
1

Performance Issues in E-Business Systems
Samuel D. Kounev and Alejandro P. Buchmann

Databases and Distributed Systems Group
Department of Computer Science

Darmstadt University of Technology
D-64283 Darmstadt, Germany

{skounev,buchmann}@informatik.tu-darmstadt.de

Abstract—Performance and scalability issues in e-business
systems are gaining in importance as we move from hype
and prototypes to real operational systems. Typical for this
development is also the emergence of standard benchmarks
of which TPC-W for transactional B2C systems and ECperf
for performance and scalability measurement of application
servers are two of the better known examples. In this paper
we present an experience report with the ECperf benchmark
defined by Sun and discuss performance issues that we ob-
served in our implementation of the benchmark. Some of
these issues are related to the specification of the bench-
mark, for which we made suggestions how to correct them
and others are related to database connectivity, locking pat-
terns, and the need for asynchronous processing.

Keywords—benchmarking, ECperf, J2EE, scalability, per-
formance, middleware, messaging

I. Introduction

OVER the past couple of years, the Java 2 Enterprise
Edition Platform (J2EE) has established itself as the

technology of choice for developing modern e-business so-
lutions. A large part of this success is due to the fact that
J2EE is not a proprietary product such as Microsoft .NET,
but rather an industry standard, developed as the result of
a large industry initiative led by Sun Microsystems. The
goal of this initiative was to establish a standard middle-
ware framework for developing enterprise-class distributed
applications in Java. Over 30 enterprise software vendors
have participated in this effort and have come up with their
own implementations of J2EE. The fact that these products
are all based on a common standard and that this standard
is itself based on Java, ensures that J2EE applications are
not only operating-system independent, but also portable
across a wide range of middleware platforms - J2EE imple-
mentations. This enables customers to develop their appli-
cations in a platform-independent manner and gives them
a wide selection of products where they can later deploy
them. Giving customers this freedom of choice encourages
best-of-breed products to compete and establish themselves
in the market. However, once product functionality is stan-
dardized, the focus is placed on the performance and scal-
ability of the underlying platforms. It is exactly here that
companies strive to distinguish their products in the mar-
ket and gain competitive advantage over the competition.
This development has led to the emergence of standard
benchmarks for measuring performance and scalability of
middleware products. A typical example is the newly re-
leased ECperf benchmark which was prototyped and built
by Sun in conjunction with J2EE application server ven-

dors under the Java Community Process. Server vendors
can use ECperf to measure, optimize and showcase their
product’s performance and scalability. Users, on the other
hand, can use it to gain a better understanding and in-
sight into the tuning and optimization issues surrounding
the development of modern J2EE-based applications. This
is exactly what we tried to achieve by means of the ECperf
benchmark. We deployed ECperf on a BEA Web Logic
Server and conducted a number of experiments and tests
with it. In this paper we present our experience from these
experiments and the lessons that we learned. We focus on
the problems that we encountered when running the bench-
mark out-of-the-box and attempting to scale the workload
as described in the documentation. In essence, our goal is
to use the ECperf benchmark as an example of a realis-
tic application, in order to identify and discuss the factors
that have the greatest performance impact on J2EE appli-
cations. At the same time we examine the areas that are
crucial for scalability and that could often turn into sys-
tem bottlenecks. In doing this, we consider both issues re-
lated to the application’s design, as well as issues related to
the configuration of the deployment environment. In the
end we summarize the lessons that we learned while ex-
perimenting with ECperf and present a list of tuning and
optimization techniques that could be applied to boost the
performance of an arbitrary J2EE application. Before we
start lets take a closer look at the J2EE Platform and the
role of the ECperf benchmark.

II. The J2EE Platform and ECperf

Fundamentally, the J2EE platform provides an infras-
tructure that enables the rapid development of large-scale
distributed applications in Java. The Enterprise JavaBeans
specification [16] is at the heart of this infrastructure and it
supplies the component model for developing EJB compo-
nents which are the building blocks of J2EE applications.
In essence, the aim of J2EE is to enable developers to
quickly and easily build scalable, reliable and secure ap-
plications without having to develop their own complex
middleware services. Here we are talking about services
such as caching, resource-pooling, clustering, transparent-
failover, load-balancing and back-end integration to name
just a few. The latter are crucial for today’s e-commerce
systems that need to cope with ever increasing load lev-
els and service demands. It is the J2EE application server
that takes the role of providing these services. Developers

2

can concentrate on the business and application logic and
rely on the application server to provide the infrastructure
needed for scalability and performance.

