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J2EE Performance and Scalability -
From Measuring to Predicting

Samuel Kounev, Member, IEEE

Abstract— J2EE applications are becoming increasingly ubi-
quitous and with their increasing adoption, performance and
scalability issues are gaining in importance. For a J2EE applica-
tion to perform well and be scalable, both the platform on which
it is built and the application design must be efficient and scalable.
Industry-standard benchmarks such as the SPECjAppServer set
of benchmarks help to evaluate the performance and scalability of
alternative platforms for J2EE applications, however, they cannot
be used to evaluate the performance and scalability of concrete
applications built on the selected platforms. In this paper, we
present a systematic approach for evaluating and predicting
the performance and scalability of J2EE applications based on
modeling and simulation. The approach helps to identify and
eliminate bottlenecks in the application design and ensure that
systems are designed and sized to meet their quality of service
requirements. We introduce our approach by showing how it
can be applied to the SPECjAppServer2004 benchmark which
is used as a representative J2EE application. A detailed model
of a SPECjAppServer2004 deployment is built in a step-by-step
fashion and then used to predict the behavior of the system under
load. The approach is validated by comparing model predictions
against measurements on the real system.

Index Terms— Performance modeling and prediction, software
verification, performance evaluation, distributed systems

I. INTRODUCTION

THE Java 2 Enterprise Edition (J2EE) platform is be-
coming increasingly ubiquitous as enabling technology

for modern enterprise applications. The aim of J2EE is to
make it easier to build scalable, reliable and secure appli-
cations by leveraging middleware services and commercial-
off-the-shelf (COTS) components provided by the industry.
However, practice has proven that developing well-performing
and scalable J2EE applications is not as easy as it sounds.
Building on a scalable platform using well-tested and proven
components does not automatically provide for good per-
formance and scalability. A given set of components may
perform well in one combination and rather bad in another.
In fact, by hiding the complexity of the innerworkings of
components and the underlying middleware infrastructure,
J2EE makes developers much more dependent on the latter
and makes it easy to introduce processing inefficiencies and
system bottlenecks by inadvertence. To avoid the pitfalls of
inadequate Quality of Service (QoS), it is important to analyze
the expected performance characteristics of systems during all
phases of their life cycle. However, as systems grow in size
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and complexity, analyzing their performance becomes a more
and more challenging task. System architects and deployers
are often faced with the following questions:

1) Which platform (hardware and software) would provide
the best cost/performance ratio for a given application?1

2) How do we ensure that the selected platform does not
have any inherent scalability bottlenecks?

3) What performance would a deployment of the applica-
tion on the selected platform exhibit under the expected
workload and how much hardware would be needed to
meet the Service Level Agreements (SLAs)?

4) How do we ensure that the application design does not
have any inherent scalability bottlenecks?

Answering the first two questions requires measuring the
performance and scalability of alternative hardware and soft-
ware platforms which is typically done using benchmarks.
Answering the second two questions requires predicting the
performance of a given application deployed on a selected
platform which is normally done through load testing or
performance modeling.

A number of benchmarks have been developed in the past
decade that can be used to measure the performance and
scalability of J2EE platforms (see for example [1], [2], [3],
[4], [5], [6], [7], [8]). Benchmarks help to compare platforms
and validate them, however, they can also be exploited to
study the effect of different platform configuration settings
and tuning parameters on the overall system performance [9],
[10], [11]. Thus, benchmarking helps to select a platform
for a given application and configure (tune) the platform for
optimal performance. However, while building on a scalable
and optimized platform is a necessary condition for achieving
good performance and scalability, unfortunately, it is not
sufficient. The application built on the selected platform must
also be designed to be efficient and scalable. This takes us to
the second problem mentioned above. How do we predict the
performance and scalability of J2EE applications in order to
ensure that there are no design bottlenecks and that enough
resources are provided to guarantee adequate performance?

In this paper, we present a case study with the industry-
standard SPECjAppServer2004 2 benchmark in which the
latter is used as a representative J2EE application in order
to introduce a systematic approach for predicting the perfor-

1In this paper, we use the terms ”system” and ”application” interchangeably.
2SPECjAppServer is a trademark of the Standard Performance Evalua-

tion Corp. (SPEC). The SPECjAppServer2004 results or findings in this
publication have not been reviewed or accepted by SPEC, therefore no
comparison nor performance inference can be made against any published
SPEC result. The official web site for SPECjAppServer2004 is located at
http://www.spec.org/osg/jAppServer2004.
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mance and scalability of J2EE applications. The approach used
is based on performance modeling and simulation. A detailed
model of a SPECjAppServer2004 deployment is built in a step-
by-step fashion. The model is validated and used to predict
the system performance for several deployment configurations
and workload scenarios of interest. In each case, the model
is analyzed by means of simulation. In order to validate
the approach, the model predictions are compared against
measurements on the real system. It is demonstrated how
some complex aspects of system behavior such as composite
transactions and asynchronous processing can be modeled.

The rest of the paper is organized as follows. We start with
an introduction of the SPECjAppServer2004 benchmark in
Section II. In Section III, a detailed model of a SPECjApp-
Server2004 deployment is built in a step-by-step fashion. The
model is validated and used to predict the performance of the
system for several different scenarios. It is shown how the
model predictions can be used for performance analysis and
capacity planning. Finally, in Section IV, the paper is wrapped
up with some concluding remarks.

II. THE SPECJAPPSERVER2004 BENCHMARK

SPECjAppServer2004 is a new industry standard bench-
mark for measuring the performance and scalability of
J2EE application servers. SPECjAppServer2004 was devel-
oped by SPEC’s Java subcommittee which includes BEA, Bor-
land, Darmstadt University of Technology, Hewlett-Packard,
IBM, Intel, Oracle, Pramati, Sun Microsystems and Sybase.
It is important to note that even though some parts of
SPECjAppServer2004 look similar to SPECjAppServer2002,
SPECjAppServer2004 is much more complex and substan-
tially different from previous versions of SPECjAppServer.
It implements a new enhanced workload that exercises all
major services of the J2EE platform in a complete end-to-end
application scenario. The SPECjAppServer2004 workload is
based on a distributed application claimed to be large enough
and complex enough to represent a real-world e-business
system [2]. It has been specifically modeled after an auto-
mobile manufacturer whose main customers are automobile
dealers. Dealers use a Web based user interface to browse the
automobile catalogue, purchase automobiles, sell automobiles
and track dealership inventory.
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Fig. 1. SPECjAppServer2004 business model.

