based on our work presented in [101].
However, slightly different definitions are used by [143,144,223].

An event is defined as a significant change in the state of the universe [48,50]. By referring
to significant changes, the infinite number of events is limited to those that are relevant to
an application. Since time is an inherent dimension of the universe, two observations of the
universe at different points in time constitute two distinct events, even if no other properties
have changed.

Further, we distinguish between change events and status events:

e A change event is an observed state change in comparison to the previous state.
Ezxample: An object has changed its position by a few meters.

o A status event describes a current state.
Ezxample: Two readings of a temperature sensor at different points in time. Even the
observation that both yielded the same temperature constitutes an event.

By considering time an integral part of the state of the universe, both change and status events
can be modeled in a uniform manner: a status event is a change event, in which the time has
changed.

Events must be observed to be reported and processed. An observation captures a discrete
instance of a (possibly continuous) signal. An observation of an event carries a timestamp and
descriptive parameters and is typically represented as a tuple of values. Depending on the type
of event and application system, the timestamp may be just one point (point semantics of time,
instantaneous event) or an interval (interval semantics of time, interval event). Parameters
may be absolute values or deltas relative to older reference values (= change event).

Events, or more precisely, their representation, must be reported to event consumers (event
sink, event handler, event listener, event subscriber) using an event notification. It is generally

9

10 Chapter 2. Background

lobservation
< Event-Based Interaction >
Pro-
Con-
ducer £icati sumer
Fentamane S Event Notification Con-
T ocation . '\ sumer
~_ Con-
Envelope sumer \
Notification Service Notification Service

Communication Layer

Figure 2.1: Event Notification in an EBS

accepted that event notifications are routed from event producers (event source, publisher) to
event consumers by a notification service. The notification service decouples producers and
consumers, and provides the routing from source to sink [155]. In the simplest form, this
may be a low-level channel into which event notifications are placed and from where they are
retrieved. In this case, the envelope of the notification is minimal and streams of tuples are
delivered over a fixed channel. However, the notification service may be a more sophisticated
network of brokers routing the notifications based on type or content. Notifications consist of
one or more event representations packaged in an envelope. Routing may occur on the content
of the envelope data or the content of the notification. The notification process is illustrated
in Figure 2.1.

Events may be simple events or compositions of simple and/or other composite events.
Simple events may be individual sensor observations, method invocations or absolute temporal
events. Composite events are aggregations or collections of other events. Composite events are
produced from event representations and the operators of an event algebra. Two commonly
used approaches to event composition exist:

1. Event trees consisting of events at the leaves and the operators of an event algebra in
the inner nodes [46] pioneered by active database systems, and

2. Continuous or streaming queries based on the operators of relational algebra applied to
subsets of streams of tuples (sliding windows) [47].

Derived events (synthesized events) are caused by other events and often are at a different
level of abstraction. For example, five failed logins with the wrong password may cause an
intrusion attempt event to be signaled. Derived events involve semantic knowledge. They
may be detected automatically, e.g., from a combination of sensor readings as the action part
of an event-condition-action (ECA) [54,84] rule or be raised explicitly, e.g., based on direct
observation of an event by a user. Derived events are often enriched with data from external
sources.

An event-based system is a software system in which observed events cause reactions in the
system. Event-based systems consist of three essential parts:

e Monitoring component,

2.2. Technology Platforms of Event-Based Systems 11

e Transmission mechanism, and
e Reactive component.

The monitoring component is responsible for event observation, representation, and com-
position as described above. The transmission mechanism is responsible for event notification.
It is generally accepted that event notification is push-based. In push-based systems, produc-
ers disseminate information to consumers; in pull-based systems the consumer must request
the information. Some authors go as far as requiring a complete decoupling of event producers
and event consumers through a publish/subscribe notification service [155]. For generality, we
also accept point-to-point notification of events, e.g., in the context of messaging systems [103].
This implies a tighter coupling between producers and consumers, since the producers must
be aware of the consumers to notify them without the help of a broker.

The reactive component of an event-based system expresses the application logic in form
of rules (or other code) triggered by the corresponding events. This behavior is also called
event-driven: an entity is event-driven, if it consumes event notifications and, if appropriate,
reacts on them.

Rules may have different formats that result in different execution models. Procedural ECA
rules are fired whenever the corresponding event (simple, composite or derived) is raised. The
condition acts as a guard that can be used to express more complex application logic. Only
if the condition is met, the action is executed. Missing conditions are considered to be true
and result in event-action rules. Much debate has occurred in the past concerning the best
separation of functionality between events and conditions. More powerful event expressions
decrease the need for explicit conditions but require more powerful event algebras. This also
makes the event detection mechanism heavier and more difficult for users to use properly. On
the other hand, a lightweight event mechanism can be more responsive and is less error prone
but requires an explicit condition to express more powerful application logic. The decision on
the trade-off between expressiveness of the event language and the lightweight nature of the
event system is domain-dependent.

While the logical distinction is clear, specific implementations of event-based systems may
partition the functionality differently. In particular the event composition may be imple-
mented at the monitoring component, in the notification service, or as part of the reactive
component. The decision of where to realize event composition depends on many application
and environment specific factors, such as capabilities of the sensing devices, bandwidth of the
communication channels, complexity of the composite events, and source of the events that
are to be composed.

2.2 Technology Platforms of Event-Based Systems

Many different technologies have contributed to the field of event-based systems. We review
the contributions of the following platforms in this section:

e Active databases

Continuous queries, stream processing

Distributed event-based systems (DEBS)

Materialized views

e Message-oriented middleware (MOM)

12 Chapter 2. Background

e Reactive middleware

Since our work presented in this thesis is focusing on MOMs and DEBS, we discuss them in
more detail than the others.

2.2.1 Active Databases

Active databases were developed in the mid to late 1980s [174,233]. Two distinct strands can
be identified:

e Relational and
e Object-oriented active databases.

Relational active databases were limited mainly to basic database events, such as update,
insert and delete. They could express conditions on either the old or new state of a relation,
and the action was always some SQL statement. Today’s triggers in SQL are the relational
incarnation of simple ECA rules. Relational active databases introduced the notions of before,
after or instead execution, meaning that the rule should be executed accordingly before, after
or instead of the triggering statement.

Object-oriented active databases had a richer event type system. It included any method
invocation, state changes effected through generic accessor functions, temporal events, control
flow events, arbitrary user defined events, and composition of events through event algebras
of varying expressiveness. The first generation of active 00DBMSs assumed a central clock,
point semantics for the events, and a complete ordering of events. Active 00DBMSs intro-
duced coupling modes to define when a rule should be executed (immediately or deferred)
and whether it should be executed within the scope of the triggering transaction or as a sep-
arate transaction. If rules execute in separate transactions this can occur independently or
be causally dependent, in which case the triggered transaction may only begin or end exe-
cution depending on the fate of the triggering transaction. The various causal dependence
modes take care of violations of ACID properties that occur when uncommitted data is made
visible to independent transactions. Another major contribution was the notion of event con-
sumption, referring to the way in which events are consumed during event composition. Four
consumption modes (originally termed contexts) were defined: chronicle, recent, continuous,
and cumulative. These determine that the events be consumed either in chronological order
(typical in workflow-like applications), always using the most recent occurrence (typical in con-
trol applications), in form of windows (typical in financial applications) or accumulating the
effects of incoming events until another event occurs (typical in inventory control situations).

2.2.2 Continuous Queries, Stream Processing

Continuous queries [52] can be seen as an attempt to change the processing paradigm from
issuing a single non-persisting query against stored, persistent data to storing the query per-
sistently in the database and applying it to streams of incoming data. Continuous/continual
queries were expressed in variants of the SQL language modified to operate on windows [140].
These can be defined either through temporal events or through a count of incoming events.
While early work on continuous queries assumed that the continuous queries would operate
on the stored data and would be executed by the traditional query engine, work on stream-
ing queries has changed the processing paradigm: queries defined in a SQL dialect, such as
StreamSQL, process streams of data or events before they are placed in the database and re-
sults of this processing step are only selectively stored in the database. Many of the extensions

2.2. Technology Platforms of Event-Based Systems 13

i Ms oq % .
Sender ~Msg, Publisher w T\ MY med Subscriber
- e ST
i Y, Ms
— Receiver g x
msg . Wso> Topic 1 N, Subscriber
Queue 1 Publisher IA

Sender .