While the above is also provided by traditional middle-
ware platforms, the J2EE platform takes this paradigm one
step further by not only allowing developers to leverage
prewritten middleware services provided by the industry,
but also allowing them to do that without needing to code
to specific middleware APIs. That is, the only thing that is
required of developers is to declare the services they need
(using so-called deployment descriptors in the EJB termi-
nology). They are not required to write to an API in order
to obtain the services desired. This is often termed im-
plicit middleware [14] as opposed to explicit middleware
provided by traditional (for e.g. CORBA-based) middle-
ware infrastructures and Transaction Processing Monitors
(TPMs). Combined with the J2EE platform’s promise of
complete application portability and reusability across any
vendor’s middleware infrastructure, this brings the ”write-
once run-anywhere” paradigm of Java into the world of
server-side programming and appears to fulfill what until
recently could only be dreamed of.

But is it really so simple and easy as it sounds? Are all
these promises proven and can developers trust that the
server they have chosen is robust enough to bring scala-
bility, reliability and performance to their systems? Obvi-
ously, there are many factors affecting performance among
them the applicationŠs design, the deployment platform
and hardware used. However, a very significant factor is
the application server itself that is selected as a middle-
ware platform. This is where benchmarking and perfor-
mance measurement come into play. The only way one
could gain a picture of how good an application server per-
forms is to have it tested by running a realistic application
with a realistic workload. However, we have all been able
to witness how in the recent months different vendors have
been running proprietary benchmarks and coming up with
contradictory and biased results in their attempts to push
their products and beat the competition. One has to be ex-
tremely naive to trust any such results and claims. Needed
is a publicly available industry-standard benchmark, built
and maintained by the industry itself with no predomi-
nance of any particular vendor. Needed also is a com-
mittee to monitor and control the testing process in or-
der to prevent speculations and misuse of results, similar
to the Transaction Processing Performance Council (TPC)
in the area of DBMS benchmarking. This is exactly what
the ECperf benchmark and the ECperf review committee
claim to bring to the table. ECperf is composed of a spec-
ification and a toolkit. The specification [18] describes the
benchmark as a whole, the modeled workload, the running
and scaling rules, and finally the operation and report-
ing requirements. The toolkit provides the necessary code
to run the benchmark and measure performance. ECperf
was prototyped and built in conjunction with leading J2EE
application server vendors including BEA Systems, IBM,
iPlanet, Oracle, Sun Microsystems, Borland and IONA.

Now that we have gotten a better picture of J2EE and

the role and goals of ECperf, lets take a look at the work-
load used in ECperf as a basis for benchmarking perfor-
mance and scalability. The presentation below is based on
the ECperf workload description provided in [18] and [5].

III. The ECperf Workload

The ECperf workload is based on a huge distributed ap-
plication claimed to be big and complex enough to repre-
sent a real-world e-business system [18]. The ECperf de-
signers have chosen manufacturing, supply chain manage-
ment, and order/inventory as the ”storyline”of the business
problem modeled. As the designers themselves describe it
[5], this is a meaty, industrial-strength distributed prob-
lem, that is heavyweight, mission-critical and requires the
use of a powerful and scalable infrastructure. Most im-
portantly, it requires the use of interesting middleware ser-
vices, including distributed transactions, clustering, load-
balancing, fault-tolerance, caching, object persistence, and
resource pooling among others. It is those services of ap-
plication servers that are stressed and measured by the
ECperf benchmark.

ECperf models businesses by using 4 domains [18]:

1. The Customer Domain which handles customer orders
and interactions.

2. The Manufacturing Domain which performs ”Just In
Time” manufacturing operations.

3. The Supplier Domain which handles interactions with
external suppliers.

4. The Corporate Domain which is the master keeper of
customer, product, and supplier information.

Figure 1 illustrates the 4 ECperf business domains and
gives some examples of typical transactions run in each
domain.

CUSTOMER DOMAIN

Order Entry Application

Transactions:
- Place Order
- Change Order
- Get Order Status
- Cancel Order
- Get Customer Status

CORPORATE DOMAIN

Management of
Customer, Supplier and

Parts Information

 Transactions:
- Check Credit
- Get Percent Discount
- New Customer

MANUFACTURING DOMAIN

Manufacturing Application
- Planned Lines
- Large Order Line

 Transactions:
- Schedule Work Order
- Update Work Order
- Complete Work Order
- Create Large Order

SUPPLIER DOMAIN

Management of Interactions
with Suppliers

 Transactions:
- Send Purchase Order
- Deliver Purchase Order

Fig. 1. The ECperf Business Model

Below we walk you through a brief overview of these four
domains as they are described in the ECperf specification
itself [18]:

3

A. The Customer Domain

Work in the customer domain is OLTP in nature. An
order entry application runs in this domain whose func-
tionality includes adding new orders, changing an existing
order and retrieving the status of a particular order or all
orders of a particular customer. Orders are placed by indi-
vidual customers as well as by distributors. Orders placed
by distributors are called large orders.

Orders arrive from existing customers as well as new cus-
tomers. In either case, a credit check is performed on the
customer by sending a request to the corporate domain.
Various discounts are applied to the order depending on
whether the customer is a distributor, repeat or first-time
customer. Existing orders may be changed. A customer or
salesperson can view the status of a particular order.