As depicted on Figure 1, SPECjAppServer2004’s business
model comprises five domains: customer domain dealing with
customer orders and interactions, dealer domain offering Web
based interface to the services in the customer domain, manu-
facturing domain performing ”just in time” manufacturing
operations, supplier domain handling interactions with exter-
nal suppliers, and corporate domain managing all customer,
product and supplier information. The customer domain hosts
an order entry application that provides some typical online
ordering functionality. Orders for more than 100 automobiles
are called large orders. The dealer domain hosts a Web
application (called dealer application) that provides a Web
based interface to the services in the customer domain. Finally,
the manufacturing domain hosts a manufacturing application
that models the activity of production lines in an automobile
manufacturing plant.

There are two types of production lines, planned lines and
large order lines. Planned lines run on schedule and produce a
predefined number of automobiles. Large order lines run only
when a large order is received in the customer domain. The
unit of work in the manufacturing domain is a work order.
Each work order moves along three virtual stations which
represent distinct operations in the manufacturing flow. In
order to simulate activity at the stations, the manufacturing
application waits for a designated time (333 ms) at each
station. Once the work order is complete, it is marked as
completed and inventory is updated. When inventory of parts
gets depleted suppliers need to be located and purchase orders
(POs) need to be sent out. This is done by contacting the
supplier domain which is responsible for interactions with
external suppliers.

All the activities and processes in the five domains described
above are implemented using J2EE components (Enterprise
Java Beans, Servlets and Java Server Pages) assembled into
a single J2EE application that is deployed in an application
server running on the System Under Test (SUT). The only
exception is for the interactions with suppliers which are
implemented using a separate Java servlet application called
supplier emulator. The latter is deployed in a Java-enabled
Web server on a dedicated machine. The workload generator
is implemented using a multi-threaded Java application called
SPECjAppServer driver. The driver is made of two compo-
nents - manufacturing driver and DealerEntry driver. The
manufacturing driver drives the production lines in the manu-
facturing domain and exercises the manufacturing application.
It communicates with the SUT through the RMI (Remote
Method Invocation) interface. The DealerEntry driver emulates
automobile dealers using the dealer application in the dealer
domain to access the services of the order entry application in
the customer domain. It communicates with the SUT through
HTTP and exercises the dealer and order entry applications
using three operations referred to as business transactions:

1) Browse - browses through the vehicle catalogue
2) Purchase - places orders for new vehicles
3) Manage - manages the customer inventory

Each business transaction emulates a specific type of client
session comprising multiple round-trips to the server. For



SPEC BENCHMARK WORKSHOP 2006, AUSTIN, TEXAS, JANUARY 23, 2006. 3

example, the Browse transaction navigates to the vehicle
catalogue web page and then pages a total of thirteen times,
ten forward and three backwards. A relational DBMS is used
for data persistence and all data access operations use entity
beans which are mapped to tables in the SPECjAppServer
database. Data access components follow the guidelines in [12]
to provide maximum scalability and performance.

III. CASE STUDY: MODELING SPECJAPPSERVER2004

In this section, we present a detailed case study with
SPECjAppServer2004 which demonstrates our approach for
modeling J2EE applications and predicting their performance
under load. Note that in [13] and [14], we modeled previous
versions of the benchmark using Queueing Petri Net (QPN)
models and Queueing Network (QN) models, respectively. In
both cases, we ran against some serious problems stemming
from the size and complexity of the system modeled. These
problems were addressed in [15] by means of SimQPN - our
tool for analyzing QPN models using simulation. In this paper,
we present another application of SimQPN, this time analyzing
QPN models of SPECjAppServer2004. However, the models
considered here span the whole benchmark application and are
much more complex and sophisticated. Thanks to the increased
modeling accuracy and representativeness, the models demon-
strate much better predictive power and scalability than what
was achieved in our previous work. The case study presented
here is the first comprehensive validation of our modeling
approach on a complete end-to-end DCS, representative of
today’s real-life systems.

In our validation, we consider multiple scenarios vary-
ing the transaction mix and workload intensity. To achieve
this, we had to modify the SPECjAppServer2004 driver to
make it possible to precisely configure the transaction mix
injected. Therefore, since we use a modified version of the
driver, we would like to note that the SPECjAppServer2004
tests conducted as part of this study are not comparable to
standard SPECjAppServer2004 results. Moreover, since our
results have not been reviewed by SPEC, any comparison or
performance inference against published benchmark results is
strictly prohibited.

A. Motivation

Consider an automobile manufacturing company that wants
to exploit e-business technology to support its order-inventory,
supply-chain and manufacturing operations. The company has
decided to use the J2EE platform and is in the process of
developing a J2EE application. Lets assume that the first
prototype of this application is SPECjAppServer2004 and that
the company is testing the application in the deployment
environment depicted in Figure 2. This environment uses a
cluster of WebLogic servers (WLS) as a J2EE container and
an Oracle database server (DBS) for persistence. A third-party
HTTP load balancer is employed to distribute the load over the
WebLogic servers. We assume that all servers in the WebLogic
cluster are identical and that initially only two servers are
available.
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Fig. 2. SPECjAppServer2004 deployment environment.

The company is now about to conduct a performance
evaluation of their system in order to find answers to the
following questions:
• For a given number of WebLogic servers, what level of

performance would the system provide?
• How many WebLogic servers would be needed to guaran-

tee adequate performance under the expected workload?
• Will the capacity of the single load balancer and single

database server suffice to handle the incoming load?
• Does the system scale or are there any other potential

system bottlenecks?
The following sections show how these questions can be ad-

dressed by means of our performance modeling and prediction
approach.

