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Today’s system developers and operators face the challenge of creating software systems that make efficient
use of dynamically allocated resources under highly variable and dynamic load profiles, while at the same
time delivering reliable performance. Autonomic controllers, for example, an advanced autoscaling mecha-
nism in a cloud computing context, can benefit from an abstracted load model as knowledge to reconfigure on
time and precisely. Existing workload characterization approaches have limited support to capture variations
in the interarrival times of incoming work units over time (i.e., a variable load profile). For example, indus-
trial and scientific benchmarks support constant or stepwise increasing load, or interarrival times defined
by statistical distributions or recorded traces. These options show shortcomings either in representative
character of load variation patterns or in abstraction and flexibility of their format.

In this article, we present the Descartes Load Intensity Model (DLIM) approach addressing these issues.
DLIM provides a modeling formalism for describing load intensity variations over time. A DLIM instance is
a compact formal description of a load intensity trace. DLIM-based tools provide features for benchmarking,
performance, and recorded load intensity trace analysis. As manually obtaining and maintaining DLIM
instances becomes time consuming, we contribute three automated extraction methods and devised metrics
for comparison and method selection. We discuss how these features are used to enhance system management
approaches for adaptations during runtime, and how they are integrated into simulation contexts and enable
benchmarking of elastic or adaptive behavior.

We show that automatically extracted DLIM instances exhibit an average modeling error of 15.2% over
10 different real-world traces that cover between 2 weeks and 7 months. These results underline DLIM
model expressiveness. In terms of accuracy and processing speed, our proposed extraction methods for the
descriptive models are comparable to existing time series decomposition methods. Additionally, we illustrate
DLIM applicability by outlining approaches of workload modeling in systems engineering that employ or
rely on our proposed load intensity modeling formalism.
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1. INTRODUCTION

Today’s cloud and web-based IT services need to handle large numbers of concurrent
users under highly variable and dynamic load intensities. Customers access services in-
dependently of each other and expect a stable Quality-of-Service (QoS). In this context,
any knowledge about a service’s load intensity profile and their variations becomes cru-
cial information for managing the underlying IT resource landscape. Human behavior
patterns due to human habits, trends, calendar effects, and events heavily influence
load profiles. An autonomic controller, for example, an advanced autoscaling mech-
anism deployed in a cloud computing context, may implement the MAPE-K control
loop [Kephart and Chess 2003]. When such a controller is constantly provided with
abstracted knowledge about the observed and expected load profile, it could trigger the
majority of adaptations more precisely and on time, as envisioned by the Models@Run-
Time community [Blair et al. 2009].

Also, performance evaluation of systems under dynamic load conditions poses new
challenges. Benchmarking frameworks such as Faban [2006], Rain [Beitch et al. 2010],
and JMeter [Halili 2008] allow request injection rates to be configured either to constant
values, or to stepwise increasing rates (e.g., for stress tests). The feature of generating
variable rates based on a recorded or synthetic load trace is not fully supported by
the mentioned frameworks. They usually work with a fixed number of load generating
threads, whereas one of those corresponds to one virtual user with its routine and think
time, as in a closed workload. From this, we see that open workloads with a possibly
unlimited number of users and a representative load intensity variation independent
of the actual system’s performance are supported only to a limited extent by existing
benchmarking frameworks.

In this article, we introduce the Descartes Load Intensity Model (DLIM) and the cor-
responding tools. DLIM describes load profiles by combining piecewise mathematical
functions in a tree-like manner. Manual construction and maintenance of DLIM model
instances becomes infeasible in complex scenarios or at runtime usage. We address
this by proposing the high-level Descartes Load Intensity Model (hl-DLIM) to support
the description of load variations using a small set of parameters to characterize sea-
sonal patterns, trends, as well as bursts and noise. The initial ideas for these two
models have been presented in von Kistowski et al. [2014]. A first sketch of the DLIM
metamodel without details on several abstract model elements can be found there. The
work-in-progress description does not include in-depth validation of the models, model
extraction, and later improvements to the models.

DLIM can be used to define an arbitrary load intensity profile, which can than
be leveraged for benchmarking purposes to evaluate the behavior of a system under
different dynamic workload scenarios (e.g., bursty workloads, seasonal patterns). This
is useful in several use cases, for example, for both online and offline evaluation of
the quality of system adaptation mechanisms such as elastic resource provisioning
techniques in modern cloud environments. In contrast to pure regression approaches,
DLIM offers the advantage of classifying load intensity variations by type, as they are
fitted to certain model elements. As a result, models include additional information on
types, which is useful when analyzing or modifying load intensity variations.

A load intensity profile, represented as a DLIM model instance, can be created ei-
ther manually by the user or it can be extracted from a request arrival trace obtained
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by monitoring a real-life production system. To support this, we provide generic trace
analysis algorithms, define quality metrics for these algorithms, and integrate them
into the DLIM tools called LIMBO.1 The tools allow users to use our approach in a
variety of use cases. As a result, the trace is represented as a compact DLIM model
instance carrying a tree of mathematical functions that are combined over the modeled
time. The model instance captures the major properties of the trace (e.g., burstiness,
seasonality, patterns, and trends) and can be used at any time to automatically gen-
erate comparable traces, that is, the trace exhibits the same properties. Furthermore,
the extracted model instance can be easily modified to reflect a target dynamic load
scenario, for example, by changing the frequency of bursts or adding a given trend
behavior.

In this article, we introduce and validate three automated DLIM model extraction
methods: s-DLIM, p-DLIM, and hl-DLIM. s-DLIM’s workflow is inspired by the time
series decomposition approach STL [Cleveland et al. 1990]. p-DLIM focuses more on
periodic patterns strengthening extrapolation capabilities, and the hl-DLIM extraction
method works on a higher abstraction level for more compact model instances.

We highlight as major benefits of this work the new capabilities to accurately and
automatically extract load intensity models with 15.2% median modeling error on
average from a representative set of 10 different real-world traces. Each extraction
completes in less than 0.2s on common consumer hardware. These results demonstrate
and validate the capability of DLIM to capture realistic load intensity profiles.

DLIM-based applications and developments in the fields of benchmarking and sys-
tem resource planning both at design time and runtime are enabled by providing the
automatic model extraction processes. We demonstrate the usefulness and applicabil-
ity of DLIM and its extraction processes by outlining selected existing use cases (cf.
Section 6).

The remainder of this article is structured as follows: Section 2 introduces founda-
tions on open workloads, our definition of load intensity, and discusses related work
in the field of workload modeling approaches. Section 3 describes the DLIM model
and the hl-DLIM model. The extraction methods are presented in detail in Section 4.
Section 5 validates the models DLIM and hl-DLIM, and the extraction methods
s-DLIM, p-DLIM, and hl-DLIM based on real-world traces. Section 6 uses applications
of workload modeling in systems engineering to show the adoption DLIM. Section 7
concludes and provides an outlook on future research directions.

2. FOUNDATIONS AND RELATED WORK

Both DLIM and hl-DLIM have been designed to capture variations of load intensity in
the form of user, job, or request arrival rates. The models employ an open workload
view. Open workloads are defined in Schroeder et al. [2006] as workloads in which new
jobs arrive independently of job completion. We use the term load to denote user, job,
or request arrival rates containing the actual work units. Open workloads are typical
for cloud environments as users are usually unaware of other users or the current
workload.

In this article, load intensity denotes the arrival rate of abstract workload units
(e.g., users, jobs, sessions, or requests) at a given point in time. The function r(t)
describes the load intensity at that point in time (t) as follows:

r(t) = R′(t) with R(t) = |{ut0 |t0 ≤ t}|, (1)

1LIMBO (DLIM tools): Primary page http://descartes.tools/limbo, also hosted at SPEC RG tools repository
https://research.spec.org/tools/overview/limbo.html.
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where R(t) is the amount of work units ut0 (set cardinality of the set containing all ut0 )
with their respective arrival time t0, which precedes or equals our time of observation
t. This means that all work units ut0 have arrived up until time t. r(t) = R′(t) is the
derivative of R(t).

A load intensity profile is the function that describes the load intensity over time.
Real-world examples of such profiles are shown in several figures throughout this
article, including Figure 6.

