
Measuring and Benchmarking
Power Consumption and Energy Efficiency

Jóakim von Kistowski
University of Würzburg

Germany
joakim.kistowski@uni-wuerzburg.de

Klaus-Dieter Lange
Hewlett Packard Enterprise

USA
klaus.lange@hpe.com

Jeremy A. Arnold
IBM Corporation

USA
arnoldje@us.ibm.com

Sanjay Sharma
Intel Corporation

USA
sanjay.sharma@intel.com

Johann Pais
Advanced Micro Devices

USA
johann.pais@amd.com

Hansfried Block
SPECpower Committee

Germany
hansfried.block@web.de

ABSTRACT

Energy efficiency is an important quality of computing systems.

Researchers try to analyze, model, and predict the energy efficiency

and power consumption of systems. Such research requires en-

ergy efficiency and power measurements, as well as measurement

methodologies. Many such methodologies exist. However, they do

not account for multiple load levels and workload combinations. In

this paper, we introduce the SPEC power methodology and the tools

implementing this methodology. We discuss the PTDaemon power

measurement tool and the Chauffeur power benchmarking frame-

work. We present the SPEC Server Efficiency Rating Tool (SERT),

the workloads it contains and introduce the industry-standard com-

pute efficiency benchmark SPECpower_ssj2008. Finally, we show

some examples of how the SPEC power tools have been used in

research so far.

CCS CONCEPTS

• Hardware → Energy metering; Platform power issues; En-

terprise level and data centers power issues; • Software and

its engineering → Software performance;

KEYWORDS

Power, Energy Efficiency, Performance, Benchmarking, Measure-

ment, Load Level, SPEC

ACM Reference Format:

Jóakim vonKistowski, Klaus-Dieter Lange, JeremyA. Arnold, Sanjay Sharma,

Johann Pais, and Hansfried Block. 2018. Measuring and Benchmarking

Power Consumption and Energy Efficiency. In ICPE ’18: ACM/SPEC Inter-

national Conference on Performance Engineering Companion , April 9–13,

2018, Berlin, Germany. ACM, New York, NY, USA, 9 pages. https://doi.org/

10.1145/3185768.3185775

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICPE ’18, April 9–13, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5629-9/18/04. . . $15.00
https://doi.org/10.1145/3185768.3185775

1 INTRODUCTION

Energy efficiency of servers has become a significant issue in recent

times. In 2010, the U.S. Environmental Protection Agency (U.S. EPA)

estimated that 3% of the entire energy consumption in the U.S. is

caused by data center power draw [7]. According to a New York

Times study from 2012, data centers worldwide consume power

equivalent to the approximate output of 30 nuclear power plants [2].

Being able to accurately measure and benchmark the power con-

sumption of servers is an important first step towards improving

it. Measurement and testing methodologies can lead to selection

criteria for more efficient servers, but can also be used in research

and development. Researchers and system developers can use such

measurement methodologies to test new power saving and manage-

mentmechanisms. Software developers can use such amethodology

to test and improve their workloads [19]. Most servers in modern

day data centers are provisioned with additional capacity in order

to be able to cope with unexpected bursts in load. This leads to

an average load somewhere between 10% and 50% [3]. Any mea-

surement methodology for energy efficiency must account for this

by enabling measurement of power consumption and efficiency at

multiple load-levels.

This paper introduces the SPEC Power methodology and the

tools implementing this methodology. The methodology enables

its users to measure the energy-efficiency of workloads at multiple

load levels. It covers device setup, power and performance measure-

ment, and efficiency rating. Power measurement is implemented in

the SPEC PTDaemon, which communicates with power analyzers

and temperature sensors. Workload dispatching, result collection,

and test execution are handled by the Chauffeur framework. We

describe how to use these tools to execute arbitrary workloads as

part of the ChauffeurWDK framework for testing and research pur-

poses. We also demonstrate the application of the methodology and

framework by describing their use within the SPECpower_ssj2008

benchmark and SPEC Server Efficiency Rating Tool (SERT).

The remainder of this paper is structured as follows: Section 2

explains the challenges of power measurement and shows how

our methodology and its PTDaemon implementation address these

challenges. Next, Section 3 details the overall power and efficiency

methodology and its implementation in the Chauffeur framework.

Section 4 then describes the tools and benchmarks implementing

the methodology. Finally, Section 5 concludes this paper.

2 MEASURING POWER

When the SPECpower Committee started working on an efficiency

benchmark back in 2006 it could build on almost 20 years of bench-

mark development experience at SPEC. Creating numerous bench-

marks for various application fields SPEC had defined basic char-

acteristics for what constitutes a “good” benchmark. However, all

SPEC benchmarks up to then had been focused on performance

only. There was no precedence of characteristics for including

power measurements into a benchmark to evaluate efficiency of

a computer server. So, a completely new methodology including

basic definitions for power measurements had to be developed for

the new efficiency benchmark later known as SPECpower_ssj2008.

This methodology became the foundation for including power mea-

surements in several other benchmarks and tools.

2.1 Benchmark Power Measurement

Characteristics

Efficiency benchmarks should adhere to the same principles as mere

performance benchmarks, described in [16]. For efficiency bench-

marks these principles must be extended to power measurements.

The following benchmark characteristics are relevant for power

measurements.

Reproducibility

To guarantee reproducibility of benchmark results consistency of

measured power values is required, i.e. when the same benchmark

is run multiple times under the same conditions the reported power

values must be virtually the same with only minimal deviations

allowed. Also, the major measurement parameters must be collected

and reported, e.g. line voltage standard, current range settings,

environmental temperature etc.