Ms
: : ¢
- &
Dm Topic m
Queue n
P JMS Server
JMS Server

Figure 2.3: Example for Pub/Sub Messag-

Figure 2.2: Point-to-point messaging. ing

to the relational operators and how to process for example joins on windows in continuous
queries, have carried over to current products for stream processing and have been extended
there for high volume applications [45].

2.2.3 Materialized Views

Materialized views can be seen as a particular application of active database principles. Views
are typically subsets of a database that are defined in the database schema. They are com-
puted on the fly from the stored base tables. As an optimization, views were materialized, i.e.,
stored, resulting in the need for maintaining them whenever the base data changed. Propaga-
tion of base-table updates to the materialized views was accomplished using the mechanisms
developed for active relational databases [86].

2.2.4 Message-Oriented Middleware (MOM)

Message-oriented middleware (MOM) is a specific class of middleware that supports loosely
coupled communication between distributed software components by means of asynchronous
message-passing as opposed to a request/response metaphor. This allows a producer to send
a message (event notification) and then continue working while the message is being delivered
and processed. Optionally the message producer can be notified later when the message
is completely processed. The decoupling of communicating parties has several important
advantages:

e Message producers and consumers do not need to know about each other.
e They do not need to be active at the same time to exchange information.
e They are not blocked while sending or receiving messages [67].

Message-oriented Middleware contains notification services supporting two message mod-
els:

1. Point-to-point (P2P)} and
2. Publish/subscribe (pub/sub)

Both are depicted in Figures 2.2 and 2.3. P2P messaging is built around the concept of a
message queue which forms a virtual communication channel. Each message is sent to a spe-
cific queue and is retrieved and processed by a single consumer. Pub/sub messaging is a one

1The usage of P2P in this thesis is distinct from the acronym referring to peer-to-peer systems.

Chapter 2. Background

Cons.
1
NBA
DAL vs. LAL
Prod. NBA NOTIFICATION SERVICE Cons
[~ DALvs. LAL NBA
1 SPORT (DALvs. LAL 2
NBA
Prod. By STOCKS (DAL vs. LAL Cons
2 @ WEATHER (— 3
100.45 $
Cons.
4

(a) Channel-based

Subject Hierarchy

news

S~

sport

stocks

weather

basketball soccer Nasdag DAX ... Europe Asia /
!Subscribe for L
' news.sport.* | Cons.
Bvent: | |\t Tttt 1
Prod DAL vs. LAL

1 Subject:
news.sport.basketball

Subjects

A

Notification

\\

Subject:
news.sport.basketball

Event: N isubscribe for!
Prod. ABC Ltd. 100.45% Service Subject: Hnews.*
= news.sport.basketball Voo
Subject:
2 -
news.stocks [YREREE e N
i Subscribe for i
_E news.sport.soccer.®, \L
__________________ Subject: >
Cons news.stocks Cons.
3 2
(b) Subject-based
:'(Subscribe for Topic Sport _
Prod. { wherelLeague “NBA Cons.
1 Event: 1
DAL vs. LAL Vv
Topic: Sport \ Topic: Sport
Add. Attr.: League = NBA NOTIFICATION SERVICE Add. Attr.: League = NBA
(SPORT) —— Cons.
S - e R N 2
Event: { i 1
ABCLtd. 100.45 $ (STOCKS 0 S#:;fcr ';;:::r j
Topic: Stocks
Prod. Add. Attr.: Company = ABC (WEATHER 0/ Topic: Sport

(c) Topic-based

Add. Attr.: League = NBA

Figure 2.4: Subscription Models

2.2. Technology Platforms of Event-Based Systems

Event Type Hierarchy m
N

Sport H Stocks ‘

| Basketball H Soccer | Nasdaq Dax

Event:
-DALvs. LAL
—] D~
Prod.
1 Event Type:
Basketball
P d Event:
rod. -ABC Ld.100.45%
2 Event Type:
Stocks

Subscribe for

) Cons.
1
e
Event Types Event Type®
/ Basketball
NOtIfIC?tIOﬂ ;'Subscribe for\f
Service Event Type~ News
_| Basketball | | mommmmmmomen
1!‘Subscribe for\'; ‘l‘
i Soccer N
Lol Subject: —>|
Stocks Con S.
Cons 2
3

(a) Type-based

Event Type Hierarchy

[eve]

Sport

Stocks

Team 1: Team
Team 2: Team

Company: String

Type: Basketball

Team 1: DAL
Team 2: LAL
Prod. | = —
1 DAL vs. LAL
Type: Stocks
Prod. Company: ABC Ltd.
ABC Ltd.

Prod.

Notification

Subscribe for Sport where i
Team 1= DAL OR Team 2= DAL:r

Event Types

7

DAL vs. LAL

Service

DAL vs. LAL

;Subscribe fori
News i

jSubscribe for';
+ Soccer

ABCltd.

(b) Type- & attribute-based

Context Information

Temperature

Teatrenheit = (TeelsiusX9/5) + 32
Tietin-= Tcetsius + 273,1

Exchange Rate

12.03.2010: 1 EUR: 1,3682 US$
11.03.2010: 1 EUR: 1,3677 US$
10.03.2010: 1 EUR: 1,3656 USS$

Type: Stocks
Company: ABC Ltd.
Value: 104.50
Currenty: US$

Subscribe for Type= S
AND Value <100 EUR

Cons.

i+ Subscribe for

Context Info P
ABC Ltd. ABC Ltd.
Notification [«
Service .

/. Company =*ABC*’ |

(c) Concept-based

Cons.

Figure 2.5: Subscription Models (cont.)

16 Chapter 2. Background

to many communication model. Each message is sent (published) by a message producer (pub-
lisher) to the notification service and it may be delivered to multiple consumers (subscriber)
interested in the notification. Consumers are required to register (subscribe) for notifications
they are interested in before being able to receive messages. Publish/subscribe systems come
in many different flavours, both centralized and distributed. A common distinction is based
on the information carried by the notification, and whether the content of the notification is
used for routing or only the information on the envelope of a message [67]:

Channel-based: Producers place their notifications into a channel and consumers subscribe to
a channel of interest (see Figure 2.4(a)).

Subject-based: Pioneered in the 1990’s by TIBCO [49], defines subject hierarchies according
to which messages are classified. A combination of subject hierarchy levels with the use
of wild cards allows for reasonably powerful subscriptions. One disadvantage, though,
is the relative inflexibility of subject hierarchies (see Figure 2.4(b)).

Topic-based: A variant of channel based publish/subscribe with additional predicates definable
on the envelope data used by JMS [221] (see Figure 2.4(c)).

Content-based: The content of a message is used to route the message from producer to
subscriber [194]. Filters are placed as close as possible to the source to minimize traffic.
Predicates of different degrees of expressiveness can be specified. However, the more
powerful the predicate language and the more fine grained the filters are, the more
critical it becomes to control the size of the routing tables.

Type-based: Type-based is comparable to subject-based. As illustrated in Figure 2.5(a), con-
sumers subscribe for a certain event type of event publications whereby object inheritance
is considered [155].

Type- & attribute-based: Type-based is extended by content-based filtering on event attributes
[66,155]. Type-& attribute-based pub/sub is illustrated in Figure 2.5(b))

XML-based: A variant of content-based where notifications are XML messages with flexible

document structures [224]. Subscriptions should be expressed by a powerful language
based on XPath [235] or XQuery [234].

Concept-based: Originally addresses the problem of heterogeneity [55]. All the previous ap-
proaches to publish/subscribe assume a common understanding of the name space used.
If this is not the case, an additional layer of mediation that resolves semantic conflicts
based on an ontology service can be used. Concept-based publish /subscribe uses prede-
fined contexts. If notifications are to be routed within a common context, i.e., publisher
and subscriber use the same context, no additional mediation is needed. If publisher and
subscriber use different contexts, an additional mediation step is needed. Concept-based
publish/subscribe can be implemented on top of any of the other publish /subscribe meth-
ods. This in turn requires merging of filters. An example for concept-based pub/sub is
shown in Figure 2.5(c).