Several approaches to describe and generate workloads with variable intensity exist
in literature. However, they differ from our approach in the following key aspects: First,
a set of approaches that work purely statistically using independent random variables
and therefore do not offer models describing deterministic load intensity changes over
time. Second, approaches for workload or user behavior modeling that capture the
structure of the actual units of work they dispatch or emphasize the behavior of users
after their arrival on the system. In contrast, DLIM models focus on the description
of request or user arrivals, and not on user behavior and its impact after arrival. We
combine both deterministic and statistical approaches. We group related work into at
least one of the following four categories.

User Behavior Models. These models traverse graphs, where nodes represent actions
that users may perform on a system. By doing so, user behavior models allow modeling
of varying system load depending on the current state of the traversal. Becker et al.
[2009], van Hoorn et al. [2008], Roy et al. [2013], and Beitch et al. [2010] propose
workload models that capture the behavior and tasks triggered by different types of
users. Zakay and Feitelson [2013] partition workloads according to the user types,
and then sample workload traces for each user type to capture the user behavior. All
four approaches focus on the behavior of users instead of the load intensity, which we
define at the system boundary. Models like the previous ones can be easily combined
with DLIM to further characterize the user behavior after a request has arrived at the
system and a client session is started.

Resource Demand Focused Load Modeling. Approaches in this category focus on mod-
eling the units of work processed by the system and estimating the resource demands
created by those work units. Casale et al. [2012] focus on modeling bursty workloads,
whereas Barford and Crovella [1998] focus on file distribution and popularity.

Statistical Interarrival Models. These approaches capture the workload intensity
using statistical distributions. Feitelson [2002] creates a statistical model for paral-
lel job schedulers. Li [2010] models batch workloads for eScience grids and Menascé
et al. [2003] as well as Reyes-Lecuona et al. [1999] analyze workloads at multiple
levels, such as request and session level. These approaches differ from our approach
as they use independent random variables to capture interarrival rate distributions.
Model input is usually the type of workload or certain workload characteristics, which
may include arrival rate, but also other characteristics, such as burst size, whereas
the output is a statistical distribution. In our case, we use the current time as the
primary input (usually seconds since a predefined point in time t0, for example, mea-
surement start), with the model returning the concrete load intensity at that point
in time.

Regression Techniques. MARS [Friedman 1991], M5 trees [Quinlan et al. 1992], or
cubic forests [Kuhn et al. 2012] are capable of calibrating mathematical functions to fit
a measured load intensity trace. Similarly to DLIM, these functions can be load inten-
sity over time functions. Yet, in contrast to DLIM, they do not convey the additional
information of the types and composition of load intensity variation components.
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Fig. 1. Outline of the DLIM meat-model excluding a detailed description of concrete functions.

The combined deterministic and statistical approach of DLIM enables a mapping
between load profile variations and their respective time stamps. DLIM uses a compo-
sition of piecewise mathematical functions. In contrast to statistical approaches, which
model distributions, DLIM models a concrete load intensity for each distinct point in
time. DLIM also supports random noise including spikes of various shapes and there-
fore represent noise, random events, and individual outliers as well. To the best of
our knowledge, a directly comparable combined deterministic and statistical modeling
approach for load intensity profiles is not published in literature.

3. THE DESCARTES LOAD INTENSITY MODELS DLIM AND HL-DLIM

The DLIM describes load intensity over time. Specifically, the model is aimed at describ-
ing the variations of work unit arrival rates by capturing characteristic load intensity
behaviors. Its metamodel is visualized in Figure 1. It is based on the work in von
Kistowski et al. [2014], which introduced a more abstract preliminary sketch of the
model, missing many of the concrete functions used for load intensity description.

DLIM models load intensity by defining piecewise mathematical functions to ap-
proximate variable arrival rates. It supports load intensity profiles with periodicity
and offers flexibility to adapt and incorporate unplanned events. It also allows for
nested composition of model instances. This nesting results in DLIM instances always
having a tree structure, where different nodes and leaves within the tree are added or
multiplied onto their parents.

DLIM uses the Sequence as its central element for the composition of piecewise
mathematical functions. A Sequence carries an ordered set of TimeDependentFunc-
tionContainers, which describe the duration of each time interval. The containers, in
turn, contain the actual mathematical functions describing the load intensity during
their interval. The Sequence’s ordered set of TimeDependentFunctionContainers re-
peats as many times as indicated by the terminateAfterLoops attribute. Alternatively,
the sequence repeats for the time indicated by the terminateAfterTime attribute. The
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Fig. 2. Example instance of a DLIM model.

sequence terminates as soon as at least one of the termination criteria is met. Infinite
sequences are not allowed and at least one termination criterion must be specified. This
ensures a finite time frame and guarantees that benchmarks or predictions terminate.

Any DLIM Function may use mathematical operators called Combinators to contain
additional Functions. A Combinator allows the multiplication or addition of a Func-
tion’s load intensity with the load intensity as defined by another Function. In the
context of the overall load variation over time, any Function contained within a Com-
binator is valid for the exact same duration as its containing parent Function. This
containment results in trees of functions containing zero or more additional functions.
All of these functions describe the load intensity behavior during a specific time period
defined by the containing TimeDependentFunctionContainer.

The TimeDependentFunctionContainer describes its load intensity for a set dura-
tion, after which the next TimeDependentFunctionContainer in the parent Sequence’s
ordered set becomes valid.

Function is the abstract parent class to all classes denoting mathematical functions.
It is contained within a TimeDependentFunctionContainer. A number of concrete chil-
dren are provided that can be used as Functions. The default set of functions provides
Noise, Seasonal, Burst, Trend, and UnivariateFunction specifications. New functions
can be provided by inheritance. The most notable concrete Function is the Sequence.
As a result, any function can contain a new Sequence using a mathematical operator.
The containment hierarchy prevents cycles.

Figure 2 shows an example DLIM instance together with a plot of the model example
in the lower part. In both the model and the plot, the red areas map to the impact of the
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Fig. 3. hl-DLIM Seasonal Part.

additive combinators and the yellow areas to the impact of multiplicative combinators.
The root Sequence (named “root”) of the instance contains a TimeDependentFunction-
Container (TDFC) “season” with a duration of 24 abstract time units. “root” repeats
its single TDFC three times before terminating. The container itself contains a sinus
function modeling the load intensity. This sinus function repeats itself. As a result, the
seasonal duration of 24 is technically speaking unnecessary, but was chosen nonethe-
less to add additional information to the model. “root” also contains Combinators, which
modify its load intensity. The multiplicative Combinator contains a separate Sequence
(“trends”), which contains two TDFCs. The first of those models a linear increase in
load intensity, up to a factor of 1.8, whereas the latter models a decrease back to the
original level. The “trends” Sequence terminates before “root” and stops modifying it
after its first iteration. A “burst” Sequence and normal noise are added to “root.” Note,
that Combinators may contain any DLIM-Function. This is usually a Sequence, as is
the case for trends and bursts in this example model. Contained Sequences terminate
on their own or at the end of the containing Sequence if their duration would exceed
the parent’s duration. All other functions, such as the noise in this example, are valid
for the entire duration of their containing Sequence.

3.1. High-Level DLIM

DLIM offers a convenient way of structuring and ordering functions for the description
of load intensity profiles. Its tree of piecewise mathematical functions already provides
human users with a better understanding of the load variations. However, abstract
knowledge about variations contained in complex models can still be difficult to under-
stand, as a large tree of composite functions may be difficult to grasp. The (hl-)DLIM
is a separate model that addresses this issue by providing a means to capture load
intensity variations described only by a limited number of nonhierarchical parameters
instead of a potentially deeply nested tree of mathematical functions. These parameters
can then be used to quickly define and characterize a load intensity model.

hl-DLIM separates into a Seasonal and Trend part (inspired by the time-series de-
composition approach in BFAST [Verbesselt et al. 2010]) and features a Burst and a
Noise part. In contrast to DLIM, it is designed to model a subset of the most common
load variation profiles in favor of better readability.

The Seasonal part describes the function that repeats after every seasonal duration
(e.g., every day in a month-long load intensity description). hl-DLIM describes the
seasonal part using the following parameters (as shown in Figure 3): period, number
of peaks, base arrival rate level, first peak arrival rate, last peak arrival rate, and the
interval containing peaks. Arrival rates of additional peaks between the first and last
peak are derived using linear interpolation. Linear interpolation is chosen because it
is the most intuitive for the modeling user. More detailed changes can be performed in
(non-hl-)DLIM.
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Fig. 4. hl-DLIM Trend Part.