B. The Manufacturing Domain

This domain models the activity of production lines in a
manufacturing plant. Products manufactured by the plant
are called widgets. Manufactured widgets are also called
assemblies, since they are comprised of components. The
Bill of Materials (BOM) for an assembly indicates the com-
ponents needed for producing it. Both assemblies and com-
ponents are commonly referred to as parts. There are two
types of production lines, namely planned lines and large
order lines. Planned lines run on schedule and produce a
pre-defined number of widgets. Large order lines run only
when a large order is received from a customer such as a
distributor. Manufacturing begins when a work order en-
ters the system. Each work order is for a specific quantity
of a particular type of widget. While work orders in the
planned line are typically created as a result of a forecasting
application, work orders in the large order line are gener-
ated as a result of customer orders. When a work order
is created, the Bill of Materials for the corresponding type
of widget is retrieved and the required parts are taken out
of inventory. As the widgets move through the assembly
line, the work order status is updated to reflect progress.
Once a work order is complete, it is marked as complete
and inventory is updated. As inventory of parts gets de-
pleted, suppliers need to be located and purchase orders
(POs) need to be sent out. This is done by contacting the
supplier domain.

C. The Supplier Domain

This domain is responsible for interactions with suppli-
ers. The supplier domain decides which supplier to choose
based on the parts that need to be ordered, the time in
which they are required and the price quoted by suppliers.
The company sends a purchase order (PO) to the selected
supplier. The purchase order will include the quantity of
various parts being purchased, the site it must be delivered
to and the date by which delivery must happen. When
parts are received from the supplier, the supplier domain
sends a message to the manufacturing domain to update
inventory.

D. The Corporate Domain

This domain manages the global list of customers, parts
and suppliers. Credit information, including credit lim-
its, about all customers is kept solely in a database in the
corporate domain. This is to provide maximal security and
privacy. For each new order, the customer domain requests
a credit worthiness check to the corporate domain. Cus-
tomer discounts are also computed in the corporate domain
for each new order or whenever an order is changed.

IV. The ECperf Application Design

All the activities and processes in the four domains de-
scribed above are implemented using Enterprise Java Bean
components (adhering to the EJB 1.1 specification [16]) as-
sembled into a single J2EE application which is deployed
on the System Under Test (SUT). The only exception is
for the interactions with suppliers which are implemented
using a special Java servlet called Supplier Emulator that
runs on a separate machine. The latter is assembled into
a separate application which is deployed in a Java-enabled
web server. The Supplier Emulator provides the supplier
domain with a way to emulate the process of sending and
receiving purchase orders to/from suppliers. The supplier
emulator accepts a purchase order from the BuyerSes ses-
sion bean in the supplier domain, processes the purchase
order, and then delivers the items requested to the Recei-
verSes session bean after sleeping for an amount of time
based on the lead time of the component. This interaction
is depicted in Figure 2:

Internet

ReceiverSes
EJB

BuyerSes
EJB

EJB Container

EJB

EJB EJB

EJB

Emulator
Servlet

Web ContainerSen
d P

O

Deliver PO

Fig. 2. Interaction with the Supplier Emulator

The workload generator is implemented using a multi-
threaded Java application called the ECperf Driver. The
latter is designed to run on multiple client machines, using
an arbitrary number of Java Virtual Machines (JVMs) to
ensure that it has no inherent scalability limitations. A
relational DBMS is used for data persistence and all data
access operations use entity beans which are mapped to
tables in the ECperf database. Both container (CMP) and
bean managed (BMP) persistence is supported.

The throughput of the ECperf benchmark is driven by
the activity of the order entry and manufacturing appli-
cations. The throughput of both applications is directly
related to the chosen Transaction Injection Rate (Ir). The
latter determines the number of order entry requests gener-
ated and the number of work orders scheduled per second.
Note, that the relationship between the Injection Rate and
the total number of transaction requests (order entry and
work order transactions) that are generated per second is

4

not straightforward. We refer the reader to the ECperf
specification for further information [16]. In any case, to
increase throughput, the Injection Rate needs to be in-
creased. The summarized performance metric provided af-
ter running the benchmark is called BBops/min and it de-
notes the average number of successful Benchmark Business
OPerationS per minute completed during the measurement
interval. BBops/min is composed of the total number of
business transactions completed in the customer domain,
added to the total number of work orders completed in the
manufacturing domain, normalized per minute. Because of
the lack of space, we will not go into any further details on
the ECperf EJBs, the database model and transactions im-
plemented. Readers interested in more details are referred
to [5] for more information.

V. The ECperf Persistence Bottleneck

Now that we have gained a better picture of the ECperf
benchmark itself, lets move on to the problems we encoun-
tered when putting it to use. We deployed ECperf on the
environment depicted in Figure 3.