There exist several important standards, which cover different aspects such as transport
protocols or APIs. Some of these standards are popular in certain application domains, e.g.,
DDS is widely used in military applications and is part of the Navy Open Architecture. In
Table 2.1 we provide a comprehensive overview of MOM products and which standards are
supported by these products. The most important standard is JMS, which is supported

17

2.2. Technology Platforms of Event-Based Systems

abnd jzou uo panuruoy) - (pauur]d = J ‘@oanog usd() = gO)
0T0C YOTRIN 911G ‘OIeMSIPPIJA POIUSLI)-03eSSOIN (T°F 9[e],

prdg) wo paseq | [88T] | -) - » » 1°H P9y OYIN estrdisyugy 1R[] pay
Juasiy
SINC P e1a SINC | [#8T] | A) - » N S9T3010UTPAT, MRy OWNqaey
lot] | » N - N N oedy prdp)
q(9orI)
ut pejeiseu] | [6971] - N - - A oToRI() OV swrealg 311 o[orI)
SO
ore stofer [re joN | [181] | (1) N N - N OIS] Saq eomdguadQ
[29T] A N - - A oToRI() onang) a8essopy uad()
[cot] | A~ N N - N IDO saguedo
lott] | » - - N N uoryerodioy) X1RNT OINYuedQ
[09T1] - N - - A sfouuey)-Aw | Surdesso]y osLIdIoNUL] BUBAIIN
"8I\ estadaagury
RUBAIIN UO paseq | [LGT] | - N - - N 1JosaInIy O I
lect] | - - s - - LAOSIIN Sad IAOSIN
[zST] - - - -) 1JOSOIOTIN Sumoeng) o8essoN
[221] a VA - a a wnrposuoy ¢ MO WVdOr
L] - - N - - wmiprer) Sad WO
"SSI\ ssog[se
umowsy Asnoadid | [LT1) | A % - [eL] 4 s Ve[poYy / ssodr OewIoy
o | 2 - - - » oueIOor g ONoueIOL]
ONEAIOY
opedy uo peseqg | [99] 2 2 - d 2 9IBMIJOG SSOI30I] INOIg 93esSoIN SN A
[6ee] | - - s - - | Sunndwop) syeQ AT, SIRMIIPPIN SAd XdP10)
pid)y uo peseg | [69] A - - A A BIOPA] amnjonIseIfu] JONV
6] | ~» a - 9] 4 a oypedy ONEAIY
910N | JoH | SO | JINOJIS | Sad | ADINV | SINT JOPUBA outEeN

Chapter 2. Background

‘[211] . sruegnd pappPL-dON Y U0 JuswabuLLfur woLf s4asn oLy 109704d 07, paddoip sem j1oddng e
"oremiyos Apred-payy erp o
“1odepe SN[A

18

(peuuelg = J ‘eomnog uad() = Q)
0TOZ YOIBI :91B1S‘OTRMOTPPIIN POIUSIIO)-08esSo]N (1'g O[deT,

[60T] xTRIAT
Aq permboy | [TTT] A - - . - uoryerodior) X1peNI OINoIe7
SOLIOG) N
se umowy Apwiog | [¢0T] | -) - - N INdI O dYdggem
[sot] | -) - - s INGI | 0aT9g wonyeor[ddy o1eqdggam
[602] - N - - M)y 9IeM)JOG JOATSG TONOIg SPOYISNYoM
[t21] | - N - - s RI() OISO
[92¢] } } } ¢/ oIeMos ODIIL SnoAZopusy OO4ILL
[6ge] | - % - - s aTeMIJOG ODELT, | 001AIeg 0FessaIN U ODILL
[so1] | - N - - s aITeMIJOS T IT (@) (IS
OWued(uo peseq | [0LT] - N - - 2 S[oRI() | ondng) aFessSaN YSIISSe[r) ung
[e8T] - N - - M 9IBM)JOG SSOIF0I] OINPTUOg
[voz] | - N - - s OV dVS SVIPM 1489 1ON dVS
Sdd Lty
eia porioddns g | [987] - N 2 - 2 SUOT)RAOUUT OWI][RI 9OTATSG 98eSSOIN [T
[68T] i i/ A i S SUOTYeAOUUT SWILT Tedy | 9VIATSG uorngqrnsi(y eied LY
910N | J°4 | SO | JINOIS | SAd | JOINV | SINr IOPUSA ouwEeN

2.2. Technology Platforms of Event-Based Systems 19

by most products. Our work in the area of MOM focuses on the JMS standard and the
knowledge of its features is required for an understanding of our work. Therefore, we discuss
the Java Message Service in detail in this section. Further, we summarize the latest state in
the development of the Advanced Message Queuing Protocol (AMQP), an emerging wire level
protocol. Other standards are briefly listed in Table 2.2.

Java Message Service (JMS)

The Java Message Service (JMS) [221] is a standard Java-based interface for accessing the
facilities of enterprise MOM servers and part of the Java EE standard [191]. In the terminol-
ogy of JMS, a MOM server that supports the JMS API is referred to as JMS provider (or
JMS server) and applications that use the JMS provider to exchange messages are referred
to as JMS clients. JMS supports P2P as well as topic-based publish/subscribe communica-
tion models. JMS queues and topics are commonly referred to as destinations. The JMS
specification defines several modes of message delivery with different QoS attributes:

Non-Persistent /Persistent: In non-persistent mode, pending messages are kept in main
memory buffers while they are waiting to be delivered and are not logged to stable
storage. This provides low messaging overhead at the cost of losing undelivered messages
in case of a server crash. In persistent mode, the JMS provider takes extra care to
ensure that no messages are lost in case of a server crash. This is achieved by logging
messages to persistent storage such as a database or a file system. In case of a server
crash, undelivered messages are recovered from stable storage on system restart. In
non-persistent mode, each message is guaranteed to be delivered at-most-once, whereas
in persistent mode it is guaranteed to be delivered once-and-only-once.

Non-Durable/Durable: JMS supports two types of subscriptions, durable and non-durable.
Non-durable subscriptions last for the lifetime of their subscriber, i.e., a subscriber will
only receive messages that are published while it is active (connected). Messages pub-
lished while the subscriber is inactive, will be missed by the latter. In contrast to this,
durable subscriptions ensure that a subscriber does not miss any messages during periods
of inactivity.

Non-Transactional/Transactional: A JMS messaging session can be transactional or non-
transactional. A transaction is a set of messaging operations that are executed as an
atomic unit of work. JMS supports two types of transactions: local and distributed.
Local transactions are limited to messaging operations executed on a JMS server. Dis-
tributed transactions allow other transactional operations such as database updates to
be executed with JMS messaging operations as part of a single atomic transaction.

In addition to the above described delivery modes, JMS allows the specification of selectors
to enable message filtering. When publishing messages, producers can specify property-value
pairs (e.g., “color=red”) which are stored in the message headers. When subscribing, con-
sumers can specify a selector to receive only messages with certain property values (e.g.,
“color=blue AND size=42"). Selectors are specified using a subset of the SQL92 conditional
expression syntax. For a more detailed introduction to MOM and JMS the reader is referred
to [103,221].

Advanced Message Queuing Protocol (AMQP)

Advanced Message Queuing Protocol (AMQ@P) is an increasingly important protocol for MOMs
with its origin in the financial services industry. The motivation behind AMQP is the need

20

Chapter 2. Background

Organization: Standard

Description

Sun: Java Message Service (JMS)

The quasi-standard is Java Message Service (JMS) [221],
a standard Java API, which is widely being adopted by
almost all MOM products.

OMG: CORBA Ewvent Service

Specifies how Event Supplier und Event Consumer com-
municate via an Event Channel using asynchronous mes-
sage exchange [163]. Push and pull communication models
are defined.

OMG: CORBA Notification Service

The Notification Service is an extended version of the
Event Service [164], e.g., in the area of event filtering. A
Notification/JMS Interworking Service allows to manage
N otification Service interworking with Java Message Ser-
vice [165].

OMG: Data Distribution Service for
Real-time Systems (DDS)

Provides an API specification as well as a wire level pro-
tocol for publish-subscribe middleware [166].

Apache: OpenWire

An open binary wire level protocol [7]. To the best of our
knowledge OpenWire is only supported by ActiveMQ.