Fairness

Rules describing the power measurement setup and the scope of

system components to be measured must be defined. Generally, all

major power measurement conditions which are not under control

of the benchmark program must be specified and required to be

followed by benchmark users to ensure that measured power values

are truly comparable. Measurement devices must provide certain

properties which guarantee comparable power values when using

different models. A qualification process must be implemented to

assess these properties.

Verifiability

For verification of power value validity, the uncertainty of the

measurement results must be calculated and reported. Preferably

this is done automatically by software. Additional values besides

power (Volts, Amps, Power Factor) should be measured and re-

ported for potentially crosschecking the consistency of these values

against reported power values.

Usability

Power analyzers are rather complex measurement devices with

multiple configuration and setup options. To allow handling of

power measurements even by unexperienced users supporting tools

are needed for easy setup and hiding the measurement complexity.

Such tools should also collect and aggregate power data automati-

cally for use in benchmarks, especially for metric calculation.

Based on the above specification of power measurement char-

acteristics we’ll now describe the specific requirements for power

analyzers and their controlling software for use in efficiency bench-

marks. Finally, the implementation of these requirements in the

Power and Temperature Daemon (PTDaemon) is presented.

2.2 Benchmark Power Requirements

For powermeasurements to be used in efficiency benchmarks highly

accurate power analyzers must be utilized ensuring consistency

of results. The Power and Performance Methodology [12] lists the

following requirements for power analyzers:

• True RMS (Root Mean Square) power measurement ensuring

that highly dynamic power changes in computer servers are

recorded correctly

• Logging of measured values to an external device every

second via communication interface to avoid forged results

• Uncertainty of less than 1% to ensure comparability of power

values

• Regular calibration to a national standard every year is re-

quired for comparability of results

• Control of device configuration and recording of values from

a program interface for ease of use and verification of correct

settings

• Capability to handle amperage spikes (Crest factor) to enable

correct readings under poor power conditions

In addition power analyzers must record power values conti-

nously, not interrupted during data upload.

The controlling software must check the communication with

the power analyzer regularly and detect invalid measurement states

and irregular results. Because uncertainty calculations are complex

and vary significantly between analyzers theymust be implemented

programmatically.

Also environmental temperature must be recorded because it has

a major impact on server power consumption. This demands sen-

sors with a communication interface for reporting of temparature

values.

2.3 PTDaemon

SPEC’s PTDaemon Design document [11] describes how bench-

marks can leverage PTDaemon to offload power analyzer or temper-

ature sensor control from a SUT (System under Test) to a Controller

system. PTDaemon presents a common interface based on TCP-IP

protocol that readily integrates into benchmark harnesses, while

hiding different hardware interface protocols and behaviors from

the benchmark software.

Figure 1 depicts the benchmark harness connecting to PTDae-

mon via TCP ports using a proprietary protocol to control devices

and retrieve measurement data. Multiple IP/port combinations can

be leveraged to control multiple devices.

PTDaemon can connect to multiple analyzer and sensor types

via multiple protocols and interfaces specific to each device type,

examples shown in Figure 1. The device type is specified by a

parameter passed locally on the command line on initial invocation

of the daemon.

The communication protocol between the SUT and PTDaemon

is independent from the specific power measurement device type.

This allows the benchmark to be developed independently of the

measurement devices to be supported. Furthermore, SPEC provides

Figure 1: PTDaemon Power Measurement Infrastructure

a PTDaemon client API Java module which can be integrated into

benchmarks for simplified communication between PTDaemon and

the benchmark code. A generic setup for efficiency benchmarks

including the components described here is shown in Figure 2.

PTDaemon is implemented using a main process that controls

initialization and the network command interface and a separate

thread that manages the power analyzer or temperature sensor.

Some analyzers that do not operate with a standard command

/ response structure also require an additional thread to receive

asynchronous data from the device.

SPEC’s Power Measurement Setup Guide [13] provides an over-

view of the vastly different capabilities of accepted analyzers. E.g.,

the Yokogawa WT210 limited to RS232 & GPIB, requires a specific

firmware version and only its direct input terminals are supported

by PTDaemon, whereas the WT500 and WT1800 expand connectiv-

ity to Ethernet and USB. In addition, they can be used as 3-channel

and 3-phase analyzers by PTDaemon, providing the measurement

data of the individual channels and the sum channel. In order to

facilitate measurement of 3-phase power sources, PTDaemon does

some work behind the scenes to make a 3-phase load appear identi-

cal to a single-phase load from the user point of view.

To support different power analyzers, each supported device

needs its own module in PTDaemon. PTDaemon is periodically

updated to support new power analyzers, temperature sensors, and

additional device features. SPEC members and licensees can use the

Power Analyzer Acceptance Process [10] to add software support

for new devices and submit tests to SPEC for review and possible

inclusion in later PTDaemon releases.

SPEC’s PTDaemon Accepted Measurement Devices web page1

lists all accepted power analyzers & temperature sensors.

3 POWER AND ENERGY EFFICIENCY

METHODOLOGY

The SPEC Power and Performance Benchmark Methodology was

first introduced in [12] and has since been improved with each new

SPEC power tool using it. It is designed for tools and benchmarks

that measure the energy efficiency of servers at multiple load levels,

enhancing their relevance [16], considering that modern servers

spend most of their time in a CPU utilization range between 10%

and 50% [3]. This sets benchmarks implementing the methodol-

ogy apart from conventional performance benchmarks, such as

1https://www.spec.org/power/docs/SPECpower-Device_List.html

SPEC CPU [4], and their respective methodologies which target

maximum load and performance. To achieve workload execution

at different load levels, the methodology includes a calibration step.