B. Performance Modeling and Prediction Approach

Our approach builds on the methodologies proposed by
Menascé, Almeida and Dowdy in [16], [17], [18], [19], [20],
however, a major difference is that our approach is based on
Queueing Petri Net (QPN) models as opposed to conventional
Queueing Network (QN) models and it is specialized for
distributed component-based systems. QPN models are more
sophisticated than QN models and enjoy greater modeling
power and expressiveness. As shown in [13], QPN models
lend themselves very well to modeling J2EE applications and
provide a number of advantages over conventional QN models.

The modeling process includes the following steps:
1) Establish performance modeling objectives.
2) Characterize the system in its current state.
3) Characterize the workload.
4) Develop a performance model.
5) Validate, refine and/or calibrate the model.
6) Use model to predict system performance.
7) Analyze results and address modeling objectives.
It is important to note that the modeling process is iterative

in nature and the above steps might have to be repeated
multiple times as the system and workload evolve. In the
following sections, we go through each of the seven steps
and show how they are applied to our scenario. For a more
general discussion of the methodology refer to [21].



SPEC BENCHMARK WORKSHOP 2006, AUSTIN, TEXAS, JANUARY 23, 2006. 4

C. Step 1: Establish performance modeling objectives.

Some general goals of the modeling study were listed above.
At the beginning of the modeling process, these goals need to
be made more specific and precise. Lets assume that under
normal operating conditions the company expects to have
72 concurrent dealer clients (40 Browse, 16 Purchase and
16 Manage) and 50 planned production lines. During peak
conditions, 152 concurrent dealer clients (100 Browse, 26
Purchase and 26 Manage) are expected and the number of
planned production lines could increase up to 100. Moreover,
the workload is forecast to grow by 300% over the next 5
years. The average dealer think time is 5 seconds, i.e. the
time a dealer ”thinks” after receiving a response from the
system before sending a new request. On average 10% of all
orders placed are assumed to be large orders. The average
delay after completing a work order at a planned production
line before starting a new one is 10 seconds. Note that all of
these numbers were chosen arbitrarily in order to make our
motivating scenario more specific. Based on these assumptions
the following concrete goals are established:

• Predict the performance of the system under normal
operating conditions with 4 and 6 WebLogic servers,
respectively. What would be the average transaction
throughput, transaction response time and server CPU
utilization?

• Determine if 6 WebLogic servers would be enough
to ensure that the average response times of business
transactions do not exceed half a second during peak
conditions.

• Predict how much system performance would improve if
the load balancer is upgraded with a slightly faster CPU.

• Study the scalability of the system as the workload
increases and additional WebLogic servers are added.

• Determine which servers would be most utilized under
heavy load and investigate if they are potential bottle-
necks.

D. Step 2: Characterize the system in its current state.

In this step, the system is described in detail, in terms of its
hardware and software architecture. The goal here is to obtain
an in-depth understanding of the system architecture and its
components. The latter is essential for building representative
models.

As shown in Figure 2, the system we are considering has
a two-tier hardware architecture consisting of an application
server tier and a database server tier. Incoming requests
are evenly distributed across the nodes in the application
server cluster. For HTTP requests (dealer application) this is
achieved using a software load balancer running on a dedicated
machine. For RMI requests (manufacturing application) this
is done transparently by the EJB client stubs. The applica-
tion logic is partitioned into three layers: presentation layer
(Servlets/JSPs), business logic layer (EJBs) and data layer
(DBMS). Table I describes the system components in terms of
the hardware and software platforms used. This information
is enough for the purposes of our study.

TABLE I
SYSTEM COMPONENT DETAILS

Component Description
Load Balancer HTTP load balancer

1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

App. Server Cluster Nodes WebLogic 8.1 Server
1 x AMD Athlon XP2000+ CPU
1 GB RAM, SuSE Linux 8

Database Server Oracle 9i Server
2 x AMD Athlon MP2000+ CPU
2 GB RAM, SuSE Linux 8

Local Area Network 1 GBit Switched Ethernet

E. Step 3: Characterize the workload.

In this step, the workload of the system under study is de-
scribed in a qualitative and quantitative manner. This is called
workload characterization and includes five major steps [22],
[16]:

1) Identify the basic components of the workload.
2) Partition basic components into workload classes.
3) Identify the system components and resources (hardware

and software) used by each workload class.
4) Describe the inter-component interactions and process-

ing steps for each workload class.
5) Characterize workload classes in terms of their service

demands and workload intensity.
We now go through each of these steps and apply it to our

scenario.
1) Identify the basic components of the workload: As

discussed in Section II, the SPECjAppServer2004 bench-
mark application is made up of three major subapplica-
tions - the dealer application in the dealer domain, the
order entry application in the customer domain and the
manufacturing application in the manufacturing domain. The
dealer and order entry applications process business trans-
actions of three types - Browse, Purchase and Manage.
Hereafter, the latter are referred to as dealer transactions 3.
The manufacturing application, on the other hand, is run-
ning production lines which process work orders. Thus, the
SPECjAppServer2004 workload is composed of two basic
components: dealer transactions and work orders.

Note that each dealer transaction emulates a client session
comprising multiple round-trips to the server. For each round-
trip there is a separate HTTP request which can be seen as
a subtransaction. A more fine-grained approach to model the
workload would be to define the individual HTTP requests as
basic components. However, this would unnecessarily com-
plicate the workload model since we are interested in the
performance of dealer transactions as a whole and not in
the performance of their individual subtransactions. The same
reasoning applies to work orders because each work order
comprises multiple JTA transactions initiated with separate
RMI calls. This is a typical example how the level of detail

3The term transaction here is used loosely and should not be confused with
a database transaction or a transaction in the sense of the Java Transaction
API (JTA transaction).
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in the modeling process is decided based on the modeling
objectives.

2) Partition basic components into workload classes: The
basic components of real workloads are typically heteroge-
neous in nature. In order to improve the representativeness of
the workload model and increase its predictive power, the basic
components must be partitioned into classes (called workload
classes) that have similar characteristics. The partitioning can
be done based on different criteria depending on the type of
system modeled and the goals of the modeling effort [23],
[18].