Client PC

SUT - System Under Test
 ECperf EJBs deployed on Web Logic Server 6.1
 Solaris 7, SUN Ultra Sparc II (Ultra 60)
 Dual CPU 360 Mhz, 2 GB Main Memory

Sun Server

RDBMS: Informix Universal Server 9.20
 ECperf Database
 Solaris 7, SUN Ultra Sparc II (Ultra 60)
 Dual CPU 360 Mhz, 2 GB Main Memory

Sun Server

ECperf Supplier Emulator
 Emulator Servlet depl. on Web Logic Server 6.1
 Solaris 7, SUN Ultra Sparc II
 Single CPU 360 Mhz, 1 GB Main Memory

Sun Server

LAN Client PC running the ECperf Driver
 RedHat Linux 7.1, 192 MB Main Memory

Fig. 3. ECperf Deployment Environment

After running some experiments, we noticed that the
benchmark exhibits quite a different behavior depending
on the type of database management system (DBMS) that
is used for persistence. When deployed with Oracle8i
which uses optimistic multi-version concurrency control
techniques, the benchmark behaves as intended. However,
when deployed with a DBMS utilizing pessimistic locking-
based concurrency control techniques (such as Informix
Universal Server), the persistence layer seems to turn into
a bottleneck preventing one to stress the application server
and benchmark its performance. We now take a closer look
at the sources of this problem and then proceed to offer a
concrete solution to eliminate the persistence bottleneck.

Pessimistic concurrency control schedulers usually em-
ploy locking-based protocols such as the popular 2PL in its
many variants [21]. Under 2PL data items are locked before

being accessed. Concurrent transactions trying to access
locked data items in conflicting mode are either aborted or
blocked waiting for the locks to be released. When we run
ECperf out-of-the-box in such an environment we moni-
tored the database and observed very high data contention
levels. Large amounts of data access operations were re-
sulting in lock conflicts which were blocking the respective
transactions. A high proportion of the latter were eventu-
ally being aborted because of either timing out or causing
a deadlock. As a result very poor throughput levels were
achievable and raising the injection rate beyond 2 caused a
sudden drop in throughput - a phenomenon known as Data
Thrashing [19].

The first thing that comes to mind when trying to re-
duce data contention is to decrease the locking granularity
[21]. After setting up Informix to use row-level locks (in-
stead of page-level locks) we observed a significant increase
in throughput. To further optimize the data layer we tried
decreasing the isolation level [13]. We configured all entity
beans to use the SQL TRANSACTION_COMMITTED_READ isola-
tion level although this could compromise data consistency
and integrity at high injection rates. However, the ECperf
specification [18] doesn’t place a restriction with respect to
this.

While the above optimizations could help to reduce the
identified bottleneck, they could not completely eliminate
it and make ECperf

behave as originally intended. We now take an inside
look at the way ECperf is designed in order to gain a better
picture of the reasons for the bottleneck.

A. Getting to the Bottom of the Problem

After conducting a number of experiments and carefully
monitoring the database we noticed the following: the cru-
cial transaction scheduleWorkOrder of the WorkOrder-
Ses bean was taking relatively long to complete, while hold-
ing exclusive locks on some highly demanded database ta-
bles. The transaction first creates a new work order entity,
then identifies the components that make up the requested
assembly in the Bill of Materials and assigns the required
parts from inventory. The transaction can also cause calls
into the Supplier Domain in case some parts get depleted
and new amounts need to be ordered. Now, lets follow its
execution in a step by step fashion as depicted in Figure 4.

The scheduleWorkOrder transaction proceeds as follows:

1. Create a work order

- insert a row in the M_WORKORDER table

2. Start processing the work order (stage 1 processing)

- get the Bill of Materials needed
- assign required parts from inventory

3. If parts need to be ordered send a Purchase Order

- insert rows in the S_PURCHASE_ORDER and
S_PURCHASE_ORDERLINE tables

- send the purchase order to the Supplier Emulator -
order is sent in XML format through HTTP

5

���������	
��
��
 ��

��������	
��

���	������
�
����

���������	������
����

�
������	
���
��

����
�
����
	��������	
�

���
�
�����
����� ��	��������

���

�
�����!�
�����!�

�	���
��"�������

Fig. 4. The scheduleWorkOrder Transaction

We identified two problems with this design of the sched-
uleWorkOrder transaction. First, sending the purchase
order (the last step) delays the transaction while hold-
ing locks on the previously inserted table and index en-
tries. We monitored the database lock tables and observed
that indeed most of the lock conflicts were occurring when
trying to access the M_WORKORDER, S_PURCHASE_ORDER and
S_PURCHASE_ORDERLINE tables or their indices. This sup-
ported our initial suspicion that it was the access to these
tables that was causing the bottleneck.

The second problem with the given design of ECperf is
that the sending step is not undoable. This means that
once a new purchase order is sent to the Supplier Emu-
lator, its processing begins and this processing cannot be
cancelled even if the scheduleWorkOrder transaction even-
tually aborts. Indeed, if that occurs all actions of the trans-
action will be rolled back except for the sending step. As a
result, the respective purchase order will be removed from
the S_PURCHASE_ORDER table, but the Emulator won’t be
aware that the order has been cancelled and will continue
processing it. Later when the order is delivered no informa-
tion about it will be found in the database and an excep-
tion will be triggered. So while the first problem is to do
with data contention and performance, the second one con-
cerns the scheduleWorkOrder transaction’s atomicity and
semantics.