This calibration determines the maximum transaction rate for any

target workload on the SUT. The maximum transaction rate is mea-

sured by running as many transactions as possible. This calibrated

rate is then set as the 100% load level for all consecutive runs. For

each target load level (e.g., 100%, 75%, 50%, 25%), we calculate the

target transaction rate and derive the corresponding mean time

from the start of one transaction to the start of the next transac-

tion. During measurement, these delays are randomized using an

exponential distribution that statistically converges to the desired

transaction rate. As a result, lower target loads consist of short

bursts of activity separated by periods of inactivity.

A key recommendation in the methodology that should be ex-

plicitly noted is that intermediate load levels are defined as a per-

centage of the maximum application throughput, and not a target

CPU utilization. While application throughput and CPU utilization

are certainly correlated, the exact calculation of CPU utilization

may vary on different processors and operating systems, and the

definition of CPU utilization can be complicated in modern proces-

sors with multiple threads per core and cores per chip, superscalar

designs, and out of order and speculative execution. Defining load

levels as a percentage of maximum application throughput pro-

vides more accurate results that can be compared across a variety

of different platforms.

3.1 Device Setup

The methodology requires two physical systems at minimum. The

measurements are controlled by a controller system. This system

runs the harness, the reporter, and interfaces with the external

measurement devices. The SUT, on the other hand, executes the

workloads under consideration. Controller and host communicate

using a network interface for synchronization, load scheduling, and

result collection. The systems and the software on the systems is

illustrated in Fig. 2.

Storage
Workload

Workload
SPEC PTDaemon

SPEC PTDaemon

Controller System Under Test

Temperature Sensor

Power Analyzer

Worklet A

Worklet B

Worklet C

PSU

PSU

NetworkDirector

CPU CPU

Memory

Reporter

GUI

Figure 2: Device and software setup

The director component on the controller communicates with

the host running on the SUT. The host spawns separate clients for

each logical CPU (logical processor, also called hyperthreading or

SMT unit). These clients are bound to their logical and physical CPU

using an affinity provider. The transactional workload is executed

sequentially on the clients. Parallelism can be achieved by running

multiple clients concurrently. Clients can also choose to parallelize

using regular multi-threading.

Our methodology requires at least one power analyzer and one

temperature sensor. The power analyzer measures the power con-

sumption of the entire SUT, while the temperature sensor verifies

the validity of measurements by assuring that all experiments are

conducted under similar environmental conditions. This reduces

power measurement inaccuracies caused by varying leakage power,

which can be a result of varying environmental temperatures.

3.2 Workloads and Worklets

We refer to the work executed on the SUT as worklet. Multiple

worklets can be grouped in aWorkload. Single application tests use

a single worklet in a single workload with a one-to-one mapping.

Measurement suites, such as the SPEC SERT, can contain multiple

worklets, grouped into workloads.

A worklet is a transactional (mini-)workload. This means that it

consists of relatively small-scale work-units (called transactions),

for which a beginning and end can be measured. The transaction

rate (throughput) achieved by the worklet serves as the primary

performance metric.

3.3 Phases and Intervals

Worklet execution is split into three phases: Warmup, calibration,

and measurement. The warmup phase executes the workload with-

out recording any measurements in order to negate the influence of

potential transient effects. Calibration executes the worklet in order

to determine the maximum load level. Finally, the measurement

phase performs the actual measurement. Each phase contains one

or multiple intervals, which are the points in time at which the

phase-specific work is excuted.

Each interval contains a pre-measurement and a post-measure-

ment period. In these periods the worklets are already being exe-

cuted at the target load level, yet no measurements are recorded.

Both periods serve the purpose of achieving a stable state for the

power and performance measurements. The duration of these peri-

ods is worklet-dependent, but we recommend a default duration

of 15 seconds. The measurement period is executed between these

two periods. Per default, the measurement is executed for a dura-

tion of 120 seconds. The 15 and 120 second durations are default

values and can be adjusted depending on workload. E.g., the CPU

worklets of the SERT 2.0 show little performance variation, allow-

ing a measurement duration for as low as 30 seconds. In this time all

transactions are logged and power measurements and temperature

measurements are collected by the controller system at one second

intervals. An interval’s power consumption is the average of the

per-second values.

To reduce intervals at different load levels or using different

workloads from influencing one another, the system is left idling

for 10 seconds in between each interval. Intervals within a phase

are organized in sequences, which define the order in which the

phase’s intervals are executed. The most common sequence used

in the measurement phase is the graduated measurement sequence.

It executes the intervals at gradually diminishing target transac-

tion rates. Transaction rates are determined using the result of the

calibration phase and the target load level percentage. The mea-

surement intervals and sequences for a worklet with the default

PR
15

Cal. 1
120

PO
15

S
10

meas.

interval

S
10

W
30

seq.

Cal. 2
120

PO
15

S
10

meas.

interval

PR
15

PR
15

100%
120

PO
15

S
10

meas.

interval

PR
15

75%
120

PO
15

S
10

meas.

interval

PR
15

50%
120

PO
15

S
10

meas.

interval

no delay sequence graduated measurement sequence

worklet

PR
15

25%
120

PO
15

meas.

interval

Figure 3: Example of measurement phases and intervals

interval measurement duration of 120 seconds are illustrated in

Figure 3.

We collect throughput and power consumption during each

interval and calculate their respective averages at interval end.

Using these averages, we can compute the per-interval energy

efficiency by dividing throughput by power (Eq. 1)

interval_e f f iciency =
throuдhput

power

[
s−1
W
=

1

J

]
(1)

4 SPEC TOOLS AND BENCHMARKS

IMPLEMENTING THE METHODOLOGY

This section is intended to round out the tutorial by presenting the

Chauffeur Framework, ChauffeurWDK and already existing work-

loads that are easily executed with the SPEC power methodology

as part of the SPEC SERT and SPEC power benchmarks. We present

the workloads, their intricacies, and their applications in power

research so far.