Apache: Streaming Text Orientated
Messaging Protocol (Stomp)

A very simple text based-protocol formerly known as
TTMP with limited features [216]. Native support for

Stomp is implemented by ActiveMQ and announced for
the next release of HornetQ. With StompConnect [217] all
Stomp clients can communicate with JMS providers. Since
not all features on JMS are supported by Stomp it is not
possible to use a JMS to connect to a Stomp provider.
RestMS works over plain HTTP/HTTPS [98]. Three im-
plementations exist: Ahkera [74], Zyre (part of OpenAMQ
[99]), and a client stack written in Perl. Additionally an
AMQP/0.9.1 profile for RestMS was implemented.
AMQP is a wire-level protocol specification with the goal
to provide interoperability between MOM products.

Digistan & RestMS: RestMS (REST-
ful Messaging Service)

AMQP Working Group: Advanced
Message Queuing Protocol (AMQP)

Table 2.2: Standards for MOMs

for an open standard which enables complete interoperability between MOM providers [133,
230]. AMQP provides a wire-level protocol specification and not an API as JMS. Due to
the popularity of JMS, it was decided to design AMQP to encompass JMS semantics [4,
167]. This allows building JMS clients for AMQP products. Therefore, JMS and AMQP
complement each other by defining interoperability on the application level (JMS) as well as
on the wire level (AMQP). To achieve this interoperability, AMQP specifies the exact semantic
of services in its queueing model; the specification covers messaging models (P2P, pub/sub,
request /response), transaction management, distribution, security and clustering [5]. AMQP
offers several features which are not supported by JMS.

Even if the AMQP specification is not finalized yet, several products [3] supporting dif-
ferent drafts of AMQP exist today (see Table 2.1). They are already used in mission critical
deployments, e.g., JPMorgan reported an AMQP environment supporting 2,000 users on five
continents processing 300 million messages per day [167]. There were some discussions in
the AMQP community because Red Hat submitted a patent application closely related to
AMQP [192]. Since the main target was to establish an open standard, this patent applica-
tion was criticized as being counterproductive [232].

2.2. Technology Platforms of Event-Based Systems 21

2.2.5 Distributed Event-Based Systems (DEBS)

e Component

Border Broker

i Inner Broker Local Broker
Access Broker

Figure 2.6: Router Network of REBECA [155]

A generic distributed event-based system (DEBS) is normally composed of nodes deployed
in a distributed environment and exchanging information through a set of communication net-
works (see Figure 2.6). Clients of the system are either publishers or subscribers depending on
whether they act as producers or consumers of information. Publishers publish information in
the form of events which are commonly structured as a set of attribute-value pairs. Subscribers
express their interest in specific events through subscriptions. Most generally, subscriptions
are defined as a set of constraints on the content of events. The constraints are specified using
a subscription language. A published event is said to match a subscription if it satisfies all
constraints of the subscription on the event attributes. The main task of the system is to
deliver published events to all subscribers that have issued matching subscriptions.

Depending on the subscription model, DEBS can be classified, e.g., as topic-based or
content-based. As discussed in Section 2.2.4 the various subscription models have different
expressive power. Highly expressive models enable subscribers to precisely specify the events
they are interested in. However, the more expressiveness, the higher is the system’s overhead
for matching events. The typical architecture of DEBS can be decomposed into four logical
layers: network layer, overlay layer, event routing layer and event matching layer. A detailed
overview of these layers as well as the techniques used for implementation can be found
in [19]. Many prototypes of DEBS exist, such as CEA (Cambridge Event Architecture) [14,16],
Cobra [193], Echo [65], Elvin [205], GREEN [207], Hermes [179], IBM Gryphon [107,218],
IndiQoS [39], JEDI (Java Event-Based Distributed Infrastructure) [60], Le Subscribe [68],
Narada Brokering [173], ONYX [63], PADRES [113,114], REBECA [154], READY [81, 82],
REDS [61], SCRIBE [43,195], SIENA (Scalable internet event notification architecture) [40],
ToPSS [139], WebFilter [175] and XMessages [208]. An overview and discussion of different
DEBSs and their features are provided, e.g., in [113,142,155,180).

2.2.6 Reactive Middleware

Reactive middleware can be traced back to the CORBA platform and the event service defined
therein [89]. Modern versions of basic reactive capability can be found in the form of the
J2EE message driven beans, which consume event notifications and allow the asynchronous
processing of messages in the J2EE platform [222].

22 Chapter 2. Background

Reactive middleware benefited to some extent from work on active databases and the at-
tempts to unbundle active functionality from active databases. Major insights gained while
unbundling were the need for interval semantics instead of point semantics for many dis-
tributed environments, the impossibility of using a central clock and the fact that notification
delays cause uncertainty. This resulted in the 2g—precedence model used in networks with
bounded delay and the imprecision interval model that distinguishes between the stable past,
the unstable past and the present for networks without an upper bound on delay [138].

2.3 Introduction to Queueing Petri Nets

In this section we provide a brief introduction to queueing Petri nets (QPNs). QPNs can
be considered an extension of stochastic Petri nets that allow queues to be integrated into
the places of a Petri net [20]. QPNs allow the modeling of process synchronization and
the integration of hardware and software aspects of system behavior [24,125] and provide
greater modeling power and expressiveness than conventional queueing network models and
stochastic Petri nets [24]. QPNs were applied successfully in several case studies to model
system behavior, e.g., [123-125,132]. First, we present the formal definition of QPNs. This
section is based on [26,123,125]. Afterwards we discuss the existing tool support for QPNs.

Formal Definition

Queueing Petri nets can be seen as a combination of a number of different extensions to
conventional Petri nets (PNs) along several dimensions. In this section, we include some basic
definitions and briefly discuss how queueing Petri nets have evolved. A more detailed treatment
of the subject can be found in [21,26]. Petri nets (PNs) were originally introduced by C.A.
Petri in the year 1962. An ordinary Petri net is a bipartite directed graph composed of places
P, drawn as circles, and transitions 7', drawn as bars, which is defined as follows [26,32,125]:

Definition 1 An ordinary Petri net (PN) is a 5-tuple PN = (P,T,1~,I", My) where:
1. P={p1,p2,...,pn} is a finite and non-empty set of places,
2. T = {t1,to,....tm} is a finite and non-empty set of transitions, PNT = (),
8. I7,IT: P xT — Ny are called backward and forward incidence functions, respectively,
4. My : P — Ny is called initial marking.

Different extensions to ordinary PNs have been developed in order to increase the mod-
eling convenience and/or the modeling power, e.g., [77,121]. One of these extensions are
colored PNs (CPNs) which were introduced by K. Jensen [119,120] and provide the base for
QPNs. In CPNs a type called color is attached to a token. A color function C' assigns a set
of colors to each place, specifying the types of tokens that can reside in the place. In addition
to introducing token colors, CPNs also allow transitions to fire in different modes, so-called
transition colors. The color function C assigns a set of modes to each transition and incidence
functions are defined on a per mode basis. Formally CPNs are defined as follows [26]:

Definition 2 A colored PN (CPN) is a 6-tuple CPN = (P, T,C,1~,1", My) where:
1. P={p1,p2,...,pn} is a finite and non-empty set of places,

2. T = {t1,ta,....tm} is a finite and non-empty set of transitions, PNT = (),

2.3. Introduction to Queueing Petri Nets 23

3. C is a color function that assigns a finite and non-empty set of colors to each place and
a finite and non-empty set of modes to each transition.

4. I and I are the backward and forward incidence functions defined on P x T, such
that I~ (p,t), I (p,t) € [C(t) = C(p)ms], Y(p,t) € P x T?

5. My is a function defined on P describing the initial marking such that My(p) € C(p)ms.

Other extensions of ordinary PNs allow timing aspects to be integrated into the net de-
scription [26,32]. In particular, generalized stochastic PNs (GSPNs) attach an exponentially
distributed firing delay (or firing time) to each transition, which specifies the time the transi-
tion waits after being enabled before it fires. Two types of transitions are defined: immediate
(no firing delay) and timed (exponentially distributed firing delay). If several immediate tran-
sitions are enabled at the same time, the next transition to fire is chosen based on firing weights
(probabilities) assigned to each of the transitions. Timed transitions fire after a random expo-
nentially distributed firing delay. The firing of immediate transitions always has priority over
that of timed transitions. GSPNs can be formally defined as [26, 32]:

Definition 3 A generalized Stochastic PN (GSPN) is a j-tuple GSPN =
(PN, Ty, Ty, W) where:

1. PN = (P,T,I,I", My) is the underlying ordinary PN,
T, C T is the set of timed transitions, Ty # 0,

Ty, C T is the set of immediate transitions, Ty NTy =0, Ty UTy =T,

e

W = (wq, ...,w|T|) is an array whose entry w; € R is a rate of a negative exponential
distribution specifying the firing delay, if t; € T or is a firing weight specifying the
relative firing frequency, if t; € Ts.