The Trend part describes an overarching function that captures the overall change in
the load intensity over multiple seasonal periods. It consists of a list of equilength Trend
segments. hl-DLIM describes the respective arrival rates at the start of each of these
segments. The Trend must modify the arrival rate of the Seasonal part’s maximum
peak in such a way that it matches this specified target arrival rate. The actual trend
segments between these specified points can be interpolated using any DLIM Trend
function. In contrast to the Trend within BFAST, the hl-DLIM Trend can interact
with the Seasonal part either by addition or multiplication. The restrictions posed
by hl-DLIM to Trend modeling are intended to speed the human modeling process.
(Non-hl-)DLIM allows for more varied Trend specifications. The Trend part is defined
using the following parameters: number of seasonal periods within one trend (i.e., the
length of a single trend segment), operator (addition or multiplication), and the list
of seasonal arrival rate peaks. The latter defines the arrival rate at the beginning
and end of the Trend segments. Since the list defines the maximum seasonal peak
for seasonal iterations, trend segments can be interpreted as overlying interpolated
functions, beginning and ending at the maximum peaks of their respective seasonal
iterations. This interpretation is visualized in Figure 4.

The Burst part allows the definition of recurring bursts, which are added onto the
existing Seasonal and Trend behavior (in contrast to DLIM, where bursts may also be
multiplicative). It is defined using the following parameters: First burst offset, inter-
burst period, burst peak arrival rate, and burst width.

The Noise part allows the addition of uniformly distributed white noise. The distri-
bution is defined by its upper and lower bounds, which are named Minimum Noise
Rate and Maximum Noise Rate. Uniform noise is used in hl-DLIM, due to its ease and
intuitiveness when being specified by a human user. Other Noise distributions can
easily be added to DLIM instances, which are obtained from hl-DLIM instances via a
model-to-model transformation.

4. MODEL INSTANCE EXTRACTION

In this section, we present three methods for the extraction of DLIM instances from
arrival rate traces, consisting of pairs of arrival rates at their respective time stamps.
Each model extraction method requires few configuration parameters that we discuss
in detail. Given the set of configuration parameters, the extraction runs completely
automated.

We define the following three methods:

(1) Simple DLIM Extraction Method (s-DLIM):
Extracts a DLIM instance. This process (and its resulting DLIM instance) are
inspired by the time-series decomposition approach STL [Cleveland et al. 1990].
s-DLIM extracts a repeating Seasonal Part and a nonrepeating Trend Part. The
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Modeling and Extracting Load Intensity Profiles 23:9

Fig. 5. Activity diagram of the Simple DLIM Extraction Method (s-DLIM).

Fig. 6. Arrival rates of the original WorldCup98 trace (blue) and the extracted DLIM instance (red) using
s-DLIM with a Trend length of 1 and ignoring noise.

nonrepeating Trend Part contains a list of Trend segments of fixed size, that in-
terpolate between their start and end arrival rate value. The Trend list extends
throughout the entire time duration for which the extracted model is defined. Addi-
tionally, a Burst Part and an optional Noise Part are extracted. s-DLIM is visualized
in Figure 5.

(2) Periodic DLIM Extraction Method (p-DLIM):
This is a variation of the simple extraction process that features multiple repeating
trends. Again, a DLIM instance is extracted; however, in contrast to s-DLIM, p-
DLIM does not feature a single list of equal length Trend segments. Instead it
features multiple lists of Trends, each containing a fixed number of Trend segments
of (potentially) different lengths.

(3) High-level DLIM Extraction Method (hl-DLIM):
Extracts an hl-DLIM instance. This process is based on the simple model extraction
process and uses the information extracted by the latter to derive the parameters
needed to construct an hl-DLIM instance.
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ALGORITHM 1: Extracting the Seasonal Part
Data: duration: seasonal period duration,

LIST: list of tuples �t =
(

arrivalRate
timeStamp

)
,

rootSequence: root Sequence of the DLIM instance;

Function extractSeasonalPart()
MIN ← getLocalMinima (LIST);
MAX ← getLocalMaxima (LIST);
peakNum ← median(number of peaks within each Seasonal iteration);
for i ← 0 to peakNum − 1 do

peak [i].arrivalRate ← median(arrival rate of all ith peaks ∈ MAX within each seasonal
iteration);

peak [i].timeStamp ← median(time stamp of all ith peaks ∈ MAX within each seasonal
iteration);

/* In seasonal iterations with more than peakNum peaks, the ith peak is
selected, so that peaks are evenly spaced throughout that seasonal
iteration. */

peak [i] ←
(

peak[i].arrivalRate
peak[i].timeStamp

)
;

end
for i ← 0 to peakNum − 1 do

low [i].arrivalRate ← median(arrival rate of all ith lows ∈ MIN within each seasonal
iteration);

low [i].timeStamp ← median(time stamp of all ith lows ∈ MIN within each seasonal
iteration);

/* In seasonal iterations with more than peakNum lows, the ith low is
selected, so that lows are evenly spaced throughout that seasonal
iteration. */

low [i] ←
(

low[i].arrivalRate
low[i].timeStamp

)
;

end
for i ← 0 to peakNum − 1 do

interpolatingFunction ← DLIM Function starting at low [i], ending at peak [i];
rootSequence.append(interpolatingFunction);

end
end

4.1. Extracting a s-DLIM and p-DLIM Instance

The following sections describe the extraction of the different model parts by s-DLIM
and p-DLIM. These two processes only differ in their approach to the extraction of the
Trend Part.

4.1.1. Extracting the Seasonal Part. The Seasonal Part of the arrival rate trace is mod-
eled using a Sequence of TimeDependentFunctionContainers and their Functions. Each
Function interpolates the corresponding peaks and lows within each seasonal period.
As a result, the following data needs to be derived in order to build the Seasonal Part:

—Duration of the dominating seasonal period: automatically derived or configured.
—Arrival rate peaks and their time stamps: automatically derived.
—Arrival rate lows and their time stamps: automatically derived.
—Function type used to interpolate between peaks and lows: (pre-)configured.
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The duration of the seasonal period can be set by the user in cases when the sampling
interval of the input time series is known. A trace that extends for multiple days and
contains daily patterns, for example, features a period of 24 hours. In cases, where
the seasonal period is not transparent, we provide an implementation of a heuristic
to estimate the seasonal period duration. We follow a heuristic described in Wang
et al. [2009, p. 17] and compute the autocorrelation function for all lags up to one-
third of the time series length. As preprocessing, an overarching trend is removed from
the input data using a regression spline. In the following step, the local maximum
with the smallest lag is searched with a sliding window. Finally, we cross-check if
multiples of the first local minimum lag correspond to other local minima. The peaks
and lows are automatically determined by using a local minimum/maximum search
on the arrival rates within the trace. The local arrival rate minima and maxima and
their corresponding time stamps within a seasonal period constitute the peaks and
lows. Since the trace usually contains multiple seasonal periods, the respective median
arrival rate value is selected for each local maximum and minimum within the Seasonal
Part. Selecting the median instead of the mean reduces the impact of outliers on
the extracted seasonal values. Outliers can be significant, but more importantly they
are usually positive outliers. Negative outliers (disconnects, maintenance breaks) are
less common and do not have as much of an impact, as their minimum size is 0.
Positive outliers (bursts) are more common and intended to be detected separately
using our burst detection. As a result, the derived functions interpolate first between
the first median low and the first median peak, then between the first median peak
and the second median low, and so on. The last low must be of the same arrival rate
as the first low in order for the Seasonal Part to repeat seamlessly. The type of the
interpolating function (linear, exponential, logarithmic, sin-flank) can be selected by
the user, depending on his needs. According to our experience, the sin interpolation
usually results in a good model fit. The Seasonal Part extraction is illustrated in
Algorithm 1.

4.1.2. Extracting the Trend Part. The Trend Part consists of a series of functions (trend
segments) that are either added or multiplied onto the Seasonal Part. Each trend
segment begins at the maximum peak of the Seasonal Part and ends at the maximum
peak of the Seasonal Part in a later Seasonal iteration. This minimizes errors with
trend calibration. The trend extraction calibrates the trend in a way that the model
output arrival rate at the trend segment’s beginning (or end) equals the trace’s actual
arrival rate at the respective point in time. The shape of the trend function (linear,
exponential, logarithmic, sin) is predefined as a sin-shape, but can be changed on
demand.