4.1 Chauffeur

One of the key features of Chauffeur compared to other bench-

mark frameworks is support for measuring power consumption

under a variety of loads. The SPEC PTDaemon interfaces with

power analyzers and temperature sensors, and Chauffeur makes

the necessary calls to PTDaemon in order to collect the data for

the appropriate time intervals. The resulting data is stored together

with the runtime performance information so that the data does

not have to be correlated after the test run is completed. The abil-

ity to run at multiple utilizations is also an inherent property of

Chauffeur. This support is based on the same principles used in

SPECpower_ssj2008 to vary the load by first determining the max-

imum transaction throughput during a calibration process, and

then scheduling transactions with appropriate delays to drive the

system at lower levels of utilization. This support is implemented

generically in Chauffeur and can be applied to any workload that

is composed of a series of short-running transactions.

Scalable

The Chauffeur framework is inherently multi-process and multi-

threaded, providing scalability across a wide range of servers. Mult-

iple-node runs are also supported, enabling Chauffeur-based work-

loads to run across multiple blade servers.

Chauffeur’s Director (the component that instructs the Host JVM

to start executing the workload) normally runs on a system other

than the SUT, and is usually collocated with the SPEC PTDaemon.

It can also be collocated with an external GUI that eases Chauf-

feur configuration. It communicates with a host process that runs

on each system that is being measured. The Chauffeur Host will

automatically launch one or more Client JVMs as needed, using

platform-specific affinity commands.

Chauffeur can adjust heap settings for each Client JVM based on

the amount of memory in the system and the number of Clients be-

ing used. The algorithms for calculating heap sizes can be adjusted

for individual Worklets; for example, the SERT, which uses Chauf-

feur, uses nearly all available memory when running the memory

Worklets, but normally uses only 256 MB per logical processor for

CPU Worklets.

Ease of Use

Benchmark configurations can be complex, particularly when

power measurements are involved. Chauffeur includes a number

of features intended to simplify testing as much as possible.

A particular challenge for industry standard benchmarks and

tools like SERT is reporting a complete and accurate description of

the system configuration. To assist users in this process, Chauffeur

supports automatic collection of system configuration data. This

data is included in the results file, and also made available to the

SERT GUI to allow users to review and edit the information.

Chauffeur also supports automatic validation of results, both

at runtime and for completed results. These validation checks can

confirm that the configuration is valid, that transactions did not

fail, that power analyzer data met the requirements specified by the

run rules, and various other requirements. The current validation

checks in Chauffeur are defined for the SERT, but the framework

is generic to allow checks to be added, changed, or removed for

other workloads. This validation gives users confidence that the

workload is configured and running properly and that the results

are accurate.

Portable

Chauffeur is implemented primarily in Java to simplify porta-

bility across different systems. The SERT currently supports 64-bit

Windows and Linux on x86 processors, and AIX on the Power archi-

tecture. Limited testing has also been performed on other platforms

with minimal difficulty.

Platform-specific code is included in two areas of Chauffeur: Sys-

tem Configuration Discovery and Affinity. In both cases Chauffeur

will continue to run on platforms without explicit support. Future

versions of Chauffeur can be extended easily by adding support for

these features on other platforms.

Although the framework is written in Java, Worklets can make

use of other programming languages, as the StorageWorklets in the

SERT do. Communication between the Chauffeur Host and Clients

is intentionally language-neutral, enabling a possible future native

implementation of the Chauffeur Client.

Flexible

Chauffeur implements the core functionality required for the

SERT. It also offers flexibility for changing the runtime behavior,

either for research purposes or for future Chauffeur-based bench-

marks. Many aspects of Chauffeur behavior can be changed via

configuration files, without modifications to Chauffeur itself. For

example, a virtualization benchmark may require the ability to run

different virtual servers at different utilization levels in order to

mimic dynamic heterogeneous usage patterns. Chauffeur does not

currently support this usage model, but a custom implementation

of a “Sequence” could be implemented and plugged in through the

configuration file.

It is often desirable to collect a variety of different types of data

during a benchmark run, particularly for research and develop-

ment purposes. Chauffeur provides a Listener interface that allows

custom data collection to be performed without modifications to

Chauffeur. These listeners are notified at various stages of the run,

such as at the beginning and at the end of each measurement inter-

val. Listeners can launch platform-specific tools or collect data that

is not directly supported by Chauffeur. Data obtained by listeners

can be included in the main Chauffeur results file so it does not

need to be correlated after the run completes.

The Chauffeur Reporter is also designed for flexibility. It reads the

XML-based results file from a Chauffeur run and produces HTML or

plain-text reports. The contents of these reports are defined using

an XSL transform, which allows changes to be made to the reports

without code changes to Chauffeur. Advanced users can create their

own reports, or generate output in comma-separated values (CSV)

format for easy import into spreadsheets or statistical packages.

4.2 Using the Chauffeur WDK to measure

energy efficiency of arbitrary workloads

Using a framework such as the Chauffeur Worklet Development Kit

(WDK) simplifies development of an energy efficiency benchmark

by implementing behavior that is common to all benchmarks so

that the developer can focus on the specific business logic being

tested. In particular, the Chauffeur WDK can automatically run a

transactional workload at a variety of different loads, by inserting

appropriate delays between transactions. This results in a controlled

and repeatable load which is also highly configurable.

Developing a new Chauffeur worklet involves some boilerplate

code, but the bulk of development is focused on defining two com-

ponents: one or more Transactions and a User [1]. The Trans-

action implements the business logic that the worklet is testing.