Combining definitions 2 and 3 leads to Colored GSPNs (CGSPNs) [26]:

Definition 4 A colored GSPN (CGSPN) is a 4-tuple CGSPN = (CPN,Ty,To, W) where:
1. CPN = (P, T,C,I~,I", My) is the underlying CPN,

Ty C T is the set of timed transitions, Ty # 0,

Ty, C T is the set of immediate transitions, Ty NTo =0, Ty UTy =T,

e

W = (w1, ..., wr)) is an array with w; € [C(t;) — RT] such that Ve € C(t;) : wq(c) €
R is a rate of a negative exponential distribution specifying the firing delay due to
color ¢, if t; € Ty or is a firing weight specifying the relative firing frequency due to c, if
t; € Th.

CGSPNs have proven to be a very powerful modeling formalism. However, they do not
provide any means for direct representation of queueing disciplines. To overcome this disadvan-
tage, queueing Petri nets (QPN) were introduced based on CGSPNs with so-called queueing
places. Such a queueing place consists of two components, a queue and a token depository (see
Figure 2.7). The depository stores tokens which have completed their service at the queue.
Only tokens stored in the depository are available for output transitions. QPNs introduce two
types of queueing places:

2The subscript MS denotes multisets. C(p)ss denotes the set of all finite multisets of C(p).

24 Chapter 2. Background

Queue Depository Nested QPN

Ordinary Queueing Subnet
Place Place Place

Figure 2.7: QPN Notation

1. Timed queueing place:
The behavior of a timed queueing place is as follows:
(a) A token is fired by an input transition into a queueing place.
(b) The token is added to the queue according to the scheduling strategy of the queue.
(c) After the token has completed its service at the queue, it is moved to the depository

and available for output transitions.

2. Immediate queueing place:
Immediate queueing places are used to model pure scheduling aspects. Incoming tokens
are served immediately and moved to the depository. Scheduling in such places has
priority over scheduling/service in timed queueing places and firing of timed transitions.

Apart from this, QPNs behaves similar to CGSPN. Formally QPNs are defined as follows:
Definition 5 A Queueing Petri net (QPN) is an 8-tuple QPN =
(P, T,C,I~,I", My,Q, W) where:

1. CPN = (P, T,C,I~,I", My) is the underlying Colored PN

2. Q=(Q1,Q2,(q1,...,qp)) where

e), C P is the set of timed queueing places,

° QQ C P is the set of immediate queueing places, Ql N QQ =0 and

e ¢; denotes the description of a queue taking all colors of C(p;) into consideration,
if p; is a queueing place or equals the keyword ‘null’, if p; is an ordinary place.

3. W= (Wl,WQ,(wl,...,w|T|)) where

° Wl C T is the set of timed transitions,
° WQ C T is the set of immediate transitions, T/f/l N Wg =0, Wl U WQ =T and

o w; € [C(t;) — RT] such that Ve € C(t;) : wi(c) € RT is interpreted as a rate of a
negative exponential distribution specifying the firing delay due to color c, if t; € W1
or a firing weight specifying the relative firing frequency due to color c, if t; € Ws.

2.3. Introduction to Queueing Petri Nets 25

Memory
Partitions

Figure 2.8: A QPN Model of a Central Server with Memory Constraints (reprinted from [26]).

Example 1 (QPN [26]) Figure 2.8 shows an example of a QPN model of a central server
system with memory constraints based on [26]. Place pa represents several terminals, where
users start jobs (modeled with tokens of color ‘o’) after a certain thinking time. These jobs
request service at the CPU (represented by a G/C/1/PS queue, where C stands for Coxian
distribution) and two disk subsystems (represented by G/C/1/FCFS queues). To enter the
system each job has to allocate a certain amount of memory. The amount of memory needed

by each job is assumed to be the same, which is represented by a token of color ‘m’ on place p1.
According to Definition 5, we have the following: QPN = (P,T,C,1~,I", My, Q, W) where

e CPN = (P,T,C,I~,I", My) is the underlying Colored PN as depicted in Figure 2.8,

e Q = (Q1,Qs. (null, G/C/oc /IS, G/C/1/PS, null, G/C/1/FCFS, G/C/1/FCFS)),
Q1 = {p2.13: 05,06}, Q2 =0,

o W= (Wl,Wg,(wl,...,w|T|)), where Wy = 0, Wy = T and Ve € C(t;) : wi(c) := 1, so
that all transition firings are equally likely.

Solving of QPNs & Tools for QPNs

For QPNs, the analytic solving approach is well-defined [26] and implemented by several tools,
e.g. [23,25]. However, the analytic approach has limitations regarding the number of possible
tokens and places which lead to a state explosion for models of real world applications [123].
Therefore, we decided to use a simulation-based QPN solver for our models. Such a simulation-
based approach was presented in [123] which is implemented by the QPME tool (Queueing
Petri net Modeling Environment) [127-129]. We employed this tool to build and analyze our
QPN models. QPME provides a QPN editor including a graphical user interface, which helps
to construct QPN models and the optimized simulation engine SImQPN [123,127] for model
analysis. As a result of our work, several new features were added to QPME and to the
SimQPN engine. Further, the performance of the solver was increased significantly.

26 Chapter 2. Background

2.4 Concluding Remarks

In this chapter we provided the background needed for the understanding of this thesis. We
started with the concept of events and event-based systems in general. As part of this dis-
cussion, we reviewed related concepts such as publish/subscribe communication in detail and
described underlying technologies such as Active Databases and their properties. Focusing on
MOMs and DEBS, established standards were specified in detail. Additionally, we composed
a comprehensive list of existing middleware products and supported standards. At the end of
this chapter, we introduced the queueing Petri net paradigm and gave an overview of existing
tools and solvers. QPNs provide several benefits over conventional modeling paradigmas by
combining the ideas of QNs and SPNs. As a result, system aspects such as blocking, software
and hardware contention and synchronization can be easily reflected in a QPN model.

Chapter 3

Related Work

In this chapter, we provide an overview of the current state in performance modeling and
benchmarking of event-based systems. We will focus on distributed event-based systems as
well as MOMs. A comprehensive overview can also be found in [131].

3.1 Performance Modeling of Event-Based Systems

In this section we present an overview of existing performance modeling techniques for event-
driven systems considering both centralized and distributed environments.

Modeling of MOM

A method for modeling MOM systems using performance completions is presented in [87]. Per-
formance completions provide a general mechanism for including low-level details of execution
environments into abstract performance models. A pattern-based language for configuring
the type of message-based communication is proposed and model-to-model transformations
are used to integrate low-level details of the MOM system into high-level software architec-
ture models. A case study based on part of the SPECjms2007 workload (more specifically
Interaction 4) is presented as a validation of the approach. However, no interactions involving
multiple message exchanges or interaction mixes are considered. In [141], an approach for
predicting the performance of messaging applications based on the Java Enterprise Edition
(JavaEE) is proposed. The forecast is carried out during application design, without access
to the application implementation. This is achieved by modeling the interactions among mes-
saging components using queueing network models, calibrating the performance models with
architecture attributes associated with these components, and populating the model param-
eters using a lightweight application-independent benchmark. However, again the workloads
considered are very simple and do not include any complex messaging interactions. In [88],
the dependency between the MOMs usage and its performance was analyzed using statistical
inference. For the validation of the approach, parts of SPECjms2007 and jms2009-PS were
used.