Trend Part for s-DLIM. The simple extraction process features a list of equal-length
trend segments. These segments have a user defined duration that is a multiple of
the seasonal period. Like the seasonal period it is also selected using metaknowledge
about the trace. These segments are then calibrated at their beginning and end to
match the arrival rates in the trace. The s-DLIM Trend Part extraction is displayed in
Algorithm 2.

Trend Part for p-DLIM.The periodic extraction process takes into account, that mul-
tiple repeating trends may be part of the arrival rate trace. Examples are weekly
and monthly trends. Since repeating trends (like the Seasonal Part’s dummy function)
should end on the same arrival rate as the arrival rate they started on (allowing seam-
less repetition), each of these repeating trends contains at least two trend segments.
These trend segments’ duration is a multiple of the seasonal period. Unlike the s-DLIM
trend segments they are not required to be of equal length, thus allowing odd multiples
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23:12 J. von Kistowski et al.

ALGORITHM 2: Extracting the Trend Part using s-DLIM
Data: duration: seasonal period duration,

LIST: list of tuples �t =
(

arrivalRate
timeStamp

)
,

MAX: list of local maxima in LIST,
trendSequence: root Sequence of all Trend segments;

Function extractTrendPart()
largestPeakOffset ← offset of peak with largest arrival rate within a seasonal iteration;
largestPeakArrivalRate ← arrival rate of peak with largest arrival rate within a seasonal
iteration;

iterations ← LIST.lastTuple.timeStamp/duration;
for i ← 0 to iterations do

a ← nearestTuple(MAX, i ∗ duration + largestPeakOffset);
trendPoint [i] = a/largestPeakArrivalRate;

end
trendSequence.append(constant trendPoint [0] with duration largestPeakOffset);
for i ← 0 to iterations do

interpolatingFunction ← DLIM Function starting at trendPoint [i], ending at trendPoint
[i+1];

trendSequence.append(interpolatingFunction with duration duration);
end
trendSequence.append(constant trendPoint [iterations] with duration
(duration − largestPeakOffset));

end
Function nearestTuple(tuple list L, time)

returns the tuple �t =
(

arrivalRate
timeStamp

)
∈ L with minimal d ← |L.timeStamp − time|;

end

of seasonal periods as total trend durations. The user selects lists of at least two trend
segment durations for each repeating Trend Part.

4.1.3. Extracting the Burst Part. Extracting bursts is a matter of finding the points in time
at which significant outliers from the previously extracted Seasonal and Trend parts
are observed in the trace. However, for our extraction, bursts are explicitly not missed
seasonal peaks. Extracted bursts are not intended to model the model’s remaining
noise, only semantic bursts. In the context of load intensity modeling, we define bursts
as a significant amount of additional load that exceeds the seasonal pattern and is too
short to be modeled as trend. To this end, we require a filter function that smooths
the seasonal function to prevent modeling of missed seasonal peaks using bursts. With
this filter function bursts can be detected if

r(t) > ( f (seasonal(t)) ∗ trend(t)) ∗ c,

where r(t) is the original load intensity (arrival rate), f is the filter function, seasonal
and trend are the previously extracted Seasonal and (multiplicative) Trend parts, and
c is a constant factor that requires bursts to be a certain factor larger than filtered
season and trend. c is set to a default value of 1.2.

Once a burst is found, it is added to the root Sequence and then calibrated to match
the arrival rate from the trace. The filtered Seasonal Part used as reference model
in the burst recognition activity differs from the actual extracted Seasonal Part. It is
filtered so that the Seasonal Part used for burst recognition activity does not interpolate
between the peaks and lows of the original arrival rate trace. Instead, it interpolates
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Modeling and Extracting Load Intensity Profiles 23:13

only between the peaks. This removes false positives due to seasonal periods that are
slightly offset in time; however, it also eliminates bursts that do not exceed the current
seasonal peak. This trade-off is considered acceptable, since timewise offset seasonal
periods are commonly observed.

4.1.4. Extracting the Noise Part. The Noise Part extraction consists of two steps: noise
reduction and the calculation of the noise distribution. The idea behind our approach
is to first reduce the noise observed within the arrival rates contained in the trace, and
then reconstruct the reduced noise by calculating the difference between the original
trace and the filtered one. Having filtered the noise, the extraction of the Seasonal
Part, Trend Part, and Burst Part are then performed on the filtered trace. This has a
significant impact on the extraction accuracy of these parts, and thus on the overall ac-
curacy of the extracted model instance, especially when extracting hl-DLIM instances,
as will be shown later in the model accuracy evaluation (Section 5). Depending on the
trace, the overall accuracy of the DLIM extraction can be improved by noise elimina-
tion. In this case, we recommend applying noise extraction, even if the extracted noise
component itself is deleted later on.

Noise Reduction. Noise is reduced via the application of a one-dimensional Gaussian
filter on the read arrival rates. A Gaussian filter has a kernel based on the Gaussian
distribution; it thus has the following form (as defined in Blinchikoff and Zverev [1986]):

G(x) = 1√
2πσ

e− x2

2σ2 .

We choose the kernel width depending on the Seasonal period (duration of a single
seasonal iteration) and the expected number of peaks (local maxima) within a Seasonal
period:

KernelWidth = SeasonalPeriod
ExpectedMax#SeasonalPeaks

.

A Gaussian filter’s kernel width is defined as

KernelWidth = 6 · σ − 1.

As a result, the standard deviation is

σ =
SeasonalPeriod

ExpectedMax#SeasonalPeaks + 1

6
.

Calculating the Noise Distribution. The Noise Part is modeled as a normally dis-
tributed random variable. This variable is added to the DLIM instance’s root Sequence.
The normal distribution’s mean and standard deviation are calculated as the mean
and standard deviation of the differences between the filtered arrival rate trace. This
is illustrated in Algorithm 3.

s-DLIM and p-DLIM both only support the extraction of normally distributed noise.
Other noise distributions are not supported. hl-DLIM extraction, however, supports
the extraction of uniformly distributed noise.

4.2. Extracting an hl-DLIM Instance

The hl-DLIM extraction is similar to s-DLIM extraction. This section only highlights
the differences between those two processes.
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ALGORITHM 3: Calculating the Noise Distribution

Data: LIST: list of read tuples �t =
(

arrivalRate
timeStamp

)
;

Function calculatNoiseDistribution()
FILTERED LIST ← applyGaussianFilter(LIST);
for i ← 0 to |LIST| − 1 do

difference[i] ← LIST [i].arrivalRate - FILTERED LIST [i].arrivalRate;
end
distribution ← normal distribution with mean(difference) and
standardDistribution(difference);

end

4.2.1. Seasonal Part. hl-DLIM is restricted to only support peaks with an equal distance
from one another. The arrival rates of such peaks are linearly interpolated between the
first peak’s arrival rate and the last peak’s arrival rate. When extracting an hl-DLIM
instance from an arrival rate trace, the difference thus lies in the interval containing
peaks and in the search for the maximum and minimum peak. The interval containing
peaks is calculated as the time difference between the first and the last peak; the
first peak’s arrival rate is then set either to the minimum or maximum peak (depending
on whether the first median peak has a greater or a smaller arrival rate than the last
median peak in the trace) and the last peak is set to the corresponding counterpart.

4.2.2. Trend Part. Extracting the Trend Part is done almost identically as in the sim-
ple model extraction process, since hl-DLIM defines its Trend Part as a list of arrival
rates at the beginning and end of each trend segment, identically to the arrival rate
list extracted in s-DLIM. The only difference is the offset before the first trend seg-
ment begins. The trend segment always ranges from the maximum peak within one
seasonal period to the maximum peak within a following seasonal period. The simple
model extraction process allows this maximum peak to be any seasonal peak. hl-DLIM,
however, only allows the first or last peak to be the maximum peak. As a result, the
time offset for the first trend segment is slightly different.

4.2.3. Burst Part. Bursts are detected and calibrated using the same peak-only Sea-
sonal Part as in s-DLIM. While the other model extraction processes modeled each
burst individually, hl-DLIM only supports recurring bursts. Thus, only the first burst
offset and the interburst period are extracted, as well as only a single burst arrival rate.
The first burst offset is selected based on its time stamp, whereas the period between
recurring bursts is calculated as the median interburst period from the independent
bursts. The burst arrival rate is also calculated as the median burst arrival rate.