The Transaction interface has two key methods: generateInput
and process. The generateInputmethod creates (usually random-

ized) input data for the transaction. The process method receives

this input and implements the logic of the transaction to produce

some result. For some simple transactions, this code may be imple-

mented directly in the Transaction class. When integrating existing

workloads into Chauffeur, it is common for the Transaction imple-

mentation to be a thin layer that calls into the existing code. In

some cases, the Chauffeur worklet implementation could just be

a driver for an external application, such as an HTTP client for a

web application which could be running on a remote system.

The User implementation provides access to state information.

Some worklets may not require any state information and can use

a basic User implementation. Other worklets may implement the

User to provide access to in-memory data structures, a database, or

other data that can be held from one transaction to the next.

Chauffeur also supports implementation of a co-mingled worklet

where the individual componentworklets run simultaneously rather

than consecutively. This introduces more realistic task switching,

which is especially useful for IO load simulation. E.g., a co-mingled

worklet can be implemented by creating a new worklet that con-

sists of transactions taken from other worklets, e.g., a processor-

intensive transaction and a disk access transaction. As in any other

worklet, these transactions could be specified to execute in what-

ever ratios are desired, e.g., 70% processor intensive, 20% disk reads,

10% disk writes.

4.3 The SPEC SERT Suite and its Workloads

The use of multiple power analyzers and temperature sensors is

supported by the SERT in order to measure a large scope of system

configurations. The most basic SERT measurement configuration

requires one power analyzer, one temperature sensor, a SUT,

and a Controller system.

SERT uses Chauffeur (see Section 4.1) as its harness. Chauffeur

controls the software installed on the SUT Controller system.

Chauffeur also handles the logistical side of measuring and record-

ing the power consumption and inlet temperature of the SUT.

The SUT gets instructed by the Director (Chauffeur instance)

to execute the suite, which is comprised of a set of workloads.

Each workload consists of a set of Worklets, which exercise the

SUT while Chauffeur collects the power and temperature data. The

Worklets are the actual code designed to stress a specific system

resource or resources, such as the CPU, memory, or storage IO.

Each power analyzer and temperature sensor interacts with its

dedicated instance of the SPEC PTDaemon, which gathers their

readings while the Worklets are executed.

The Reporter, executed after all measurements phases are com-

pleted, compiles all of the environmental, power, and performance

data for a complete test run into an easy-to-read HTML report as

well as an extensible markup language (XML) report; the HTML

report includes a graphical visualization of the results. The deploy-

ment of these components is illustrated in Fig. 2.

4.3.1 System Configuration Discovery. One of the largest chal-

lenges in benchmark and rating tool submissions is correctly iden-

tifying and capturing all of the characteristics of the SUT. Uninten-

tional errors readily occur when collecting identification details of

the various hardware components and recording the details into

the benchmark report. Formatting errors overlooked while enter-

ing data may only become obvious once the final report is ready

for submission. Correcting such errors and oversights in the final

report can be cumbersome. The SERT addresses these issues with

an automated hardware discovery process and an easy-to-use GUI

workflow that assists the user in generating high quality accurate

reports. The GUI therefore reduces the burden of test configuration,

execution and report editing so that the user can focus on obtaining

results.

The relationship between the main components (Hardware Dis-

covery, Test Environment Editor, and Preview Report) of the SERT

discovery workflow is shown in Figure 4.

4.3.2 SERT: Definition and Execution. The SERT is composed

of a suite of worklets, each of which exercises the SUT in a spe-

cific way. For example, the LU worklet performs CPU-intensive

matrix decomposition, while the Sequential IO worklet performs

sequential IO operations on all storage devices included in the

SUT. These worklets are grouped into workloads according to the

Test Environment Editor

Controller / GUI

Preview Report

Hardware Discovery

System under Test

Figure 4: Discovery workflow

component of the SUT that they are intended to stress: CPU, mem-

ory, and storage IO. In addition, a Combined workload consists

of application-focused worklets that stress the components of the

SUT in a more balanced manner. Figure 5 shows the relationship

between the overall suite, workloads, and worklets.

suite

worklet

workload

worklet

…
worklet

workload

worklet

……

Figure 5: Suite overview

During a SERT run, each of the worklets is executed consecu-

tively. Each worklet is run in its own set of JVMs or processes in

order to minimize interactions between different worklets. Chauf-

feur automatically launches these client JVMs and coordinates the

work among them. Most worklets use multiple client JVMs on the

SUT and Chauffeur automatically uses operating system-specific

affinity commands to pin each JVM to specific processors in or-

der to avoid artificial limits to scaling. In this context, “client JVM”

refers to the client side of a client-server communication pattern

and is the JVM that does all of the real work. JVM command-line

options are set by Chauffeur (with configurable overrides), allowing

for self-tuning of heap sizes and ensuring that the command-line

options are reported accurately.

The use of multiple JVMs for running a single worklet is pri-

marily to avoid software bottlenecks (whether in the JVM imple-

mentation or in the SERT worklets) from limiting scalability since

SERT is intended primarily for measuring the energy efficiency of

the hardware and not the software stack. SERT is quite capable of

running each worklet in a single JVM, but performance results are

likely to be better when using multiple JVMs, e.g., each JVM can be

affinitized to a specific processor and therefore all memory accesses

will be local to that processor.

Most worklets use a “Graduated Measurement” execution se-

quence (Example with three load levels in Figure 3). These worklets

begin by executing a short warm-up phase (30 sec.), and then run

two calibration phases to automatically determine the maximum

throughput each worklet can run on the SUT. The duration of the

calibration phase depends on the worklet in question. CPUworklets

are calibrated for 30 seconds. Durations for other worklets vary.