We now partition the basic components of the workload
into classes according to the type of work being done. There
are three types of dealer transactions - Browse, Purchase and
Manage. Since we are interested in their individual behavior,
we model them using separate workload classes. Work orders,
on the other hand, can be divided into two types based on
whether they are processed on a planned or large order line.
While planned lines run on a predefined schedule, large order
lines run only when a large order arrives in the customer
domain. Each large order generates a separate work order
processed asynchronously on a dedicated large order line.
Thus, work orders originating from large orders are different
from ordinary work orders in terms of the way their processing
is initiated and in terms of their resource usage. To distinguish
between the two types of work orders they are modeled using
two separate workload classes: WorkOrder (for ordinary work
orders) and LargeOrder (for work orders generated by large
orders). The latter will hereafter be referred to as WorkOrder
and LargeOrder transactions, respectively. Altogether, we end
up with five workload classes: Browse, Purchase, Manage,
WorkOrder and LargeOrder.

3) Identify the system components and resources used by
each workload class: The next step is to identify the system
components (hardware and software resources) used by each
workload class. The following hardware resources are used by
dealer transactions:

• The CPU of the load balancer machine (LB-C)
• The CPU of an application server in the cluster (AS-C)
• The CPUs of the database server (DB-C)
• The disk drive of the database server (DB-D)
• The Local Area Network (LAN)

WorkOrders and LargeOrders use the same resources with
exception of the first one (LB-C), since their processing is
driven through direct RMI calls to the EJBs in the WebLogic
cluster bypassing the HTTP load balancer. As far as soft-
ware resources are concerned, all workload classes use the
WebLogic servers and the Oracle DBMS. Dealer transactions
additionally use the software load balancer which is running
on a dedicated server. For a transaction to be processed by a
WebLogic server, a thread must be allocated from the server’s
thread pool.

4) Describe the inter-component interactions and process-
ing steps for each workload class: The aim of this step
is to describe the flow of control for each workload class.
Also for each processing step, the hardware and software
resources used must be specified. Different notations may be

exploited for this purpose, for example Client/Server Interac-
tion Diagrams (CSID) [19], Communication-Processing Delay
Diagrams [18], Execution Graphs [24], as well as conventional
UML Sequence and Activity Diagrams [25].

All of the five workload classes identified comprise mul-
tiple processing tasks and therefore we will refer to them
as composite transactions. Figures 3 and 4 use execution
graphs to illustrate the processing steps (subtransactions) of
transactions from the different workload classes. For every
subtransaction, multiple system components are involved and
they interact to perform the respective operation. The inter-
component interactions and flow of control for subtransactions
are depicted in Figure 5 by means of Client/Server Interaction
Diagrams (CSID) [19]. Directed arcs show the flow of control
from one node to the next during execution. Depending on the
path followed, different execution scenarios are possible. For
example, for dealer subtransactions two scenarios are possible
depending on whether the database needs to be accessed or
not. Dealer subtransactions that do not access the database
(e.g. goToHomePage) follow the path 1 → 2 → 3 → 4,
whereas dealer subtransactions that access the database (e.g.
showInventory or checkOut) follow the path 1 → 2 → 3 →
5 → 6 → 7. Since most dealer subtransactions do access the
database, for simplicity, it is assumed that all of them follow
the second path.
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Fig. 3. Execution graphs showing the subtransactions of Purchase and
Manage transactions.

5) Characterize workload classes in terms of their service
demands and workload intensity: In this step, the load placed
by the workload classes on the system is quantified. Two
sets of parameters must be specified for each workload class:
service demand parameters and workload intensity parame-
ters. Service demand parameters specify the total amount of
service time required by each workload class at each resource.
Workload intensity parameters provide for each workload class
a measure of the number of units of work, i.e. requests or
transactions, that contend for system resources.

Since the system is available for testing, the service de-
mands can be determined by injecting load into the system and
taking measurements. Note that it is enough to have a single
WebLogic server available in order to do this. The Service De-
mand Law can be used to estimate the service demands based
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Fig. 5. Client/Server interaction diagrams showing the flow of control during
processing of subtransactions.

on measured resource utilization and transaction throughput
data [26]. The latter states that the service demand Di,r

of class r transactions at resource i is equal to the average
utilization Ui,r of resource i by class r transactions, divided
by the average throughput X0,r of class r transactions during
the measurement interval, i.e.

Di,r =
Ui,r

X0,r
(1)

For each of the five workload classes a separate experiment
was conducted measuring the utilization of the various system
resources. CPU utilization was measured using the vmstat
utility on Linux. The disk utilization of the database server
was measured with the help of the Oracle 9i Intelligent Agent
which proved to have negligible overhead. Table II reports
the estimated service demand parameters for the five request
classes in our workload model. It was decided to ignore the
network, since all communications were taking place over
1 GBit LAN and communication times were negligible.

Note that, in order to keep the workload model simple, it
is assumed that the total service demand of a transaction at
a given system resource is spread evenly over its subtrans-
actions. Thus, the service demand of a subtransaction can
be estimated by dividing the measured total service demand

TABLE II
WORKLOAD SERVICE DEMAND PARAMETERS

Workload Class LB-C AS-C DB-C DB-D
Browse 42.72ms 130ms 14ms 5ms
Purchase 9.98ms 55ms 16ms 8ms
Manage 9.93ms 59ms 19ms 7ms
WorkOrder - 34ms 24ms 2ms
LargeOrder - 92ms 34ms 2ms

of the transaction by the number of subtransactions it has.
Whether this simplification is acceptable will become clear
later when the model is validated. In case the estimation proves
to be too inaccurate, we would have to come back and refine
the workload model by measuring the service demands of
subtransactions individually.