4.2.4. Noise Part. In hl-DLIM, noise is extracted using our previously described filter-
ing approach, thus having the same noise reduction side effects as in the other model
extraction processes. hl-DLIM, however, only supports a uniformly distributed random
variable as noise. In order to eliminate outliers but keep the intuitiveness of hl-DLIM,
hl-DLIM extraction only approximates the noise distribution of the original trace, elim-
inating major outliers. For this approximation the minimum and maximum values of
the respective uniform distribution are selected as the 10th and 90th percentile of the
difference between the filtered and unfiltered arrival rates.

5. MODEL ACCURACY EVALUATION

In this section, we evaluate the automated model extraction methods in terms of their
achieved accuracy. By showing that 10 different real-world server traces covering
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Modeling and Extracting Load Intensity Profiles 23:15

periods between two weeks and seven months can be captured in the descriptive DLIM
model format with reasonable accuracy with our automated extraction processes, we
demonstrate the expressiveness of our proposed modeling formalism. All traces exhibit
human usage patterns. The extraction methods are applied to these traces in order
to extract DLIM instances and compare them to the corresponding original traces by
computing the Median Absolute Percentage Errors (MdAPEs) [Hyndman and Koehler
2006]. The MdAPE is calculated by computing the median over the absolute values of
the relative deviations of the extracted model for each arrival rate in the original trace.
The Mean Absolute Percentage Error (MAPE) is not chosen as this measure is prone
to deflection by positive outliers that are more likely to occur as negative outliers as
also discussed earlier.

s-DLIM and hl-DLIM extraction are applied to extract model instances for all traces.
For these extraction methods, we separately evaluate the effect of noise extraction,
including noise reduction. The shape of the interpolating functions is always selected
as the DLIM SinTrend, meaning that sin-flanks are always used for the interpolation
between arrival rate peaks and lows. We chose SinTrend because it fits closest to
the original trace in the majority of cases. For the same reason, Exponential Increase
And Decline is always selected for Burst modeling (it is a child of Burst in the DLIM
metamodel). Trends are selected to be multiplicative since this way they have a lower
impact on arrival rate lows and a relatively high impact on arrival rate peaks (contrary
to additive Trends, which have a constant impact on both). We do this, since arrival
rate lows vary less than arrival rate peaks according to our observations.

s-DLIM is also configured with varying Trend lengths. Best results are expected
at Trend length of one Seasonal period, whereas lower accuracy is expected at the
longest evaluated Trend length of three Seasonal periods. For traces with a duration
greater than 1 month, we also apply p-DLIM. p-DLIM is configured to extract weeks
as a periodic Trend list with two Trend segments of the length of three and four.
Additionally, it extracts a biweekly period with a Trend list using two Trend segments
of the length of 7. Finally, it extracts a monthly (4-week) period with a Trend list using
two Trend segments of the length of 14.

We compare the extraction error and runtime on commodity hardware (Core i7 4770,
16 GB RAM) against the STL [Cleveland et al. 1990] and BFAST time-series decompo-
sition [Verbesselt et al. 2010] (which both return split data as opposed to a descriptive
model). To enable a fair comparison, we configure STL and BFAST to extract one sea-
sonal pattern and not more than one trend per day to match with the features of the
DLIM extractors and to not further slow down BFAST. This configuration had no sig-
nificant impact on the accuracy, but decreases processing speed. In contrast to DLIM,
where seasonal patterns are represented by piece-wise interpolating functions, in STL
and BFAST outputs, the seasonal pattern is represented as a less compact discrete
function.

5.1. Internet Traffic Archive and BibSonomy Traces

The first batch of traces was retrieved from The Internet Traffic Archive/2 The Inter-
net Traffic Archive includes the following traces: ClarkNet-HTTP (Internet provider
WWW server), NASA-HTTP (Kennedy Space Center WWW server), Saskatchewan-
HTTP (Sask.) (University WWW server), and WorldCup98 (WC98) (official World Cup
98 WWW servers). Additionally, we used a 6-week-long trace of access times to the
social bookmarking system BibSonomy [Benz et al. 2010], beginning on May 1st 2011.3

2Internet Traffic Archive: http://ita.ee.lbl.gov/.
3The request log dataset is obtainable on request for research purposes: http://www.kde.cs.uni-
kassel.de/bibsonomy/dumps/.
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Table I. Model Extraction Errors for the Internet Traffic Archive and BibSonomy Traces

Trace 1. ClarkNet 2. NASA 3. Sask. 4. WC98 5. BibSonomy
Extraction Parameters MdAPE MdAPE MdAPE MdAPE MdAPE
Extractor, Trend, Noise [%] [%] [%] [%] [%]
p-DLIM, -, extracted too short 32.223 43.293 52.304 37.387
p-DLIM, -, eliminated too short 28.944 35.831 53.316 35.378
p-DLIM, -, ignored too short 23.633 35.663 53.495 36.264
s-DLIM, 1, extracted 21.195 26.446 35.551 19.735 26.988
s-DLIM, 1, eliminated 17.509 23.560 26.492 16.882 21.470
s-DLIM, 1, ignored 12.409 18.812 29.171 12.979 23.831
s-DLIM, 2, ignored 14.734 20.800 30.273 15.691 26.786
s-DLIM, 3, ignored 14.919 27.577 32.085 19.161 28.218
hl-DLIM, 1, extracted 20.105 26.541 37.942 16.093 27.513
hl-DLIM, 1, eliminated 19.361 24.539 33.240 15.660 25.433
hl-DLIM, 1, ignored 72.924 55.575 80.792 43.957 42.268
STL 13.540 20.384 30.134 16.041 20.299
BFAST 12.243 no result no result no result no result
avg. s-DLIM runtime 4.2ms 25.2ms 118.8ms 11.8ms 125ms
avg. STL runtime 3.5ms 15.0ms 38.7ms 13.2ms 15.0ms
avg. BFAST runtime 76,276ms no result no result no result no result

All traces were parsed to arrival rate traces with a quarter-hourly resolution (96 arrival
rate samples per day).

Table I shows the MdAPE for s-DLIM, p-DLIM, and the hl-DLIM extraction for
different configurations. It also displays runtime of the overall most accurate extraction
configuration (s-DLIM, ignoring noise, trend length 1) as an average value over 10 runs.
Accuracy and average runtimes are also displayed for BFAST and STL. For some cases,
BFAST did not terminate after more than one 1.5h.

The ClarkNet and NASA extraction results show that s-DLIM provides the best
accuracy, especially with a Trend length of 1. Noise reduction does not seem to help for
this particular trace during the DLIM extraction. The result does not improve when
extracting the noise, as noise generated by a random variable does not reproduce the
exact measured results and increases the absolute arrival rate difference between trace
and model. We trace the discrepancies between the extracted model instance and the
original trace to three major causes:

—In some cases, bursts are not detected with full accuracy.
—The NASA server was shut down for maintenance between time stamps 2,700 and

2,900. The extraction methods do not have contingencies for this case.
—Deviating Seasonal Patterns are a major cause of inaccuracy in the extracted models.

The extraction methods all assume a single, repeating Seasonal Part. Depending on
the trace, this assumption may be valid to a different extent. In this case, the ex-
tracted Seasonal pattern is able to approximate most days in the trace, but a number
of significant deviations occur. Manual modeling in the DLIM editor can circumvent
this problem, as DLIM itself supports mixes of multiple seasonal patterns. We are
currently working on extending the automated extractors to make use of this fea-
ture. Ideas range from the inclusion of additional metaknowledge, such as calendar
information, to the implementation of seasonal break detection.

In the case of the Saskatchewan-HTTP extraction, noise reduction improves the s-
DLIM results. However, overall the results are not as good as they are for the other
traces. The major explanation for the relatively poor results is once more the Seasonal
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Modeling and Extracting Load Intensity Profiles 23:17

Fig. 7. Arrival rates of the original BibSonomy trace (blue) and the extracted DLIM instance (red) using
s-DLIM with Trend length 1 and noise reduction.

pattern deviation. Since the Saskatchewan-HTTP trace extends over 7 months, the
Seasonal patterns have a lot of room for deviation. The model extractors fail to capture
this. This leads to an additional error in the Trend calibration, as trends are supposed
to be calibrated, so that the greatest Seasonal peak in every Seasonal iteration matches
the trace’s nearest local arrival rate maximum. Since the Seasonal pattern deviation
causes the extracted Seasonal peak’s time of day to not match the trace’s Seasonal
peak’s time of day, the calibration takes place at the wrong point of time. This also
explains why a majority of extracted days have a lower peak than their counterparts
in the original trace.