Next, the worklet runs at multiple load levels, such as 100%, 75%,

50% and 25% of the maximum throughput, generating independent

scores for each load level. Each interval of execution includes a

pre-measurement (15 sec.) and post-measurement (10 sec.) period

in addition to the actual measurement period; each of these periods

run for a fixed amount of time. Between each load level a sleep

phase (10 sec.) is observed.

Performance and power are reported for the measurement phase

(120 sec. or 30 sec.) only. This ensures that the worklet is running at

steady-state in all client JVMs at the time performance and power

are measured.

An alternative “Fixed Iteration” execution sequence (Figure 6) is

used for worklets that do not support multiple load levels. These

worklets run a fixed number of test iterations rather than for a

fixed period of time. They optionally include some number of

pre- and post-measurement iterations, similar to the pre- and post-

measurement periods in a Graduated Measurement sequence.

worklet

recording

Pre
x iterations

Measurement
y iterations

Post
z iterations

interval

Figure 6: Phases of a Fixed Iteration Sequence

All of the time intervals are configurable (which is usually not

intended for standard test runs, but useful for researchers) and the

interval lengths can be adjusted separately for each worklet.

The results from individual worklets are reported individually

and can also be combined into higher-level metrics at the workload

level to summarize the performance for a particular subcomponent.

4.3.3 Worklets. SERT worklets were designed under a set of

public guidelines [12] to ensure consistent results across a broad

spectrum of technologies. For example, each workload must au-

tomatically calibrate itself to report the maximum performance

available in that specific hardware configuration, and must then be

adjustable to target load levels from 100-0% of the maximum perfor-

mance. Each worklet also needs to scale with the available hardware

resources which the execution model deemed “important”, e.g., a

CPU worklet needs to scale with the number of processors, cores,

hardware threads and the clock frequency.

The SERT Design Document [14] offers a detailed breakdown of

what each worklet does and how it works. 12 worklets are included

in the SERT 2. They are categorized in Table 1.

The workloads can be summarized as:

CPU: Data compression, encryption/decryption, complex num-

ber arithmetic, matrix factorization, floating point array manipu-

lation, sorting algorithm, string manipulation, and a CPU-heavy

workload derived from ssj2008, which simulates an on-line Trans-

action Processing workload;

Table 1: SERT Worklets

Sequence

Workload Worklet Execution Metric

CPU

Compress Graduated Transactions/sec

CryptoAES Graduated Transactions/sec

SOR Graduated Transactions/sec

SORT Graduated Transactions/sec

SHA256 Graduated Transactions/sec

LU Graduated Transactions/sec

SSJ Graduated Transactions/sec

Storage IO
Random Graduated Transactions/sec

Sequential Graduated Transactions/sec

Memory
Capacity3 Graduated Transactions/sec

* sqrt(data-store-

size)

Flood3 Fixed Memory band-

width (GB/sec)

Idle Active Idle N/A N/A

Storage IO: Two individual transaction pairs combining sequen-

tial and random read/write;

Memory: XML document manipulation and validation using

pre-computed and cached data lookup, and array manipulation

with read/write operations across four major classes of data trans-

formation;

Active Idle: A steady state in which the server is ready to exe-

cute any worklet but is not actually doing so, leading to a measure

of efficiency for a fully functional but otherwise idle state.

There are no worklets related to Network IO, which is handled by

a “configuration modifier” that simulates the steady state efficiency

of a network device. After testing a variety of network interface

cards (NICs) across a range of workloads it was observed that

the power consumption of the actual devices approximated very

closely to a constant (including in the case of NICs that perform

offloading from the host processor), with CPU and memory power

consumption being the biggest factors influencing overall system

efficiency. Combined with the extensive set of external hardware

required to effectively test network bandwidth and performance,

it was agreed with the EPA that a modifier would be applied to

simulate the network IO contribution to overall server efficiency.

4.4 SPECpower_ssj2008

SPECpower_ssj2008 [6] is the first industry-standard SPEC bench-

mark that evaluates the power and performance characteristics of

volume server-class and multi-node class computers. In a sense, it

is the predecessor to Chauffeur and the SERT, which build upon the

design and experiences from ssj2008. The general approach [12] is

to compare measured performance with measured power consump-

tion. An initial requirement was to include power measurement

data of a system running at different target load levels to reflect

the fact that data center server systems run at different target loads

relative to maximum throughput.

4.4.1 ConfigurationOverview. The simplest SPECpower_ssj2008

hardware measurement configuration requires four main hardware

components: one Power Analyzer, one Temperature sensor, a

SUT and the Controller. SPECpower_ssj2008 is composed of sev-

eral elements; with the first is the test Control and Collect System

(CCS), which handles the logistical side of measuring and recording

the power consumption and inlet temperature of the SUT. It also

controls the software installed on both the SUT and Controller,

communicating via the TCP/IP transport protocol.

CCS communicates with the Director, which instructs the SUT

to execute theworkloadwhile CCS collects the power and temper-

ature data. The temperature sensor must be placed no more than

50mm in front of (upwind of) the main airflow inlet of the SUT.

SPECpower_ssj2008 will measure the inlet temperature of the SUT

and marks the results “valid” only if the temperature measured

is 20◦C or higher, in order to discourage the “gaming” of the test

environment. A stable temperature value is not required during

warm-up or measurement phases. The power analyzer must be

located between the AC Line Voltage Source and the SUT. Both

are connected to the Controller via their device specific interfaces,

as shown in Figure 7. Each analyzer and sensor interacts with its

dedicated instance of the SPEC PTDaemon, which gathers their

readings while the worklets are executed.