TABLE III
WORKLOAD INTENSITY PARAMETERS

Parameter Normal Conditions Peak Conditions
Browse Clients 40 100
Purchase Clients 16 26
Manage Clients 16 26
Planned Lines 50 100
Dealer Think Time 5 sec 5 sec
Mfg Think Time 10 sec 10 sec

Now that the service demands of workload classes have
been quantified, the workload intensity must be specified. For
each workload class, the number of units of work (transac-
tions) that contend for system resources must be indicated. The
way workload intensity is specified is dictated by the modeling
objectives. In our case, workload intensity was defined in terms
of the following parameters (see Section III-C):
• Number of concurrent dealer clients of each type and the

average dealer think time.
• Number of planned production lines and the average time

they wait after processing a WorkOrder before starting a
new one (manufacturing think time or mfg think time).

With workload intensity specified in this way, all workload
classes are automatically modeled as closed. Two scenarios of
interest were indicated when discussing the modeling objec-
tives in Section III-C, operation under normal conditions and
operation under peak conditions. The values of the workload
intensity parameters for these two scenarios are shown in
Table III. However, the workload had been forecast to grow
by 300% and another goal of the study was to investigate
the scalability of the system as the load increases. Therefore,
scenarios with up to 300% higher workload intensity need to
be considered as well.

F. Step 4: Develop a performance model.

In this step, a performance model is developed that repre-
sents the different components of the system and its workload,
and captures the main factors affecting its performance. The
performance model can be used to understand the behavior of
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the system and predict its performance under load. The app-
roach presented here exploits QPN models to take advantage
of the modeling power and expressiveness of QPNs. For an
introduction to the QPN formalism refer to [27], [21], [13].

We start by discussing the way basic components of the
workload are modeled. During workload characterization, five
workload classes were identified. All of them represent com-
posite transactions and are modeled using the following token
types (colors): ’B’ for Browse, ’P’ for Purchase, ’M’ for
Manage, ’W’ for WorkOrder and ’L’ for LargeOrder.

The subtransactions of transactions from the different
classes were shown in Figures 3 and 4. The inter-component
interactions and flow of control for each subtransaction were
illustrated in Figure 5. In order to make the performance
model more compact, it is assumed that each server used
during processing of a subtransaction is visited only once and
that the subtransaction receives all of its service demands at the
server’s resources during that single visit. This simplification
is typical for queueing models and has been widely employed.
Similarly, during the service of a subtransaction at a server,
for each server resource used (e.g. CPUs, disk drives), it is
assumed that the latter is visited only one time receiving the
whole service demand of the subtransaction at once. These
simplifications make it easier to model the flow of control
during processing of subtransactions. While characterizing the
workload service demands in Section III-E.5, we additionally
assumed that the total service demand of a transaction at a
given system resource is spread evenly over its subtransactions.
This allows us to consider the subtransactions of a given
workload class as equivalent in terms of processing behavior
and resource consumption. Thus, we can model subtransac-
tions using a single token type (color) per workload class as
follows: ’b’ for Browse, ’p’ for Purchase, ’m’ for Manage,
’w’ for WorkOrder and ’l’ for LargeOrder. For the sake of
compactness, the following additional notation will be used:

Symbol ’D’ will be used to denote a ’B’, ’P’ or ’M’ token,
i.e. token representing a dealer transaction.

Symbol ’d’ will be used to denote a ’b’, ’p’ or ’m’ token,
i.e. token representing a dealer subtransaction.

Symbol ’o’ will be used to denote a ’b’, ’p’, ’m’, ’w’ or ’l’
token, i.e. token representing a subtransaction
of arbitrary type, hereafter called subtransac-
tion token.

To further simplify the model, we assume that LargeOrder
transactions are executed with a single subtransaction, i.e. their
four subtransactions are bundled into a single subtransaction.
The effect of this simplification on the overall system behavior
is negligible, because large orders constitute only 10% of
all orders placed, i.e. relatively small portion of the system
workload. Following these lines of thought one could consider
LargeOrder transactions as non-composite and drop the small
’l’ tokens. However, in order to keep token definitions uniform
across transaction classes, we will keep the small ’l’ tokens
and look at LargeOrder transactions as being composed of a
single subtransaction represented by an ’l’ token.

Following the guidelines for modeling the system compo-
nents, resources and inter-component interactions presented
in [21], we arrive at the model depicted in Figure 6. We use

the notation ”A{x} → B{y}” to denote a firing mode in
which an ’x’ token is removed from place A and a ’y’ token
is deposited in place B. Similarly, ”A{x} → {}” means that
an ’x’ token is removed from place A and destroyed without
depositing tokens anywhere. Table IV provides some details
on the places used in the model.

All token service times at the queues of the model are
assumed to be exponentially distributed. We now examine in
detail the life-cycle of tokens in the QPN model. As already
discussed, upper-case tokens represent transactions, whereas
lower-case tokens represent subtransactions. In the initial
marking, tokens exist only in the depositories of places C1

and C2. The initial number of ’D’ tokens (’B’, ’P’ or ’M’) in
the depository of the former determines the number of concur-
rent dealer clients, whereas the initial number of ’W’ tokens in
the depository of the latter determines the number of planned
production lines running in the manufacturing domain. When
a dealer client starts a dealer transaction, transition t1 is fired
destroying a ’D’ token from the depository of place C1 and
creating a ’d’ token in place G, which corresponds to starting
the first subtransaction. The flow of control during processing
of subtransactions in the system is modeled by moving their re-
spective subtransaction tokens across the different places of the
QPN. Starting at place G, a dealer subtransaction token (’d’) is
first sent to place L where it receives service at the CPU of the
load balancer. After that it is moved to place E and from there
it is routed to one of the N application server CPUs represented
by places A1 to AN . Transitions t11, t13, . . . , t10+N have
equal firing probabilities (weights), so that subtransactions
are probabilistically load-balanced across the N application
servers. This approximates the round-robin mechanism used
by the load-balancer to distribute incoming requests among the
servers. Having completed its service at the application server
CPU, the dealer subtransaction token is moved to place F
from where it is sent to one of the two database server
CPUs with equal probability (transitions t4 and t5 have equal
firing weights). After completing its service at the CPU, the
dealer subtransaction token is moved to place H where it
receives service from the database disk subsystem. Once this
is completed, the dealer subtransaction token is destroyed by
transition t8 and there are two possible scenarios:

1) A new ’d’ token is created in place G, which starts the
next dealer subtransaction.