The major deviation from the trace’s Seasonal patterns also explains why s-DLIM
performs better using noise elimination for the Saskatchewan-HTTP extraction. Noise
reduction helps to mitigate the effect of seasonal pattern changes over time, thus
reducing the effect of the Seasonal pattern deviation.

Similarly to the Saskatchewan trace, s-DLIM extraction of the BibSonomy trace
also improves with noise filtering. We explain this through the observation that the
BibSonomy trace features a significant number of bursts, occurring at a relatively
high frequency, as well as significant noise (as seen in Figure 7). Without filtering,
some of these bursts are included in the seasonal pattern by the s-DLIM extractor,
distorting the extracted seasonal pattern. When applying noise reduction, the influence
of these bursts is diminished. Therefore, the extracted seasonal pattern is more stable,
leading to increased accuracy as major bursts are still extracted during s-DLIM’s burst
extraction. The BibSonomy trace demonstrates that s-DLIM (and also p-DLIM) are
capable of dealing with traces featuring a significant amount of noise.

p-DLIM performs well compared to the other two extraction processes. p-DLIM as-
sumes that all trends repeat. In the case of the NASA trace, this assumption seems to
be quite accurate. Even for the Saskatchewan trace, p-DLIM performs better compared
to s-DLIM.

The hl-DLIM extraction shows an entirely different picture. Considering that hl-
DLIM uses only a small number of predefined parameters, the extracted hl-DLIM
instances are surprisingly close to the detailed DLIM models. Contrary to what was
observed in the DLIM extraction, however, the hl-DLIM extraction strongly relies on
noise reduction. If the noise is ignored and not filtered, hl-DLIM extraction accuracy
drops dramatically. This can easily be attributed to the linear interpolation between
the extracted peaks. Since hl-DLIM interpolates between the highest and lowest peak
(thus only extracting two peaks), the nonfiltered trace offers a high number of noisy
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peaks with minimal impact on the overall arrival rate. The filtered version, however,
only offers a few remaining peaks, which have a much higher impact on the overall
arrival rate. Applying noise reduction forces the hl-DLIM extractor to only consider
the peaks with significant impact rather than accidentally choosing outliers as peaks.

The WorldCup98 extraction results are notable in that s-DLIM and hl-DLIM extrac-
tion perform relatively well, whereas p-DLIM performs worst for all considered traces.
The obvious cause of this is the observation that the WorldCup98 trace does not fea-
ture recurring trends and only features increasing trends. The s-DLIM and hl-DLIM
extraction methods can handle this easily, whereas p-DLIM cannot.

The times series decomposition method STL shows worse accuracy values with the
exception of the BibSonomy trace, for which it achieves a slightly better accuracy. In
all cases, STL terminates a few milliseconds faster than DLIM extraction. BFAST ter-
minates only for ClarkNet within 1.5h and achieves a comparable accuracy compared
to s-DLIM. Due to the order of magnitude by which BFAST runtime differs from STL
and DLIM, using it in an autonomous management context seems difficult.

5.2. Wikipedia and CICS

The second batch of traces was retrieved from the Wikipedia page view statistics.4
They were parsed from the projectcount dumps, which already feature arrival rates
with an hourly resolution. We restrict our analysis to the English, French, German,
and Russian Wikipedia projects, covering four of the six most requested Wikipedia
projects and being distributed over different time zones. All traces are from December
2013, with the exception of the English Wikipedia trace, which is from November 2013.
The English December 2013 trace exhibits a major irregularity during the fourth day,
which we attribute to a measurement or parsing error. While the French, German, and
Russian Wikipedia projects are mostly accessed from a single time zone, the English
Wikipedia is retrieved from all over the world; thus, evaluating the impact of access
behavior over different time zones and helping to assess how well the DLIM extraction
methods deal with local versus global access patterns.

In addition, we extract arrival rates from traces of the IBM CICS transaction process-
ing system. These traces were logged in a banking environment with significantly dif-
ferent usage patterns during weekdays and weekends. These traces feature a quarter-
hourly resolution (96 samples per day).

The Wikipedia extraction results in Table II confirm many of the observations
made with the Internet Traffic Archive traces. Noise extraction is most useful for
hl-DLIM extraction; Trend length of 1 as part of s-DLIM performs best. The overall
accuracy, however, is significantly better than for the Internet Traffic Archive traces
since the Seasonal pattern deviation, while still relevant, exhibits less impact than
before.

The Russian Wikipedia trace differs from the other Wikipedia traces. Noise reduction
also improves s-DLIM, while, as usual, being useful for hl-DLIM extraction. The overall
accuracy is similar to the other Wikipedia trace extractions. For this single trace,
however, the Seasonal patterns are shaped in such a way that the noise reduction
lessens the impact of the Seasonal pattern deviation.

The extraction results for the English Wikipedia trace exhibit by far the best overall
accuracy across all examined traces. The reason for this is the unusually high arrival
rate base level. Since wikipedia.org is accessed globally at all times, the load intensity
variations on top of the base level have little impact on the load variations in general.
As a result, all modeling errors are also reasonably small.

4Wikipedia traces: http://dumps.wikimedia.org/other/ pagecounts-raw/2013/.
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Table II. Wikipedia.org Model Extraction Errors

1. German 2. French 3. Russian 4. English 5. IBM
Trace Wikipedia Wikipedia Wikipedia Wikipedia CICS
Extraction Parameters MdAPE MdAPE MdAPE MdAPE MdAPE
Extractor, Trend, Noise [%] [%] [%] [%] [%]
s-DLIM, 1, extracted 11.215 10.472 9.964 7.764 71.311
s-DLIM, 1, eliminated 10.511 8.566 9.912 7.838 40.822
s-DLIM, 1, ignored 8.538 7.600 11.251 4.855 29.199
s-DLIM, 2, ignored 9.956 8.973 11.683 5.270 34.746
s-DLIM, 3, ignored 11.771 9.813 11.420 7.230 38.785
hl-DLIM, 1, extracted 11.898 8.503 12.392 7.750 80.043
hl-DLIM, 1, eliminated 11.393 8.373 12.496 7.961 59.956
hl-DLIM, 1, ignored 13.126 10.816 13.310 8.868 92.400
STL 13.309 8.671 6.747 2.580 71.997
BFAST 11.223 8.511 5.809 2.302 no result
avg. s-DLIM runtime 3.9ms 3.5ms 5.8ms 3.2ms 11.3ms
avg. STL runtime 7.5ms 7.0ms 7.0ms 7.5ms 11.3ms
avg. BFAST runtime 23,518ms 23,630ms 23,803ms 21,517ms no result

Fig. 8. Arrival rates of the original French Wikipedia trace (blue) and the extracted DLIM instance (red)
using s-DLIM with Trend length 1 and ignoring noise.

In terms of accuracy, our extraction processes perform on the same level compared
to the STL and BFAST decompositions for the Wikipedia traces and the CICS trace. s-
DLIM performs better than STL and BFAST for both the German and French Wikipedia
traces, as seen in Figure 8. Here, s-DLIM’s accuracy profits from its support of multi-
plicative trends. STL and BFAST, however, provide better accuracy for the English and
Russian traces. Comparing runtimes, s-DLIM is significantly faster than BFAST and
slightly faster than STL. Running on the same machine, LIMBO’s s-DLIM implemen-
tation performed on average 8,354 times faster than BFAST’s R implementation and
returned results in all cases in less than 0.2s.

For the CICS trace, STL has a high MdAPE value of 72%, while s-DLIM achieves a
better but still high value of 29%. The CICS trace once more demonstrates the effect of
seasonal deviation. It does not reach the accuracy of the Wikipedia workloads as one
seasonal pattern cannot model the strong differences between workdays and weekends.
To demonstrate that the modeling error is in large part caused by seasonal deviation,
we extract a DLIM instance for the first five days in the CICS trace (Monday to Friday).
This weekday model only features an MdAPE of 13.745%.
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Table III. en.wikipedia.org Periodic Model Extension Errors

Week 1, extraction Month, forecast
Extraction Parameters MdAPE MdAPE
Extractor, Noise [%] [%]
p-DLIM, extracted 6.583 7.655
p-DLIM, eliminated 6.332 7.292
p-DLIM, ignored 8.082 8.546

6. APPLICATION SCENARIOS

This section presents three application domains for our DLIM approach for load profile
modeling and extraction to underline the usefulness and adoption of our proposed
approach. First, we illustrate the extrapolation capability of periodic DLIM models
and propose a combination with statistical time series forecasting methods. The second
domain is elasticity benchmarking and the third, design-time simulation. Two different
application examples for the domain of design-time simulations show the benefits
of DLIM-based workload descriptions for single applications as well as for resource
planning in Infrastructure-as-a-Service (IaaS) scenarios.