Workload

Controller

SPEC PTDaemon

SPEC PTDaemon Reporter

CCS

Temperature Sensor

Power Analyzer

Network

PSU

PSU

Memory

CPU CPU

System Under Test

Figure 7: SPECpower_ssj2008 overview

The Reporter, executed after all measurements phases are com-

pleted, compiles all of the environmental, power, and performance

data for a complete test run into an easy to read report. The reports

are generated in HTML and plain text. The HTML report includes

a graphical visualization of the results.

4.4.2 Load Levels. SPEC recognized that many servers include

technologies to reduce the power consumption when the system

is running at low utilizations. Since most systems spend much of

their time running at less than full capacity, SPEC developed a

methodology which advocated measuring performance and power

consumption at a variety of system loads.

An SSJ run consists of two main phases: Calibration and run-

ning at a series of Target Loads. The calibration phase is used to

determine the maximum throughput that a system is capable of sus-

taining. Once this calibrated throughput is established, the system

runs at a series of target loads. Each load runs at some percentage

of the calibrated throughput. For compliant SPECpower_ssj20008

runs, the sequence of load levels decreases from 100% to 0% in

increments of 10% (Figure 8). Measuring the points in decreasing

order limits the change in load to 10% at each level, resulting in

a more stable power measurement. Using increasing order would

have resulted in a jump from 100% to 10% moving from the final

calibration interval to the first target load and another jump from

100% to Active Idle at the end of the run.

AC
 P

ow
er

 C
on

su
m

pt
io

n

100%

90%

80%

70%

60%
50%

40%

30%
20%

10%

SPECpower_ssj2008 Workload Iteration

Calibration 1 Calibration 2 Calibration 3

Figure 8: Load Levels

For each Target Load Level (e.g., 90%, 80%), the test harness cal-

culates the target transaction rate and the corresponding mean time

from the start of one transaction to the start of the next transaction.

During the measurement interval, randomized delays are inserted

into the worklet execution; these delays follow an exponential dis-

tribution that statistically converges to the desired transaction rate,

as described in Section 3. As a result, lower target loads consist

of short bursts of activity separated by periods of inactivity. Fig-

ure 9 shows examples of the utilization of a single processor thread

running at 67% and 33% target loads using this technique.

0

100

U
til

iza
tio

n

Detail of Measurement Interval (4 ms)

67% Target Load

0

100

U
til

iza
tio

n

Detail of Measurement Interval (4 ms)

33% Target Load

Figure 9: Load Distributions at different Target Loads

4.4.3 Driving Server Energy Efficiency. The game changing in-

novations, flexible design, cross-platform implementation, and au-

tomatic power measurement harness made SPECpower_ssj2008 the

first industry standard benchmark to measure the power and perfor-

mance characteristics of volume server-class compute-equipment.

SPECpower_ssj2008 was first released in December 2007, most

recently updated in 2011, and continues to drive innovations in

server efficiency. Rather than trying to approximate all the typ-

ical workloads used across organizations SPECpower_ssj2008 is

focused on transactional server-side Java workloads that simu-

late a warehouse-based customer ordering, supply and replenish-

ment model. This synthetic workload exercises many aspects of

commercially-available Java implementations, together with the

underlying server hardware including processors (with support

for multiple cores per processor), memory hierarchies (including

caches) and the system Symmetric Multiprocessing (SMP) scalabil-

ity.

4.5 Examples SPEC Power Tool Use in Research

The SPEC power tools have been used in multiple works of research

in the past. In this section, we list some of these works as examples

of how the tools can be used. In general, we observe three types of

SPEC power tool use: 1) Use of SSJ and SERT results for research, 2)

Use of modified SSJ or SERT for research, 3) Use of frameworks or

measurement tools for testing with new workloads or load types.

SERT and SSJ results have been used in multiple works for eval-

uation, analysis or as part of new research contributions. Examples

are [5], where SSJ results are used to analyze energy proportionality

metrics and [18], which uses SERT results to train power prediction

models.

Other works modify the SPEC SERT for custom tests. [15] modi-

fies the SERT load level calibration to train a specific power model.

[17], on the other hand, modifies the placement of worklets in order

to utilize specific resources (CPU cores, etc.) on the SUT.

Finally, the ChauffeurWDK provides a framework to develop

workloads and use for measurements with the SPEC power method-

ology. Custom research workloads for energy efficiency measure-

ment have been deployed using ChauffeurWDK. E.g., [8] presents

its own workload creation framework for energy-effiency testing,

which is embedded into the ChauffeurWDK, whereas [9] deploys

specialized worklets for memory testing in Chauffeur.

5 CONCLUSION

This paper sketches the SPEC Power and Performance Method-

ology and introduces the SPEC’s compute efficiency benchmarks

and tools. These tools are designed to help benchmark and rate

the energy efficiency of a server system. The SPEC PTDaemon

enables accurate measurement of power consumption, whereas the

Chauffeur framework enables workload scheduling, placement, exe-

cution, and result collection. PTDaemon and Chauffeur can be used

in the ChauffeurWDK to implement and test the energy efficiency

of workloads in research and development. The SPEC SERT, on the

other hand, already provides a wealth of workloads that can be

used for research and server rating. Finally, the SPECpower_ssj2008

uses the methodology to execute application benchmarks that have

driven energy-efficiency improvements for the last decade.

6 ACKNOWLEDGEMENTS

The authors wish to acknowledge current and past members of

the SPECpower Committee and SPEC Research Power Working

Group who have contributed to the design, development, testing,

and overall success of SPECpower_ssj2008 benchmark, the SERT

suite, and the Chauffeur WDK: Nathan Totura, Mike Tricker, Greg

Darnell, Karl Huppler, Van Smith, Ashok Emani, Paul Muehr, David

Ott, David Reiner, Karin Wulf, Cathy Sandifer, Jason Glick, Diana

Cercy, and Dianne Rice, as well as the late Alan Adamson and Larry

Gray. SPEC and the names SERT, Chauffeur, SPEC PTDaemon, and

SPECpower ssj are registered trademarks of the Standard Perfor-

mance Evaluation Corporation. Additional product and service

names mentioned herein may be the trademarks of their respective

owners.