2) If there are no more subtransactions to be executed, the
’D’ token removed from place C1 in the beginning of
the transaction is returned. If the completed transaction
is of type Purchase and it has generated a large order,
additionally a token ’l’ is created in place E.

After a ’D’ token of a completed transaction returns back
to place C1, it spends some time at the IS queue of the latter.
This corresponds to the time the dealer client ”thinks” before
starting the next transaction. Once the dealer think time has
elapsed, the ’D’ token is moved to the depository and the next
transaction is started.

When a WorkOrder transaction is started on a planned line
in the manufacturing domain, transition t0 is fired destroying
a ’W’ token from the depository of place C2 and creating
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Fig. 6. Queueing Petri Net model of the system.

TABLE IV
PLACES USED IN THE QUEUEING PETRI NET MODEL.

Place Tokens Queue Type Description
C1 {B,P,M} G/M/∞/IS Queueing place used to model concurrent dealer clients conducting dealer transactions. The

time tokens spend here corresponds to the dealer think time.
C2 {W} G/M/∞/IS Queueing place used to model planned production lines driving work order processing. The

time tokens spend here corresponds to the mfg think time.
G {b,p,m} na Ordinary place where dealer subtransaction tokens are created when new subtransactions are

started.
L {b,p,m} G/M/1/PS Queueing place used to model the CPU of the load balancer machine.
E {b,p,m,l,w} na Ordinary place where subtransaction tokens arrive before they are distributed over the

application server nodes.
Ai {b,p,m,l,w} G/M/1/PS Queueing places used to model the CPUs of the N application server nodes.
F {b,p,m,l,w} na Ordinary place where subtransaction tokens arrive when visiting the database server. From

here tokens are evenly distributed over the two database server CPUs.
Bj {b,p,m,l,w} G/M/1/PS Queueing places used to model the two CPUs of the database server.
H {b,p,m,l,w} G/M/1/FCFS Queueing place used to model the disk subsystem (made up of a single 100 GB disk drive)

of the database server.
P {w} G/M/∞/IS Queueing place used to model the virtual production line stations that work orders move

along during their processing. The time tokens spend here corresponds to the average delay
at a production line station (i.e. 333 ms) emulated by the manufacturing application.

a ’w’ token in place E, which corresponds to starting the
first subtransaction. Since WorkOrder subtransaction requests
are load-balanced transparently (by the EJB client stubs)
without using a load balancer, the WorkOrder subtransaction
token (’w’) is routed directly to the application server CPUs -
places A1 to AN . It then moves along the places representing
the application server and database server resources exactly
in the same way as dealer subtransaction tokens. After it

completes its service at place H , the following two scenarios
are possible:

1) The ’w’ token is sent to place P whose IS queue
delays it for 333 ms, corresponding to the delay at
a virtual production line station. After that the token
is destroyed by transition t10 and a new ’w’ token is
created in place E, representing the next WorkOrder
subtransaction.
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TABLE V
FIRING MODES OF TRANSITION t8

Mode Action Case Modeled
1 H{b} → G{b} Browse subtransaction has been completed. Parent transaction is not finished yet.
2 H{b} → C1{B} Browse subtransaction has been completed. Parent transaction is finished.
3 H{p} → G{p} Purchase subtransaction has been completed. Parent transaction is not finished yet.
4 H{p} → C1{P} Purchase subtransaction has been completed. Parent transaction is finished.
5 H{p} → C1{P}+ E{l} Same as (4), but assuming that completed transaction has generated a large order.
6 H{m} → G{m} Manage subtransaction has been completed. Parent transaction is not finished yet.
7 H{m} → C1{M} Manage subtransaction has been completed. Parent transaction is finished.
8 H{l} → {} LargeOrder transaction has been completed. Its token is simply destroyed.

2) If there are no more subtransactions to be executed,
the ’w’ token is destroyed by transition t9 and the
’W’ token removed from place C2 in the beginning of
the transaction is returned.

After a ’W’ token of a completed transaction returns back
to place C2, it spends some time at the IS queue of the latter.
This corresponds to the time waited after completing a work
order at a production line before starting the next one. Once
this time has elapsed, the ’W’ token is moved to the depository
and the next transaction is started.

All transitions of the model are immediate and, with excep-
tion of t8 and t9, they all have equal weights for all of their
firing modes. The assignment of firing weights to transitions t8
and t9 is critical to achieving the desired behavior of trans-
actions in the model. Weights must be assigned in such a
way that transactions are terminated only after all of their
subtransactions have been completed. We will now explain
how this is done starting with transition t9 which has the
following two firing modes:

1) H{w} → P{w}: Corresponds to the case where a
WorkOrder subtransaction has been completed, but its
parent transaction is not finished yet. The parent transac-
tion is delayed for 333 ms at the production line station
(place P ) and then its next subtransaction is started by
depositing a new ’w’ token in place E.

2) H{w} → C2{W}: Corresponds to the case where a
WorkOrder subtransaction has been completed leading
to completion of its parent transaction. The ’W’ token
removed from place C2 in the beginning of the parent
WorkOrder transaction is now returned back.

According to Section III-E.4 (Figure 4), WorkOrder transac-
tions are comprised of four subtransactions. This means that,
for every WorkOrder transaction, four subtransactions have to
be executed before the transaction is completed. To model this
behavior, the firing weights (probabilities) of modes 1 and 2
are set to 3/4 and 1/4, respectively. Thus, out of every four
times a ’w’ token arrives in place H and enables transition t9,
on average the latter will be fired three times in mode 1 and
one time in mode 2, completing a WorkOrder transaction.