6.1. DLIM Model as Baseline for Statistical Forecasting

Using the English Wikipedia trace, we demonstrate that future work on using p-DLIM
in conjunction with forecasting methods is warranted. In cases of regular periodic user
behavior, as is the case for Wikipedia, a fitted periodic DLIM model could serve as a
baseline input for further forecasting efforts, for example, based on statistical time-
series methods like ARIMA [Box et al. 2015]. DLIM model drift can be detected by
repeated evaluation of the accuracy metric.

We extract a periodically repeating weekly trend from the first week of the Wikipedia
trace. As with previous periodic extractions, we set the Trend list for the weekly re-
peating Trend to encompass segments of the length 3 and 4. Biweekly and monthly
repeating Trends are omitted for this demonstration, as the shortened 1-week trace is
not long enough. After extracting, we extend the extracted model by looping it for the
entire monthly duration.

We evaluate the accuracy of the extended model using a pointwise comparison of
the actually measured arrival rates and the arrival rates of the periodically looping
DLIM instance. Table III shows the model extraction accuracy for the first week and
the extended model’s accuracy for the entire month. Extrapolation accuracy is high, as
the noise filtered model reaches a MdAPE of 7.29%.

6.2. Elasticity Benchmarking

Autonomic adaptations in the resource allocation of elastic systems are usually trig-
gered by changes in their workload, especially by changes in the number of arriving
work units over time. It is the goal of elasticity benchmarking to measure how well
elastic systems achieve the matching of resource demand and supply. The resource
units of the individual systems may have different performance. The elasticity bench-
marking concept proposed in Herbst et al. [2015] is based on DLIM load profiles as
part of the workload definition. DLIM load profiles enable one to define a represen-
tative sequence of demand changes. The flexibility of DLIM load profiles is leveraged
to scale the abstract definition to the capabilities of a system-under-test in terms of
performance and scalability. This way, the sequence of demand changes can be kept
identical across systems (with different performance characteristics) and allows both
repeatable measurements and comparison between autoscaling alternatives.
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Fig. 9. Plots of an exemplary benchmark run on a public cloud.

Table IV. Elasticity Metrics for an Exemplary Benchmark Run

accO accU tsO tsU jitter

[#res.] [#res.] [%] [%]
[

#adap.
min

]
1.053 0.180 51.9 8.1 −0.033

In short, the elasticity benchmarking concept and its implementation called
BUNGEE5 comprises the following four steps:

(1) Scalability Analysis: The benchmark analyzes the System Under Test (SUT) with
respect to the performance of its underlying resources and its scaling behavior.

(2) Benchmark Calibration: The results of the analysis are used to adjust the DLIM
load intensity profile in a way that it induces the same resource demand on all
compared platforms (i.e., the same sequence of demand changes).

(3) Measurement: The load generator exposes the SUT to a DLIM defined, time-
varying, system-adjusted load profile. The benchmark monitors resource supply
changes on the SUT.

(4) Elasticity Evaluation: Elasticity metrics are computed and used to compare the
resource demand and resource supply curves with respect to different elasticity
aspects.

The results of an exemplary benchmark run are plotted in Figure 9 together with
derived metrics in Table IV. During the measurement step, resource demand and
supply changes are recorded as plotted in the resource amount chart. Demand changes
are derived from the time-varying load profile (represented by the gray line in the
arrival rate graph) combined with the mapping result of the scalability analysis step.
The response time chart visualizes the impact of the resource supply and demand

5BUNGEE Cloud Elasticity Benchmark: http://descartes.tools/bungee.
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Fig. 10. Integration of user behavior model (left) and DLIM models (right).

matching on the service quality in terms of response time and timeouts. As metrics,
the average amount of under- or overprovisioned resources (accO, accU ) and the average
time in an under- or overprovisioned state (tsO, tsU ) are derived together with a metric
jitter representing the average amount of missed (negative) or superfluous (positive)
adaptations per time unit. A ranking of elastic systems or controllers can then be built
for a fixed load profile scenario based on these metrics with a given weight definition
and a baseline for normalization.

6.3. Design-Time Simulations

6.3.1. Integration of User Behavior Models. Design-time simulations like Palladio [Becker
et al. 2009] mimic users of software systems according to user-specific behavioral mod-
els that do not change over time (see Section 2). In contrast, DLIM describes user arrival
processes, allowing one to model dynamic load intensities but no user-specific behavior.
To combine these two approaches, the CloudScale EU project [Brataas et al. 2013] inte-
grated DLIM into the SimuLizar design-time simulator. In domains where workloads
are time dependent, such an integration is crucial for the accuracy of design-time sim-
ulations. An example for such a domain is cloud computing because cloud applications
dynamically react on workload changes over time.

Classical user behavior models characterize user interactions, for example, the prob-
ability of triggering a system task inducing a given amount of work. In CloudScale’s
integration, such models are linked to DLIM models via so-called Usage Evolutions.
Usage Evolutions come in two variants: Load Evolutions and Work Evolutions.

Load Evolutions specify how load parameters evolve over time. In contrast, clas-
sical design-time simulations describe static and probabilistic load distributions. For
instance, the Arrival Rate of typical users in the model depicted in Figure 10 is one user
per second and exponentially distributed. Load Evolutions override such static arrival
rate specifications depending on the type of workload. For open workloads, Load Evo-
lutions specify the change of arrival rates over time (upper Usage Evolution Model in
Figure 10). For closed workloads, Load Evolutions specify the change of the concurrent
number of users over time.

Work Evolutions specify how work parameters evolve over time (lower Usage Evolu-
tion Model in Figure 10). In contrast, classical design-time simulations describe static
work parameters, for example, a typical user in Figure 10 triggers TaskC after TaskA
with a probability of 80% and with a work parameter size of 10 work units. Work Evolu-
tions override such work specifications. For example, the lower Usage Evolution Model
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in Figure 10 overrides the specification of the size parameter by the specification of the
linked DLIM Model, thus making the parameter time dependent.

At simulation time, SimuLizar updates workload parameters according to Load and
Work Evolutions. For these updates, SimuLizar samples the linked DLIM models once
per simulated time unit.

Load and Work Evolutions both extend the application context of DLIM models
with user-specific behavioral models. Regarding Load Evolutions, the modeling of open
workloads is close to the original DLIM context because DLIM models are used to spec-
ify arrival rates. In contrast, the modeling of closed workloads differs from the original
DLIM context because DLIM models are used to specify the number of concurrent
users. SimuLizar accordingly has to round sampled values to integer representations.
Regarding Work Evolutions, the modeling of work parameters differs even more from
the original DLIM context because arrival rates describe load parameters only.

Generalized, these observations indicate that DLIM fills a general need for model-
ing functions that vary over time. Whether such functions model arrival rates, user
numbers, work parameters, or other attributes depends on the application domain.
For example, in the domain of data center resource planning, modeling variations of
resource demands becomes important and can indeed be modeled with DLIM (Section
6.3.3).

6.3.2. Simulating Elasticity and Cost-Efficiency Metrics. In this section, we describe how
design-time simulations can assess properties that depend on dynamic workloads. In
the cloud computing context, such properties are elasticity and cost efficiency [Lehrig
et al. 2015]. The basis for design-time simulations of these properties is the DLIM
model integration with user behavior models as described in the previous section:
dynamic workloads are described by Usage Evolutions and autonomous adaptations
can be modeled with SimuLizar.

SimuLizar currently supports the following elasticity and cost-efficiency metrics
(cf. Becker et al. [2015]). The number of service level objective violations metric counts
the number of violated performance requirements during adaptation phases. The mean
time to quality repair metric measures the time cloud applications need to move from a
state that violates performance requirements to a state that satisfies all performance
requirements. The cost over time metric computes the operation costs accrued for using
cloud computing resources per billing interval.

Elasticity and cost-efficiency metrics enable software architects to conduct accord-
ing trade-off analyses with SimuLizar (service level objective violations vs. costs). The
CloudScale project illustrates such analyses with DLIM integration within their Cloud-
Store6 case study.