In the following we are going to suggest some minor
modifications of the benchmark that aim at circumvent-
ing the identified bottleneck. Our approach is to break up
the scheduleWorkOrder transaction into smaller separate
transactions. This is known as Transaction Chopping in
the literature [21]. The main goal is to commit update
operations as early as possible, so that respective locks are
released. We strive to isolate time-consuming operations in
separate transactions that do not require exclusive locks.
At the same time we ensure that transaction semantics are
correct.

We have identified and proposed two different solutions
to the identified problems. In the first one we keep adhering

to the EJB 1.1 specification, while in the second we utilize
some services defined in the EJB 2.0 specification. In this
paper we will only consider the second solution since it
has some significant advantages over the first one. Readers
interested in the EJB 1.1 solution are referred to [9].

B. Utilizing Messaging and Asynchronous Processing

The problem with the scheduleWorkOrder transaction
was that the sending of the purchase order may delay the
transaction while holding highly demanded locks. On the
one hand, we want to move this step into a separate trans-
action to make scheduleWorkOrder finish faster. On the
other hand, we need to guarantee that the sending oper-
ation is executed atomically with the rest of the sched-
uleWorkOrder operations. Notice here that in the given
situation we do not have the requirement that the sending
of the purchase order is executed to its end before sched-
uleWorkOrder commits. We only need to make sure that,
provided that it commits, the sending operation is even-
tually executed. This situation lends itself naturally to
Asynchronous Processing and Messaging.

Messaging is an alternative to traditional Request-Reply
Processing. Request-Reply is usually based on Remote
Method Invocation or Remote Procedure Call mechanisms.
Under these mechanisms, a client sends a request (usu-
ally by calling a method on a remote object) and is then
blocked, waiting until the request is processed to its end -
this is exactly our situation above with the sending of the
purchase order. This blocking element prevents the client
from performing any processing in parallel while waiting
for the server - a problem that has long been a thorn
for software developers and whose solution has led to the
emergence of Messaging and Message-Oriented Middleware
(MOM) as an alternative to Request-Reply. In fact, it is
a solution defined long time ago with the advent of the
so-called Queued Transaction Processing Models [3].

In a nutshell, the idea behind messaging is that a middle-
man is introduced, sitting between the client and the server
[14]. The middleman receives messages from one or more
message producers and broadcasts those messages to pos-
sibly multiple message consumers. This allows a producer
to send a message and then continue processing while the
message is being delivered and processed. The message pro-
ducer can optionally be later notified when the message is
completely processed. The Java Messaging Service (JMS)
[17] is a standard Java API for accessing MOM infrastruc-
tures and the EJB 2.0 specification [16] integrates JMS with
EJB by introducing the so-called Message-Driven Beans.
The latter are components that act as message consumers
in that they receive and process messages delivered by the
MOM infrastructure.

C. Eliminating the Persistence Bottleneck

We are now ready to present our solution to the prob-
lem with the scheduleWorkOrder transaction. We wanted
to allow the transaction to commit before the purchase or-
der is sent, but with the guarantee that it will eventually
be sent out. By utilizing Messaging we can simply sent a

6

message to the supplier domain notifying that a new or-
der has been created and must be sent. After this we can
safely commit our transaction and release all locks. A dedi-
cated message-driven bean can run in the Supplier Domain
to handle incoming messages by sending orders out to the
Supplier Emulator. Modern Messaging infrastructures also
provide a Guaranteed Message Delivery option which en-
sures that once a transaction is committed all messages
it has sent will be delivered even if respective consumers
were down at the time of sending. This property enables
us to safely move our sending step into a separate trans-
action and allow it to execute asynchronously. Figure 5
illustrates this solution.

JMS Server

JMS Queue

EJB Container

Supplier
Emulator
Servlet

Web Container

WorkOrderSes
EJB

Message-Driven
Bean

Fig. 5. Sending purchase orders asynchronously.

The new design of the scheduleWorkOrder transaction is
depicted in Figure 6.

���������	
��
��
 ��
�
����

���������	������
����

�
������	
���
��

����
�
����
	��������	
�

���
�
�����
����� ��	��������

���

�
�����!�
����������#�

�����#�$�
��������� ��

��������	
��
�
����!��%����

"����!�

������&�������#�

�	���
��"�������

��

���	���� !��%����

�����!��	��
�'((!

Fig. 6. New design of the scheduleWorkOrder transaction.

Figure 7 compares throughput (BBops/min) achieved
when running ECperf out-of-the-box with throughput
achieved after implementing our Messaging-based op-
timization. All data is relative to the throughput
(Bbops/min) that we obtained when running ECperf out-
of-the-box with injection rate of 1. Note that all tests were
run using a single instance of WebLogic Server. We expect
even better results if a multi-instance WebLogic Cluster is
run on the same hardware.