Modeling of Distributed Publish/Subscribe Systems

Several performance modeling techniques specifically targeted at distributed publish /subscribe
systems [40] exist in the literature. However, such techniques are normally focused on model-
ing the routing of events through distributed broker topologies from publishers to subscribers

27

28 Chapter 3. Related Work

as opposed to modeling interactions and message flows between communicating components
in event-driven applications. In [115], an analytical model of publish/subscribe systems that
use hierarchical identity-based routing is presented. The model is based on continuous time
birth-death Markov chains. Closed analytical solutions for the sizes of routing tables, for the
overhead required to keep the routing tables up-to-date, and for the leasing overhead required
for self-stabilization are presented. The proposed modeling approach, however, does not pro-
vide means to predict the event delivery latency and it suffers from a number of restrictive
assumptions. For example, the broker topology is assumed to be a complete n-ary tree and
publishers are only allowed to be connected to leaf brokers. Furthermore, subscriptions are
assumed to be equally distributed among filter classes and brokers. Finally, the considered
metrics are limited to routing table sizes and the message bandwidth which do not directly
characterize the system performance. Many of these assumptions were relaxed in [156] where
a generalization of the model was proposed, however, the generalized model is still limited to
systems based on hierarchical identity-based routing. In [42], an analytical model of pub/sub
systems based on subscription forwarding is presented. The authors provide closed form an-
alytical expressions for the overall network traffic required to disseminate subscriptions and
propagate notifications, as well as for the message forwarding load on individual system nodes.
However, the same restrictive assumptions as in [115] are made about system topology and
the distribution of publishers and subscribers among brokers. Thus, the proposed model
is not applicable in most practical scenarios. Finally, in [90], probabilistic model checking
techniques and stochastic models are used to analyze publish/subscribe systems. The commu-
nication infrastructure (i.e., the transmission channels and the publish /subscribe middleware)
are modeled by means of probabilistic timed automata. Application components are modeled
by using statechart diagrams and then translated into probabilistic timed automata. The
analysis considers the probability of message loss, the average time taken to complete a task
and the optimal message buffer sizes.

In [17,231] a computational model of a publish/subscribe notification service is proposed,
where the latter is abstracted as a black box connecting all participants in the computation.
Based on the computational model, a probabilistic model for measuring the effectiveness of
the notification service in delivering publications to the set of interested subscribers is devel-
oped. The effectiveness of the notification service is studied as a function of the subscription
and diffusion delays. While some interesting results are presented, the proposed model is too
coarsely grained and it is based on the assumption that the subscription and diffusion delays
are known which is not realistic to expect. In [18], the authors present an attempt to formally
model a publish /subscribe communication system as a classical distributed computation. The
authors formalize the concept of information availability and model a few properties of the
computation, namely completeness and minimality, that capture the expected behavior of a
publish/subscribe system from an application viewpoint. The protocol-level requirements for
managing availability and providing basic QoS properties under very simplified conditions
are discussed. In [115], a stochastic analysis of self-stabilizing routing algorithms for pub-
lish/subscribe systems is presented. The analysis is based on continuous time birth-death
Markov Chains and investigates the characteristics of systems in equilibrium. Closed ana-
lytical solutions for the sizes of routing tables, for the overhead required to keep the routing
tables up-to-date, and for the leasing overhead required for self-stabilization are presented.
The proposed modeling approach, however, does not provide means to predict the event de-
livery latency and it is rather limited in terms of generality. In [34], Bricconi et al. present a
simple model of the Jedi publish /subscribe system. The model is mainly used to calculate the
number of notifications received by each broker for uniformly distributed subscriptions. To
model the multicast communication, the authors introduce a spreading coefficient between 0

3.2. Benchmarking of Event-Based Systems 29

and 1 which models the probability that a broker at a given distance (in hops) from the
publishing broker receives a published notification.

A general overview of relevant QoS metrics in the context of distributed and decentralized
publish/subscribe systems can be found in [27]. In [13], it is advocated that QoS attributes
in publish /subscribe systems should be managed in a uniform way with regard to other event
attributes such as type or content. The authors propose a model for QoS-aware publications
and subscriptions in which QoS-related properties are decoupled from event type and content.
In a following paper [39], the authors present an architecture of a distributed QoS-aware
publish/subscribe broker. The broker, called IndiQoS, leverages existing network-level QoS
reservation mechanisms to automatically select QoS-capable paths. The approach, however,
concentrates on QoS at the network level and does not consider contention for processing
resources at the broker level. In [57] an overview of the QoS aspects of publish/subscribe
middleware is given. Two industrial standards for publish/subscribe middleware, the Java
Message Service (JMS) [221] and the Data Distribution Service (DDS) [166] are described and
their QoS-related features are discussed.

Modeling of ECA Rule Engines

In [84], a new approach named event paths for modeling ECA rule engines was introduced. It
simplifies the modeling of the different components of a rule engine. The idea of the model
is to consider all possible paths that events may cause. A path is defined as the sequence
of ECA components an event goes through, possibly of different rules. The simplest paths
to be identified are those initiated by events (whether they are simple or composite) that
directly trigger a single rule and then exit the system. These paths then must be distinguished
if, depending on the event values, the execution may conclude at the condition component
or it may proceed until the action service. Moreover, the path must be split if it involves
condition or action statements that differ in their service time under certain situations (first-
time invocations, warm-up, caching, etc.). Finally, if a statement may generate another event
which in turn triggers another rule, an extra path is included with the additional services.
This avoids having loops in the model (i.e., services are never visited twice). In a case study,
the performance of an ECA rule engine [33,83] was evaluated on an embedded device using
the Performance FEvaluation Tool Set.

3.2 Benchmarking of Event-Based Systems

In this section, we review related work in the area of benchmark development and benchmark-
ing of event-based systems in particular.

Benchmark Development

Benchmark development has turned into a complex team effort. While historical benchmarks
were only some hundreds lines long, modern benchmarks are composed of hundert thoundsands
or millions of lines of code. Compared to traditional software, the development process has
different goals and challenges. Unfortunately, even if an enormous number of benchmarks exist,
only a few contributions focusing on the benchmark development process were published.
The best known publication is Gray’s The Benchmark Handbook [80]. Besides a detailed
description of several benchmarks, the author discusses the need for domain specific bench-
marks and defined four important criteria, which a domain-specific benchmark has to fulfill:

30 Chapter 3. Related Work

Relevance: the benchmark result has to measure the performance of the typical operation
within the problem domain.

Portability: it should be easy to implement on many different systems and architectures.

Scalability: it should be scaleable to cover small and large systems.

Simplicity: the benchmark should be understandable to avoid lack of credibility.

Another newer work dealing with the question, which criteria a benchmark should fulfill
is [104]. The questions, what a ’good’ benchmark should look like and which aspects should
be kept in mind from the beginning of the development process, are discussed in detail and
five key criteria are presented:

e Relevance: the benchmark has to reflect something important.

e Repeatable: the benchmark result can be reproduced by rerunning the benchmark under
similar conditions with the same result.

o Fuair & Portable: All systems compared can participate equally (e.g., portability, 'fair’
design).

e Verifiable: There has to be confidence that documented results are real. This can, e.g.,
be achieved by reviewing results by external auditors.

e Fconomical: The cost of running the benchmark should be affordable.

The author believes that it is impossible to be perfect in all criteria and good benchmarks
have clear strengths in one or two areas, and accommodate the others.

Standardization organizations such as the SPEC (Standard Performance Evaluation Cor-
poration) or the TPC (Transaction Processing Performance Council) use internal guidelines
covering the development process. A short summary of the keypoints of the SPEC Bench-
mark Development Process is provided in [136]. However, these guidelines mostly cover formal
requirements, e.g., design of run rules and result submission guidelines, not the benchmark
development process itself.

Benchmarking of MOM & Publish/Subscribe:

A number of proprietary and open-source benchmarks for MOM supporting JMS have been
developed and used in the industry, for example, the SonicMQ Test Harness [213], IBM’s
Performance Harness for Java Message Service [106], Apache’s ActiveMQ JMeter Performance
Test [8] and JBoss’ Messaging Performance Framework [118]. Using these and other similar
benchmarks, numerous comparative performance studies of competitive products have been
conducted and published by MOM product vendors over the last years, see for example [38,
58,71,72,97,134,190,210,212].