CloudStore is an example cloud migration scenario in which software architects
migrate an existing online book shop (based on a legacy implementation of the TPC-
W benchmark [Council 2002]) to a cloud computing environment. Dynamic workloads
are expected for CloudStore, for example, because books sell better around Christmas
(increased load) and the book database is expected to grow (increased work).

Based on according Usage Evolution models for work and load evolutions, SimuLizar
can simulate elasticity and cost-efficiency metrics for CloudStore. The simulation re-
sults of the existing online book shop show that the number of service level objective
violations steadily increase over time and that the mean time to quality repair cannot
be determined because at no point in time can a state that satisfies all performance
requirements be reestablished. Cost over time remain constant as the existing online
book shop is nonelastic and, thus, no additional resources are acquired.

6CloudStore https://github.com/CloudScale-Project/CloudStore.
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Because these results do not satisfy CloudStore’s software architects, they run Cloud-
Scale’s design-time performance antipattern detection [Brataas et al. 2013]. This de-
tection points to issues at CloudStore’s business layer: wrongly configured database
connection pools cause congestion effects, that is, a steadily increasing number of wait-
ing jobs that cause the increasing number of service level objective violations.

The identified antipattern requires CloudStore’s software architects to re engineer
CloudStore’s architecture. For such a re engineering, the architects apply CloudScale’s
reusable analysis templates [Lehrig 2014] that fit to the detected antipattern. In the
CloudStore case study, software architects apply a template for horizontally scalable
databases, thereby reconfiguring the existing database connection pool to dynamically
react on workload changes.

For the re engineered CloudStore version, SimuLizar’s metrics show that the number
of service level objective violations is significantly lowered: only transient phases during
which reconfigurations execute cause violations. Moreover, mean time to quality repair
indicates that such phases last less than 10s. Because the re engineered CloudStore
dynamically changes the number of consumed cloud computing resources, different
cost over time accrue over time. These costs depend on the concrete cloud computing
environment analyzed (CloudScale provides analysis templates for SAP HANA Cloud,
Amazon EC2, and OpenStack). Simulation results for costs allow software architects
to compare such environments on an objective and quantitative basis.

6.3.3. Data Center Resource Planning. The main use case presented so far is the extrac-
tion and modeling of variable user arrival rates. This section shows the added value of
DLIM across domains and presents the transfer to the use case of modeling the behav-
ior of Virtual Machines (VMs) in data centers. Data center operators cannot monitor
VM internals but require information on the resource demand for placement and op-
timization decisions. For example, data center simulators [Calheiros et al. 2011] and
scheduling algorithms [Beloglazov et al. 2012] use resource demand descriptions to
reason on and optimize the QoS and energy efficiency of deployed VMs. This use case
shows that replacing the arrival values with resource load values allows using DLIM
for decision support in data center planning and management.

This research and validation is part of the CACTOS project developing a methodology
and tools for large-scale data center planning and runtime management [Östberg et al.
2014]. The decisions are supported at runtime or as part of what-if analyses using
predictions, both with the same DLIM instances. Groenda and Stier [2015] extended the
mechanisms shown in Section 6.3.1 to support varying resource demand specifications
for VMs.

VMs show dynamic resource demand variations when monitored from the outside
and are black boxes for data center operators. Operators have to reason on metrics that
can be observed without internal knowledge of running applications. These metrics
include CPU utilization, disk, and network accesses of VMs.

Resource demands specify how much demand of a specific type of resource a service
requires in order to be executed. Different approaches for resource demand estima-
tion [Spinner et al. 2014] can be used to derive resource demand estimations from
traces. The mapping in Figure 11 uses these techniques to infer the resource demands.
Execution-platform independent demand specifications allow reasoning on relocation
decisions. Palladio [Becker et al. 2009] and other predictive performance models there-
fore use these kinds of resource demands. The approach is explained in the following
paragraphs.

Figure 11 illustrates how DLIM can be leveraged to model the load caused by black-
box VMs. Every black-box VM has a set of resource demands describing the load it
issues over time. In the example, VM A’s resource demand is described in terms of the
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Fig. 11. Exemplary mapping of trace-based workload models to resource demand DLIM specifications.

CPU utilization and HDD accesses observed on Server A. DLIM’s piecewise-defined
functions that map points in time to arrival rates hereby model the resource demand
intensity over time. The resource demand intensity describes the rate at which a VM
issues resource demands. These models reference the platform on which the resource
demand was monitored. This enables adjustments of the estimated demands based on
the deployment environment.

Our extraction of varying resource demand for use in simulation is carried out as
part of an offline batch layer. An analysis component extracts resource load intensity
models from historic traces by means of linear interpolation. Our algorithm takes VM
placement and migration between nodes during the period of the trace into account.

Resource demand intensity modeling for data center management and planning ben-
efits from the flexibility of DLIM. A simple function application to an existing DLIM
resource load intensity curve allows the evaluation of the model as part of an alternative
data center deployment scenario. In summary, DLIM allows for a compact representa-
tion of varying resource demand for use in data center planning and management. With
minimal extensions DLIM can be used to capture platform-independent descriptions of
resource demand intensities that can easily be transformed for platform-specific load
analyses and simulations.

7. CONCLUSIONS

This article presents the DLIM for capturing load profiles by a structured combina-
tion of piecewise mathematical functions. We introduce three methods enabling the
automated extraction of DLIM instances from existing arrival rate traces:

—Simple DLIM Extraction (s-DLIM): Extracts DLIM instances from existing arrival
rate traces. s-DLIM exhibits an accuracy with an average median error of 12.4% when
optimizing the extraction configuration for each trace.

—Periodic DLIM Extraction (p-DLIM): Extracts
DLIM instances from existing arrival rate traces. In contrast to s-DLIM, the trends
within p-DLIM instances are intended to be repeated. This enables p-DLIM to be
used for extrapolation, that is, in load intensity forecasting.
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—hl-DLIM Extraction: Extracts hl-DLIM instances from existing arrival rate traces.
Due to hl-DLIM’s restrictions, this method is less accurate than s-DLIM. The limited
accuracy, however, can be improved by applying noise reduction during the extraction
process.

The results of our evaluation showed that the proposed model extraction methods
are capable of extracting DLIM instances with an average modeling error of only
15.2% (MdAPE) over 10 different real-world traces that cover between 2 weeks and
7 months. The model extraction performs best for the Wikipedia traces. Extracted
Seasonal patterns match the trace’s days well and the overlying Trends are precisely
calibrated. Concerning the Internet Traffic Archive traces, we identified the seasonal
pattern deviations for traces extending over several months as a major challenge for
future work. Changes of daily usage patterns over the course of these particularly long
traces lead to a decrease in accuracy. Nevertheless, the median error remains below
27%. Furthermore, the BibSonomy trace demonstrates that the extraction mechanisms
are robust and capable of dealing with noisy arrival rate patterns. The results in general
show that DLIM itself is capable of accurately capturing real-world load intensity
profiles, independent of the explicit extraction processes we introduce. In addition to
the evaluation, three separate application scenarios demonstrate the applicability of
DLIM in different contexts.

7.1. Future Work

Beyond these already existing applications of DLIM, we envision the use of automat-
ically extracted load intensity profiles as part of autonomic and self-aware system
management by employing them in the following contexts:

—Load Forecasting: Automatically extracted load intensity profiles can be used to
forecast the changes in arrival rates at runtime. This, in turn, enables pro-active
resource management and system adaptation with low computational overhead.

—Anomaly Detection: A load profile model can serve as a baseline for the online detec-
tion of anomalous load behavior, such as unplanned bursts.

—Load Classification: The compact information about load behavior contained within
the model can be used to classify profile categories, enabling dynamic distinction
between user or application types based on profile characteristics.

As part of future work on the LIMBO approach and the model instance extraction
methods themselves, we plan the implementation of more advanced model refinement
and calibration features. Our primary target will be the mitigation of the effect of
Seasonal pattern deviation. Another avenue of future work will be the adaptation of
the model instance extraction methods for workload forecasting. The accuracy of p-
DLIM compared to s-DLIM in the NASA and Saskatchewan traces already shows that
further work on the use of p-DLIM for load intensity forecasting is warranted. We are
also working on extending LIMBO to provide compatibility with additional existing
benchmarking frameworks.
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