Not only does this design bring a big performance ad-
vantage, but it also eliminates the second problem that we
mentioned regarding the atomicity of the scheduleWorkO-
rder transaction. There is no way for a purchase order to be
cancelled after it has been sent to the Supplier Emulator. A

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10
Transaction Injection Rate

R
el

at
iv

e
T

hr
ou

gh
pu

t

Synchronous Asynchronous

Fig. 7. Synchronous vs. Asynchronous variant of ECperf

further benefit that we get is related to the application’s re-
liability. Under the original design if the Supplier Emulator
is down at the time a new purchase order is being created,
the scheduleWorkOrder transaction will be aborted after
timing out and all its work will be lost. With the new de-
sign the notification message will be sent successfully and
although the sending of the order will be delayed until the
Emulator comes up, the scheduleWorkOrder transaction
will be able to finish successfully.

Before we conclude this section we want to stress that
the elimination of the persistence bottleneck was the cru-
cial step in getting the benchmark up and running in our
deployment environment. We could hardly achieve any sen-
sible results before implementing our optimizations. One
might wonder why these problems were not noticed earlier.
The answer is that everyone had only been testing with Or-
acle where a completely different concurrency control pro-
tocol is used. For this particular workload Oracle’s proto-
col proved to perform much better. However, even with an
Oracle DBMS our optimizations bring some significant per-
formance and reliability benefits. In any case, ECperf has
been planned to be a DBMS-independent benchmark and
therefore some changes are required to make this a reality.
We submitted our optimization proposals to the ECperf
Expert Group at Sun Microsystems Inc., where they have
been discussed and addressed. Although it is too late to
make modifications to the 1.0 version of the benchmark,
the ECperf Expert Group vowed to eliminate the problems
that we raised with the next version of the benchmark.

In the rest of this paper we are going to discuss some
general techniques for tuning and optimizing J2EE appli-
cations. Some of these techniques we are going to apply to
the ECperf benchmark in order to try to give a rough idea
of the performance speedup that they can achieve. There
are numerous design patterns for writing scalable J2EE ap-
plications available in the literature [10]. Since we cannot
cover every possible technique in this paper, we are going
to focus on the issues that, in our opinion, are most signif-

7

icant and that are applicable for most J2EE applications
and application servers. These issues revolve around the
techniques provided by J2EE for data persistence, caching
and resource pooling. The latter have proven to be crucial
for J2EE performance and practical experience shows that
it is exactly in these areas that processing inefficiencies and
scalability bottlenecks are usually discovered.

VI. Optimizing Entity Beans

Entity Beans are the natural method provided by J2EE
for modeling persistent data. Ever since their introduction,
they have been the subject of hot discussions and disputes
in the Enterprise Java Community. Some argue that they
are so inefficient that one should not even consider using
them. Others go to the opposite extreme and take their
use to excess. In any case, practice has shown that for
many e-business applications entity beans can achieve a
reasonable performance level at a very low cost in terms
of development time and effort. However, if not configured
and optimized properly, entity beans can turn into a per-
formance killer. In this section we will discuss the most
important performance issues regarding the use of entity
beans and their tuning and optimization. We will be as-
suming that a relational DBMS is used as an underlying
persistence mechanism.

Before we start lets take a quick look at the lifecycle of
an entity bean.

A. Entity Bean Lifecycle

According to the EJB specification [16] at each point in
time entity beans can be in one of three possible states:
”Does Not Exist”, ”Pooled” or ”Ready”. These states to-
gether with the methods that are invoked upon state tran-
sitions are illustrated in Figure 8.

Does Not Exist

Pooled State

Ready State

newInstance()
setEntityContext()

ejbCreate()
ejbPostCreate()

 OR

ejbActivate()
ejbLoad()

unsetEntityContext()

ejbRemove()
 OR

ejbStore()
ejbPassivate()

ejbHome()
ejbFind()

ejbLoad()
business-method()

ejbStore()

Fig. 8. Lifecycle of an Entity Bean instance.

An entity bean instance’s life starts when the container
creates the instance by calling newInstance. The instance
enters a pool of available instances. Each entity bean has
its own pool. While the instance is in the pool, it is not
associated with any particular entity object identity. All

instances in the pool are considered equivalent and the con-
tainer may use them to execute any of the entity bean’s
finder methods - ejbFind. An instance transitions from
the pooled state to the ready state when the container se-
lects that instance to service a client call to an entity bean.
When an entity bean instance is in the ready state, the
instance is associated with a specific entity object identity
and business methods can be invoked on it zero or more
times. The purpose of the ejbLoad and ejbStore methods
is to synchronize the state of the instance with the state of
the entity in the underlying persistent storage. Typically,
the container calls ejbLoad at transaction begin (when an
entity bean is first accessed) in order to load the entity’s
data. At transaction commit the container calls ejbStore
to write back updated data to persistent storage.