Transition t8, on the other hand, has eight firing modes as
shown in Table V. According to Section III-E.4 (Figure 3),
Browse transactions have 17 subtransactions, whereas Pur-
chase and Manage have only 5. This means that, for every
Browse transaction, 17 subtransactions have to be executed
before the transaction is completed, i.e. out of every 17 times

a ’b’ token arrives in place H and enables transition t8, the
latter has to be fired 16 times in mode 1 and one time in
mode 2 completing a Browse transaction. Similarly, out of
every 5 times an ’m’ token arrives in place H and enables
transition t8, the latter has to be fired 4 times in mode 6
and one time in mode 7 completing a Manage transaction.
Out of every 5 times a ’p’ token arrives in place H and
enables transition t8, the latter has to be fired 4 times in
mode 3 and one time in mode 4 or mode 5, depending on
whether a large order has been generated. On average 10%
of all completed Purchase transactions generate large orders.
Modeling these conditions probabilistically leads to a system
of simultaneous equations that the firing weights (probabili-
ties) of transition t8 need to fulfil. One possible solution is the
following: w(1) = 16, w(2) = 1, w(3) = 13.6, w(4) = 3.06,
w(5) = 0.34, w(6) = 13.6, w(7) = 3.4, w(8) = 17.

The workload intensity and service demand parameters from
Section III-E.5 (Tables II and III) are used to provide values for
the service times of tokens at the various queues of the model.
A separate set of parameter values is specified for each work-
load scenario considered. The service times of subtransactions
at the queues of the model are estimated by dividing the total
service demands of the respective transactions by the number
of subtransactions they have.

G. Step 5: Validate, refine and/or calibrate the model.

TABLE VI
INPUT PARAMETERS FOR VALIDATION SCENARIOS

Parameter Scenario 1 Scenario 2
Browse Clients 20 40
Purchase Clients 10 20
Manage Clients 10 30
Planned Lines 30 50
Dealer Think Time 5 sec 5 sec
Mfg Think Time 10 sec 10 sec

The model developed in the previous sections is now
validated by comparing its predictions against measurements
on the real system. Two application server nodes are available
for the validation experiments. The model predictions are
verified for a number of different scenarios under different
transaction mixes and workload intensities. The model input
parameters for two specific scenarios considered here are



SPEC BENCHMARK WORKSHOP 2006, AUSTIN, TEXAS, JANUARY 23, 2006. 10

TABLE VII
VALIDATION RESULTS

Validation Scenario 1 Validation Scenario 2
METRIC Model Measured Error Model Measured Error
Browse Throughput 3.784 3.718 +1.8% 6.988 6.913 +1.1%
Purchase Throughput 1.948 1.963 -0.7% 3.781 3.808 -0.7%
Manage Throughput 1.940 1.988 -2.4% 5.634 5.530 +1.9%
WorkOrder Throughput 2.713 2.680 +1.2% 4.469 4.510 -0.9%
LargeOrder Throughput 0.197 0.214 -8.1% 0.377 0.383 -1.56%
Browse Response Time 289ms 256ms +12.9% 704ms 660ms +6.7%
Purchase Response Time 131ms 120ms +9.2% 309ms 305ms +1.3%
Manage Response Time 139ms 130ms +6.9% 329ms 312ms +5.4%
WorkOrder Response Time 1087ms 1108ms -1.9% 1199ms 1209ms -0.8%
Load Balancer CPU Utilization 20.1% 19.5% +3.1% 39.2% 40.3% -2.7%
WebLogic Server CPU Utilization 41.3% 38.5% +7.3% 81.8% 83.0% -1.4%
Database Server CPU Utilization 9.7% 8.8% +10.2% 19.3% 19.3% 0.0%

shown in Table VI. Table VII compares the model predictions
against measurements on the system. The maximum modeling
error for throughput is 8.1%, for utilization 10.2% and for re-
sponse time 12.9%. Varying the transaction mix and workload
intensity led to predictions of similar accuracy. Since these
results are reasonable, the model is considered valid. Note
that the model validation process is iterative in nature and is
usually repeated multiple times as the model evolves. Even
though the model is deemed valid at this point of the study,
the model might lose its validity when it is modified in order to
reflect changes in the system. Generally, it is required that the
validation is repeated after every modification of the model.

H. Step 6: Use model to predict system performance.

In Section III-C some concrete goals were set for the
performance study. The system model is now used to predict
the performance of the system for the deployment configura-
tions and workload scenarios of interest. In order to validate
our approach, for each scenario considered we compare the
model predictions against measurements on the real system.
Note that this validation is not part of the methodology itself
and normally it does not have to be done. Indeed, if we
would have to validate the model results for every scenario
considered, there would be no point in using the model in
the first place. The reason we validate the model results here
is to demonstrate the effectiveness of our methodology and
showcase the predictive power of the QPN models it is based
on.

Table IX reports the analysis results for the scenarios under
normal operating conditions with 4 and 6 application server
nodes. In both cases, the model predictions are very close to
the measurements on the real system. Even for response times,
the modeling error does not exceed 10.1%. Table X shows
the model predictions for two scenarios under peak conditions
with 6 application server nodes. The first one uses the original
load balancer, while the second one uses an upgraded load
balancer with a faster CPU. The faster CPU results in lower
service demands as shown in Table VIII. With the original
load balancer six application server nodes turned out to be
insufficient to guarantee average response times of business

transactions below half a second. However, with the upgraded
load balancer this was achieved. In the rest of the scenarios
considered, the upgraded load balancer will be used.

TABLE VIII
LOAD BALANCER SERVICE DEMANDS

Load Balancer Browse Purchase Manage
Original 42.72ms 9.98ms 9.93ms
Upgraded 32.25ms 8.87ms 8.56ms

We now investigate the behavior of the system as the
workload intensity increases beyond peak conditions and
further application server nodes are added. Table XI shows
the model predictions for two scenarios with an increased
number of concurrent Browse clients, i.e. 150 in the first one
and 200 in the second one. In both scenarios the number of
application server nodes is 8. As evident from the results,
the load balancer is completely saturated when increasing
the workload intensity and it becomes a bottleneck limiting
the overall system performance. Therefore, adding further
application server nodes would not bring any benefit, unless
the load balancer is replaced with a faster one.