Even though these works mostly focus on pure JMS environments, for other MOM stan-
dards such as DDS, benchmarks and test harnesses exist as well. The DDS Benchmarking
Environment (DBE) [236] is an open-source framework for automated performance testing of
DDS environments. It comes with a repository storing scripts, configuration files, test data
and provides several Perl scripts for test setup. Further, it contains a shared library for col-
lecting results and calculating statistics. Another DDS benchmark is the DDS TouchStone
Benchmark Suite [182]. It was originally published by PrismTech and is available as open
source since version 4.1. It allows the measurement of roundtrip latencies and throughput

3.2. Benchmarking of Event-Based Systems 31

numbers and supports the creation of workload scenarios. Further, a test harness named
Middleware Evaluation Test Tool (METT) was used in [146] to compare the performance of
two different products and some simple test environments for DDS-based systems were used
in different performance studies, e.g., [187,189]. A first benchmark for AMQP was presented
in [219] including several simple test cases. A primitive benchmark was used in [36] to measure
the performance of two implementations.

Some general guidelines for designing a benchmark suite for evaluating distributed pub-
lish /subscribe systems are presented in [41], however, no specific implementation or measure-
ment results are provided.

As evident from the above, numerous approaches to benchmark MOM performance have
been developed and used in industry and academia. However, almost all of them are based
on artificial workloads that do not reflect real-world application scenarios. Furthermore, they
typically concentrate on exercising individual MOM features in isolation and do not stress the
server in a manner representative of real-life applications. In most cases, performance studies
conducted using these workloads have been biased in favor of particular products leading to
contradictory claims made by MOM vendors [58,116,134,210,211,220].

Benchmarking of CEPs

The Java-based framework FINCoS [29] is focusing on performance aspects of complex event
processing systems [148]. FINCoS was developed as part of the BiCEP project [31] and
provides a set of benchmarking tools for load generation and performance measuring of event
processing systems. It follows a flexible and neutral approach, which allows to attach load
generators, datasets, queries, and adapters for diverse CEP systems. In [149], a case study
evaluating three different CEPs using the FINCoS framework is presented. In this case study
several micro-benchmarks, e.g., for aggregation and window policies, were defined.

Benchmarking of Active Databases

Several research benchmarks were published for active databases. The first benchmark for
object-oriented active databases was the BEAST Benchmark [44,79]. Using the database and
schema of the OO7 Benchmark [37], the BEAST Benchmark runs a series of tests targeting
different aspects of an active database such as event detection and rule management. As per-
formance metric, system response time is reported. The workload can be scaled by modifying
the number of defined events (simple and composite) and the number of rules. In [78], perfor-
mance results using the BEAST Benchmark for four active database systems were presented.
Another benchmark for active databases is the ACT-1 benchmark. The ACT-1 benchmark
concentrates on the minimal features of an active database [237]. Using a simple underly-
ing database, ACT-1 models the operation of a power plant to address four basic issues:
overhead of method wrapping, rule firing cost, event consumption costs and serialization of
rules. To overcome the limitations of the ACT-1 Benchmark and the BEAST Benchmark the
OBJECTIVE Benchmark was developed. Design goals were to provide a comprehensive set
of operations which stress all critical functions using (compared to the schema of the OO7
Benchmark used in the BEAST) a simple database, and consider both hot and cold execution
times [44]. An extended version of the OBJECTIVE Benchmark targeting additional features
of component-based active rule systems is presented in [122].

Performance Studies and Analyses of Message-oriented Middleware

In [228], an evaluation of IBM’s MQSeries V5.2 platform is presented. The authors study
the performance of four different styles of messaging: non-persistent non-transactional, per-

32 Chapter 3. Related Work

sistent non-transactional, persistent local transactional and persistent global transactional.
The server’s maximum sustainable throughput is introduced as a metric for characterizing
the server performance. The results show the impact of various factors including the mes-
sage length, the server log buffer space and the number of receiver threads. In [227], the
authors evaluate three leading JMS providers, IBM WebSphere MQ/MQIntegrator, TIBCO
Rendezvous/MessageBroker V4.0 and Mercator Integration Manager V6.0. A synthetic trans-
actional workload is used and the maximum sustainable throughput for persistent and non-
persistent messages is measured. Similarly, in [53] an empirical methodology for evaluating
the QoS of JMS products is presented. In addition to the maximum sustainable throughput,
several further evaluation criteria are considered, such as the message delivery latency, the
elapsed time for batch messaging and the effectiveness of persistent message recovery after a
server crash. Two leading JMS servers are evaluated. Unfortunately, the study only considers
point-to-point messaging and the authors do not disclose the names of the tested products.

Another performance study comparing TIBCO Rendezvous (TIB/RV) with SonicMQ was
published in [145]. This study considers both point-to-point and publish/subscribe messaging.
For point-to-point messaging, the effects of increasing the number of sender and receiver
pairs is analyzed. For publish/subscribe messaging, the effect of increasing the number of
publishers and subscribers is analyzed. Furthermore, the authors consider the duration of the
time taken for a batch of messages to be delivered, the connection time for new subscribers,
as well as the server memory and CPU utilization. Some general guidelines for designing a
benchmark suite for distributed publish /subscribe systems are presented in [41], however, no
specific implementation or measurement results are provided. In [64], the performance of the
individual elements used in message broker applications is evaluated highlighting the cost of
using each element rather than the cost of running complete applications.

In [96], the capacity of the WebsphereM@Q JMS server is evaluated in terms of its through-
put performance. The message throughput in the presence of filters is studied and it is shown
that the message replication grade and the number of installed filters have a significant impact
on the server throughput. An analytical model of the message processing time and the server
throughput is presented and validated through measurements. Several similar studies using
Sun Java System Message Queue, FioranoMQ, ActiveMQ and BEA WebLogic JMS server
were published in [95], [92], [93] and [94], respectively. The study in [93] considers complex
AND-, OR-. and IN-filters of different length. In [151], the results from the evaluation of the
different products are compared and summarized. A more in-depth analysis of the message
waiting time for the FioranoMQ JMS server is presented in [150]. The authors study the mes-
sage waiting time based on an M /G/1 — oo approximation and perform a sensitivity analysis
with respect to the variability of the message replication grade. The analysis shows that the
message waiting time is low as long as the server throughput is sufficiently high. The authors
derive formulas for the first two moments of the message waiting time based on different dis-
tributions (deterministic, Bernoulli and binomial) of the replication grade. Finally, two simple
distributed architectures based on conventional JMS servers that increase the JMS capacity
beyond the capacity provided by a single server are proposed.

In [135], a simple test harness for testing of JMS providers for correctness and performance
is presented. The authors develop a formal model for JMS behavior based on the I/O automata
used in other group communication systems. The focus here is on verifying the correctness of
JMS implementations and only basic support for performance analysis is provided. In [85], an
efficient strategy for reliable messaging using different persistence methods with various kinds
of messages is developed. The strategy utilizes daemon threads to reduce its influence on the
system and has been implemented as part of a JMS server.

3.3. Patterns in Performance Modeling 33

3.3 Patterns in Performance Modeling

Performance models should reflect real world applications. In this context we face commonly
occurring themes. The goal of design patterns is to identify, name, and abstract these themes
[76]. Similar to software engineering, where the concept of design patterns is well established,
several research results focusing on the usage of patterns in performance engineering and
modeling were published. Most of these publications fall in one of the following two categories.
The first category focuses on describing knowledge of experienced modelers in a structured
way and/or providing reusable building blocks, which can be used by modelers. The goal
is to transfer expert knowledge to less experienced modelers, to decrease the time needed
for modeling the applications and, by reusing expertise and proven components, to improve
the quality of models. In the second category we find research focusing on model-to-model
transformation, e.g., UML models to (C)PNs. The ongoing research is closely related to the
question how CPNs, QPNs and similar models can be applied in the software development
life cycle.

A template for the description of Petri net patterns is introduced in [161]. The authors use
a template to describe a number of sample patterns and suggest the introduction of a Petri
net pattern repository. In [159] a template is proposed for the systematic description of CPNs.
Furthermore, the same authors present a comprehensive and structured collection of 34 design
patterns for CPNs in [158]. These patterns have been modeled using CPN Tools. In [28] the
authors mention that they created a library of QPN patterns, which contains models of basic
constructs appearing repeatedly in the Tomcat architecture such as blocking. An extension to
hierarchical colored Petri nets (HCPN) named reusable colored Petri nets (RCPN) is published
and demonstrated in [137]. RCPN support the definition of reusable components.