B. Configuring Container’s Caching Behavior

Having control over the times when entity beans transi-
tion from one state to another and the times when ejbLoad
and ejbStore methods are called, allows containers to cache
both entity bean object instances (with and without iden-
tity) as well as entity bean data. The EJB specification
defines three commit options for entity beans - A, B and C.
The latter can be used to configure the container’s behav-
ior with respect to when transitions between states are trig-
gered and when ejbLoad and ejbStore methods are invoked.
This in turn determines what is cached across transactions:
objects without identity (commit option C), objects with
identity (commit option B) or objects with data (commit
option A). However, the specification does not mandate
support for all three options and most containers currently
on the market do not support them explicitly. Nevertheless,
all containers usually provide some means for configuring
their caching behavior. In the following, we will discuss the
most crucial issues related to the configuration of caching
behavior and will use BEA WebLogic Server (which accord-
ing to a recent report issued by Meta Group is currently
the most popular J2EE application server) to illustrate the
points we make. For a detailed discussion and performance
analysis of the three different commit options we refer the
reader to [4].

As we already pointed out, most containers (including
WebLogic) invoke ejbLoad at the point when an entity bean
is first accessed from the context of a transaction. When
the transaction commits, ejbStore is called to store updates
in the underlying store. This ensures that new transac-
tions always use the latest version of the entity’s persistent
data, and always write this data back to persistent stor-
age upon committing. In certain circumstances, however,
this default behavior may lead to excessive database calls
and performance degradation. Our aim here is to config-
ure the container in such a way that calls to the database
(ejbLoad and ejbStore) are minimized. For example, for
beans that are never modified calls to ejbStore can be
spared. In WebLogic Server, this can be done by declar-
ing the bean as read-only in the ”weblogic-ejb-jar.xml”
deployment descriptor by use of the so-called ”read-only
concurrency strategy”. For more information on how to do

8

this refer to [1]. While declaring a bean as read-only com-
pletely eliminates calls to ejbStore, the same does not apply
to ejbLoad calls. This is because even though the bean is
never modified through the EJB layer, this does not pre-
vent direct updates of its underlying data external to the
EJB application. Therefore, periodic calls to ejbLoad are
still needed to keep cached data up-to-data.

Access to entity beans that are only occasionally updated
can also be optimized by using the so-called Read-Mostly
Pattern. The idea is to implement a read-only entity bean
and a separate read-write entity bean, mapping both of
them to the same underlying data. To read the data, you
use the read-only entity bean. To update the data, you use
the read-write entity bean. For

more information and examples refer to [1].
For situations where only a single server instance ever

accesses a particular entity bean, calling ejbLoad at the
start of each transaction is unnecessary and can be elim-
inated. Only one initial call is needed to load the data
from persistent storage. Afterwards this data can be cached
and accessed by many transactions without further calls to
ejbLoad. Because no other clients or systems update the
underlying data, cached version of the entity data is al-
ways up-to-date. In WebLogic Server this can be achieved
by setting the so-called db-is-shared deployment parame-
ter to ”false” in the bean’s weblogic-ejb-jar.xml deployment
descriptor.

Before we finish with this section lets say a couple of
words about concurrency control for entity beans. There
are basically two options for enforcing concurrency con-
trol when using entity beans. The application server can
choose to use it’s own algorithm to enforce serializability
(for example by employing some form of a locking pro-
tocol). Alternatively, the application server can delegate
concurrency control to the underlying data store. Although
having control of concurrent access to entity beans provides
the container with more possibilities to cache data, prac-
tical experience shows that delegating concurrency control
to the DBMS (which is the typical persistence mechanism)
usually achieves better concurrency and results in higher
throughput. Therefore we recommend the second alterna-
tive for most applications.

C. Bean-Managed vs. Container-Managed Persistence

The EJB specification [16] offers two alternatives for
defining the data access code of entity beans. In the first
case, code is written by the component developer and the
bean is said to use Bean-Managed Persistence (BMP). In
the second case, code is automatically generated by the
container and the bean is said to use Container-Managed
Persistence (CMP). As discussed in [14] both BMP and
CMP have their virtues and drawbacks. In this section we
will discuss the issues that drive the choice between BMP
and CMP and will provide some guidelines for optimizing
entity bean persistence logic.

Lets get back to ECperf. The benchmark offers both
BMP and CMP versions of all entity beans. After elimi-
nating the persistence bottleneck we conducted some ex-

periments, first with BMP and then with CMP, in order
to gain a picture of how big the performance difference
was. We were quite surprised that ECperf performed much
worse with BMP than with CMP. Monitoring the database
server, we noticed that in the BMP version of ECperf, en-
tity bean data was being written to the database at every
transaction commit, even if no changes had been made. We
modified the BMP code to check if data had been modified
and only in this case update the database [15]. As a result
throughput soared by a factor of 2, but performance was
still worse than with CMP. Figure 9 shows the ECperf re-
sults that we obtained with our optimized BMP code com-
pared to the results that we obtained with CMP. The first
graph compares average throughput - transactions per min.
The second graph compares average response time of the
four order entry transactions - NewOrder, ChangeOrder,
OrderStatus and CustomerStatus. All data is normalized
relative to the respective results obtained for BMP code
with injection rate of 5.