REFERENCES
[1] Jeremy A. Arnold. 2014. Energy Efficiency Benchmark Framework (Chauffeur

WDK). In Proceedings of the 5th ACM/SPEC International Conference on Perfor-
mance Engineering (ICPE 2014). ACM, New York, NY, USA.

[2] C. Babcock. 2012. NY Times data center indictment misses the big picture.
InformationWeek Cloud (2012).

[3] L.A. Barroso and U. Holzle. 2007. The Case for Energy-Proportional Computing.
Computer 40, 12 (Dec 2007), 33–37. DOI:http://dx.doi.org/10.1109/MC.2007.443

[4] James Bucek, Klaus-Dieter Lange, and Jóakim von Kistowski. 2018. SPEC
CPU2017 – Next-generation compute benchmark. In ICPE.

[5] C. H. Hsu and S. W. Poole. 2013. Revisiting Server Energy Proportionality. In
2013 42nd International Conference on Parallel Processing. 834–840. DOI:http:
//dx.doi.org/10.1109/ICPP.2013.99

[6] K.-D. Lange. 2009. Identifying Shades of Green: The SPECpower Benchmarks.
Computer 42, 3 (March 2009), 95–97. DOI:http://dx.doi.org/10.1109/MC.2009.84

[7] K.-D. Lange and Michael G. Tricker. 2011. The Design and Development of
the Server Efficiency Rating Tool (SERT). In Proceedings of the 2nd ACM/SPEC
International Conference on Performance Engineering (ICPE ’11). ACM, New York,
NY, USA, 145–150. DOI:http://dx.doi.org/10.1145/1958746.1958769

[8] Norbert Schmitt, Jóakim von Kistowski, and Samuel Kounev. 2017. Emulating
the Power Consumption Behavior of Server Workloads using CPU Performance
Counters. In Proceedings of the 25th IEEE International Symposium on theModelling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
’17).

[9] Norbert Schmitt, Jóakim von Kistowski, and Samuel Kounev. 2017. Predicting
Power Consumption of High-Memory-Bandwidth Workloads. In Proceedings of
the 8th ACM/SPEC on International Conference on Performance Engineering (ICPE
’17). ACM, New York, NY, USA, 353–356. DOI:http://dx.doi.org/10.1145/3030207.
3030241

[10] Standard Performance Evaluation Corporation. 2011. Power Analyzer Accep-
tance Process V1.3. (August 2011). https://www.spec.org/power/docs/SPEC-
Power_Analyzer_Acceptance_Process.pdf.

[11] Standard Performance Evaluation Corporation. 2012. PTDaemon Design
Document. (October 2012). http://www.spec.org/power/docs/SPEC-
PTDaemon_Design.pdf.

[12] Standard Performance Evaluation Corporation. 2014. SPEC Power
and Performance Benchmark Methodology. (December 2014).
http://spec.org/power/docs/SPEC-Power_and_Performance_Methodology.pdf.

[13] Standard Performance Evaluation Corporation. 2017. Power
and Temperature Measurement Setup Guide. (Janu-
ary 2017). https://www.spec.org/power/docs/SPEC-
Power_Measurement_Setup_Guide.pdf.

[14] Standard Performance Evaluation Corporation. 2017. Server Efficiency Rating
Tool (SERT) Design Document. (September 2017). http://spec.org/sert2/SERT-
designdocument.pdf.

[15] Christian Stier, Dominik Werle, and Anne Koziolek. 2017. Deriving Power
Models for Architecture-Level Energy Efficiency Analyses. In Computer Per-
formance Engineering: 14th European Workshop, EPEW 2017, Berlin, Germany,
September 7-8, 2017, Proceedings, Philipp Reinecke and Antinisca Di Marco (Eds.).
Springer International Publishing, Cham, 214–229. DOI:http://dx.doi.org/10.
1007/978-3-319-66583-2_14

[16] Jóakim von Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange,
John L. Henning, and Paul Cao. 2015. How to Build a Benchmark. In Proceed-
ings of the 6th ACM/SPEC International Conference on Performance Engineering
(ICPE 2015) (ICPE ’15). ACM, New York, NY, USA. DOI:http://dx.doi.org/10.1145/
2668930.2688819

[17] Jóakim von Kistowski, John Beckett, Klaus-Dieter Lange, Hansfried Block,
Jeremy A. Arnold, and Samuel Kounev. 2015. Energy Efficiency of Hierarchical
Server Load Distribution Strategies. In Proceedings of the IEEE 23nd International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS 2015). IEEE.

[18] Jóakim von Kistowski, Hansfried Block, John Beckett, Cloyce Spradling, Klaus-
Dieter Lange, and Samuel Kounev. 2016. Variations in CPU Power Consumption.
In Proceedings of the 7th ACM/SPEC International Conference on Performance
Engineering (ICPE 2016). ACM, New York, NY, USA. DOI:http://dx.doi.org/10.
1145/2851553.2851567

[19] Jóakim von Kistowski, Maximilian Deffner, Jeremy A. Arnold, Klaus-Dieter Lange,
John Beckett, and Samuel Kounev. 2017. Autopilot: Enabling easy Benchmarking
of Workload Energy Efficiency. In Proceedings of the 8th ACM/SPEC International
Conference on Performance Engineering (ICPE 2017). ACM, New York, NY, USA.
DOI:http://dx.doi.org/10.1145/3030207.3053667