I. Step 7: Analyze results and address modeling objectives.

We can now use the results from the performance analysis
to address the goals established in Section III-C. By means
of the developed QPN model, we were able to predict the
performance of the system under normal operating conditions
with 4 and 6 WebLogic servers. It turned out that using
the original load balancer six application server nodes were
insufficient to guarantee average response times of business
transactions below half a second. Upgrading the load balancer
with a slightly faster CPU led to the CPU utilization of the
load balancer dropping by a good 20 percent. As a result, the
response times of dealer transactions improved by 15 to 27
percent meeting the ”half a second” requirement. However,
increasing the workload intensity beyond peak conditions
revealed that the load balancer was a bottleneck resource, pre-
venting us to scale the system by adding additional WebLogic
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TABLE IX
ANALYSIS RESULTS FOR SCENARIOS UNDER NORMAL CONDITIONS WITH 4 AND 6 APP. SERVER NODES

4 App. Server Nodes 6 App. Server Nodes
METRIC Model Measured Error Model Measured Error
Browse Throughput 7.549 7.438 +1.5% 7.589 7.415 +2.3%
Purchase Throughput 3.119 3.105 +0.5% 3.141 3.038 +3.4%
Manage Throughput 3.111 3.068 +1.4% 3.117 2.993 +4.1%
WorkOrder Throughput 4.517 4.550 -0.7% 4.517 4.320 +4.6%
LargeOrder Throughput 0.313 0.318 -1.6% 0.311 0.307 +1.3%
Browse Response Time 299ms 282ms +6.0% 266ms 267ms -0.4%
Purchase Response Time 131ms 119ms +10.1% 116ms 110ms +5.5%
Manage Response Time 140ms 131ms +6.9% 125ms 127ms -1.6%
WorkOrder Response Time 1086ms 1109ms -2.1% 1077ms 1100ms -2.1%
Load Balancer CPU Utilization 38.5% 38.0% +1.3% 38.7% 38.5% +0.1%
WebLogic Server CPU Utilization 38.0% 35.8% +6.1% 25.4% 23.7% +0.7%
Database Server CPU Utilization 16.7% 18.5% -9.7% 16.7% 15.5% +0.8%

TABLE X
ANALYSIS RESULTS FOR SCENARIOS UNDER PEAK CONDITIONS WITH 6 APP. SERVER NODES

Original Load Balancer Upgraded Load Balancer
METRIC Model Measured Error Model Measured Error
Browse Throughput 17.960 17.742 +1.2% 18.471 18.347 +0.7%
Purchase Throughput 4.981 4.913 +1.4% 5.027 5.072 -0.8%
Manage Throughput 4.981 4.995 -0.3% 5.013 5.032 -0.4%
WorkOrder Throughput 8.984 8.880 +1.2% 9.014 8.850 +1.8%
LargeOrder Throughput 0.497 0.490 +1.4% 0.501 0.515 -2.7%
Browse Response Time 567ms 534ms +6.2% 413ms 440ms -6.5%
Purchase Response Time 214ms 198ms +8.1% 182ms 165ms +10.3%
Manage Response Time 224ms 214ms +4.7% 193ms 187ms +3.2%
WorkOrder Response Time 1113ms 1135ms -1.9% 1115ms 1123ms -0.7%
Load Balancer CPU Utilization 86.6% 88.0% -1.6% 68.2% 70.0% -2.6%
WebLogic Server CPU Utilization 54.3% 53.8% +0.9% 55.4% 55.3% +0.2%
Database Server CPU Utilization 32.9% 34.5% -4.6% 33.3% 35.0% -4.9%

TABLE XI
ANALYSIS RESULTS FOR SCENARIOS UNDER HEAVY LOAD WITH 8 APP. SERVER NODES

Heavy Load Scenario 1 Heavy Load Scenario 2
METRIC Model Measured Error Model Measured Error
Browse Throughput 26.505 25.905 +2.3% 28.537 26.987 +5.7%
Purchase Throughput 4.948 4.817 +2.7% 4.619 4.333 +6.6%
Manage Throughput 4.944 4.825 +2.5% 4.604 4.528 +1.6%
WorkOrder Throughput 8.984 8.820 +1.8% 9.003 8.970 +0.4%
LargeOrder Throughput 0.497 0.488 +1.8% 0.460 0.417 +10.4%
Browse Response Time 664ms 714ms -7.0% 2012ms 2288ms -12.1%
Purchase Response Time 253ms 257ms -1.6% 632ms 802ms -21.2%
Manage Response Time 263ms 276ms -4.7% 630ms 745ms -15.4%
WorkOrder Response Time 1116ms 1128ms -1.1% 1123ms 1132ms -0.8%
Load Balancer CPU Utilization 94.1% 95.0% -0.9% 99.9% 100.0% -0.1%
WebLogic Server CPU Utilization 54.5% 54.1% +0.7% 57.3% 55.7% +2.9%
Database Server CPU Utilization 38.8% 42.0% -7.6% 39.6% 42.0% -5.7%

servers (see Figure 7). Therefore, in light of the expected
workload growth, the company should either replace the
load balancer machine with a faster one or consider using
a more efficient load balancing method. After this is done, the
performance analysis should be repeated to make sure that
there are no other system bottlenecks.

IV. CONCLUSION

In this paper, we presented a case study with the industry-
standard SPECjAppServer2004 benchmark in which the latter
was used as a representative J2EE application in order to
introduce a systematic approach for predicting the perfor-
mance and scalability of J2EE applications. The approach
is based on performance modeling and simulation. It takes
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Fig. 7. Predicted server CPU utilization in considered scenarios.

advantage of the modeling power and expressiveness of the
QPN formalism to improve model representativeness and
enable accurate performance prediction. A detailed model
of a SPECjAppServer2004 deployment was built in a step-
by-step fashion. The model representativeness was validated
by comparing its predictions against measurements on the
real system. A number of different deployment configurations
and workload scenarios were considered. In addition to CPU
and I/O contention, it was shown how some more complex
aspects of system behavior such as composite transactions
and asynchronous processing can be modeled. The model
proved to accurately reflect the performance and scalability
characteristics of the system under study. The modeling error
for transaction response time did not exceed 21.2% and was
much lower for transaction throughput and resource utilization.
The proposed performance modeling methodology provides a
powerful tool for performance prediction that can be used in
the software engineering process of J2EE applications.
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