The authors of [176-178] discuss how to construct an underlying CPN representation based
on an UML software architecture model. For this purpose behavioral design patterns (BDP)
are specified and mapped to CPN templates. This allows software engineers to focus on
the UML design independent from the CPN model. The generated CPN may be analyzed
for performance and functionality. Observed behavioral problems resulting from the CPN
analysis can be corrected in the UML software design.

Our work differs from the previous ones in at least two ways. To the best of our knowl-
edge, no patterns for QPNs are published. Existing work focuses mostly on CPNs and PNs.
Furthermore, there is no work discussing such patterns for event-based applications.

3.4 Concluding Remarks

This chapter provided an overview of related work in the areas of performance modeling and
benchmarking of EBS and discussed the usage of performance modeling patterns in previously
published work. In our review of current research we considered all kinds of EBS including
DEBS, MOMs and ECA rule engines. While several benchmarks for EBS exist, these bench-
marks do not fulfill the requirements we defined. We identified a lack of test harnesses and
benchmarks using representative workloads for EBS. The same applies to performance mod-
els. While performance and QoS issues in EBS have been discussed in several publications,
no previous work exists that provides a general methodology for performance modeling with
the goal of performance prediction.

In previous work, performance modeling pattern collections were introduced and ap-
proaches to use them for system modeling were proposed. However, none of these publications
used QPNs for their patterns nor did they focus on EBS.

34

Chapter 3. Related Work

Chapter 4

Performance Engineering of
Event-Based Systems

As already discussed in Section 2.1, event-based systems differ from traditional software in
several aspects. Since they are used in business critical environments, there is a need for
performance models [101] which allow the user to predict system behavior or analyze certain
performance aspects and to identify possible bottlenecks.

The fact that event consumer and producer are completely decoupled from each other and
communicate using asynchronous patterns, influences the modeling approach for the perfor-
mance aspects of event-based systems. Further, dynamic changes and implementations of EBS
in very large scale and distributed environments make it even harder to find the right model
representation for a given scenario.

As a consequence, we have to investigate whether and how traditional performance mod-
eling approaches can be applied on EBS. Our first step is to redefine the performance metrics
to reflect particular properties of EBS.

For example, when a request is sent in a traditional request /reply-based distributed system,
it is sent directly to a given destination which makes it easy to identify the system components
and resources involved in its processing. The response time in such an environment can be
defined as time needed by the client to trigger the request and by the server to reply to the
request (see Figure 4.1(a)). The client is blocked while waiting for the answer of the server.
This understanding of response time is not applicable to EBS systems. When an event is
published in an EBS, it is not addressed to a particular destination, but rather routed along
all paths that lead to subscribers with matching subscriptions. Since event producer and
consumers are decoupled, the event producer does not wait for an acknowledgement by the
event consumer. As illustrated in Figure 4.1(b), from the perspective of the event producer
the response time does include the execution time of the event consumer nor the time needed
to forward the event notifications to the n consumers by the transport layer. Therefore, it is
questionable whether metrics such as response time are still appropriate in a decoupled and
asynchronous environment and we see a need for new metrics.

The high concurrency in EBS, their flexibility and the large number of events pose high
requirements to the efficiency and features of modeling technologies. Challenges are, e.g., the
correct representation of event forking, changing or durable subscriptions as well as mobile
consumers and, especially in real world scenarios with thousands or millions of events, a
reasonable solving time for the models is mandatory.

In this chapter, we present our contributions to the area of performance engineering of
event-based system.

35

36 Chapter 4. Performance Engineering of EBS

. Transport Consumer Consumer
Client Server Producer
Layer 1 2
Producer
Send Request RT Send Request
Response Total
Time N Consumer 1 [~ System
RT RT

Ack / Result send Request , Consumer 2

||J< | HJ' RT

a) Request - Reply b) Event-based System
y

Figure 4.1: Response Time (RT) in Traditional Request / Reply and in EBS

Formal Definition of EBS:
We provide a formal definition of EBS and their performance aspects which allows among
other to characterize workload properties. Our definitions reflect a distributed event-
based system, but can easily be applied to a non-distributed environment.

Modeling Methodology:
Based on these definitions, we present a modeling methodology for EBS. Our approach
allows to predict system behavior including the utilization of different components and
can be used in a wide range of applications, e.g., as decision base for self-adaptive systems
or for capacity management.

Performance Modeling Pattern:
We discuss how different features of EBS can be reflected in performance models and
introduce in this context performance modeling patterns for the most common settings
and features of EBS. We use QPNs as modeling technique to illustrate the patterns.

Ezxtensions of QPNs:
Several of our patterns are not, or only with high effort, convertible with standard QPNs.
Therefore, we developed several new features for QPNs and conclude this chapter with
a list of extensions for standard QPNs.

4.1 Modeling Methodology for EBS

Modeling EBS is challenging because of the complete decoupling of communicating parties
on the one hand, and, on the other hand, the dynamic changes in system structure and
behavior. The event might have to be processed by multiple system nodes on its way to
subscribers. It is hard to know in advance which system nodes will be involved in delivering the
event. There are numerous event routing algorithms and they all have different implementation
variants leading to different routing behavior. Moreover, depending on existing subscriptions,
individual events published by a given publisher might be routed along completely different
paths visiting different sets of system nodes. Therefore, it is hard to partition events into
workload classes that have similar resource usage. Another difficulty stems from the fact that
every time a new subscription is created or an existing one is modified, or when nodes join or

4.1. Modeling Methodology for EBS 37

Figure 4.2: System Topology

leave the system, this might lead to significant changes in the workload. Thus, the dynamics
of EBS necessitate that workload characterization be done more frequently in order to reflect
the changes in the system configuration and workload.

4.1.1 Formal Definition

Let us consider a (distributed) event-based system implemented as a network of event brokers
arranged in the topology depicted in Figure 4.2. Formally, the system can be represented as
a 5-tuple G = (N, C, P, S, E) where:

N = {ni,n2,...,nn|} is the set of system nodes (in our example event brokers).
C = {c1,¢2,...,cc|} is the set of connections between nodes.
P = {p1,p2,...,pp|} is the set of publishers.
S = {s1,52,..., 55|} is the set of subscribers.
E = {e1,e2,...,e/p} is the set of event types.
We will use the following additional notation:

Hp(r) is the id of the system node that publisher p, is connected to.
Hg(l is the id of the system node that subscriber s; is connected to.

38 Chapter 4. Performance Engineering of EBS

HE(q) s the id of the system node on the “left side” of connection c.
The left side is defined as the side of the node with lower id.
HE(q) is the id of the system node on the “right side” of connection c,.

B, is the bandwidth of the underlying network corresponding to con-

nection cy.

M}Ie is the size of the message that has to be transferred (taking pro-
tocol overhead into account) when an event of type e; is sent over
the network corresponding to connection c,.
is the probability that an event of type e;, published by pub-
lisher pg, is forwarded to system node n; after visiting system

node n;. If i = j, ijk =)

Ab* s the rate at which events of type e; are published by publisher py,.

(2]

AL* s the rate at which events of type e;, published by publisher py,
arrive at node n;.

AL is the total rate at which events of type e; (published by any
publisher) arrive at node n;.

T, is the rate at which events of type e; (published by any publisher)

are sent over connection c,.

is the mean CPU service time of an event of type e; at node n;.

is the mean disk I/O service time of an event of type e; at node n;.
SNET s the mean network service time when an event of type e; is sent
over the network link corresponding to connection c.

is the Kronecker function, i.e., §;; = 1 if ¢ = j and ; ; = 0 if

i # 5.

We can consider the events published in the system as basic components of the workload.
Events can be partitioned into workload classes based on their type. However, events of the
same type published by different publishers could have completely different routing behavior
and resource consumption. Therefore, to make the workload classes more homogeneous in
terms of resource consumption, we further partition them based on the publisher.

4.1.2 Analysis of the Event Routing Behavior

To determine the routing behavior of events in the system, we suggest conducting some ex-
periments in a small testing environment. Brokers are configured according to the desired
topology (Figure 4.2), however, instead of being deployed on separate servers distributed over
a WAN, t