0

1

2

3

5 10 15

Transaction Injection Rate

A
ve

ra
ge

 T
hr

ou
gh

pu
t

BMP CMP

0

0.5

1

1.5

5 10 15

Transaction Injection Rate

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

Fig. 9. ECperf Results with BMP vs. CMP

As argued in [15] there are some important reasons for
this performance difference. Most importantly, giving the
container control over the data access logic, allows for some
automatic optimizations usually not implemented in BMP
code. For example, the container can monitor which fields
of an entity bean are modified during a transaction and

9

make sure that only those fields are written to the database
at commit time. This minimizes database access calls
and avoids doing unnecessary work. Another optimization
which is usually provided is related to the loading of entity
beans. With BMP loading an entity bean usually requires
2 database calls:

1. ejbFind to find the respective database record and re-
trieve its primary key.

2. ejbLoad to read the entity bean’s data from the
database.

With CMP these steps are usually transparently com-
bined into a single database access retrieving both the pri-
mary key and the data. Similar optimization can also be
applied when loading a collection of N entity beans. With
BMP this would require N+1 database calls - 1 ejbFind
and N ejbLoads. With CMP the container can be con-
figured to automatically combine the N+1 calls into one
single call. We should note here that not all containers
currently available implement all of the above optimiza-
tions. However, the major ones do and we can expect that
as containers mature, more and more optimizations will
be automatically provided by CMP. Therefore our recom-
mendation is to use CMP instead of BMP whenever that is
possible. However, if for some reason you need to use BMP,
there are some common techniques that you could apply to
increase performance. First of all, you can workaround the
N+1 database calls problem described above, by applying
the so-called Fat Key Pattern. For lack of space, we are
not going to discuss this pattern here but refer interested
readers to [10] for more information.

Another thing one should remember when using BMP
is to always use parameterized prepared SQL statements
[11]. This reduces the load on the DBMS by allowing it to
reuse cached execution plans for statements that were al-
ready prepared. The correct use of prepared statements
also lets you take advantage of the so-called Prepared-
Statement Cache which is usually provided by application
servers as part of the connection pool manager. The appli-
cation server keeps a list of prepared statements and when
an application calls prepareStatement on a connection, the
server checks if that statement was previously prepared. If
that is the case, the PreparedStatement object is found in
the cache and is directly returned to the application. This
reduces the number of calls to the JDBC Driver and im-
proves response times. Most containers allow you to tune
the size of the prepared statement cache for optimal per-
formance. Finally, remember to make sure that all SQL
statements are closed properly when they are no longer
needed. This closes respective database cursors which cost
resources in the database.

D. Eliminating Deadlocks

As discussed in [15], when multiple entity beans are in-
volved in a transaction, the sequence in which their ejb-
Store methods get called at the end of the transaction is
undefined. However, although the EJB specification does
not mandate this, it is usually assumed that the container

invokes ejbStore methods in the sequence in which the re-
spective beans have initially joined the transaction (by hav-
ing a transactional method invoked on them). Therefore
accessing entity beans in different orders from within differ-
ent transcations may lead to deadlocks in databases which
employ locking-based schedulers.

For example, with ECperf, deadlocks were detected when
reading order items in different orders in the ChangeOrder
and OrderStatus transactions. This is because the order
items are not sorted. If a transaction tries to access items
X and Y, while another transaction tries to do the same
but in the opposite order, a deadlock will result. This prob-
lem was identified by the ECperf developers and was fixed
in update 1 of the benchmark by making sure that order
items are always accessed in sorted order. The take away
point here is that in order to minimize deadlocks it is rec-
ommended that you access entity beans always in the same
order in different transactions throughout your application.

E. Avoid overusing Entity Beans

Even though entity beans are the natural method for
managing persistent data in J2EE applications, there are
situations when the benefit of using them may not be worth
the additional overhead of going through the entity bean
layer. A typical example would be an application that
needs to present some static server-side data to a client in
tabular form - for example information on all employees of
a company, the line items of a large order or the character-
istics of all products a company produces. In such cases go-
ing through the entity bean layer may lead to unacceptable
performance degradation. Therefore, when reading large
amounts of read-only data for listing purposes it is recom-
mended to consider bypassing entity beans and read data
directly through JDBC in session beans. This is sometimes
termed Session Bean-Managed Persistence (SMP) and in
the above situations may lead to a significant performance
speedup. For a detailed discussion on how to decide when
to use SMP instead of entity beans see the ”JDBC for Read-
ing” pattern in [10].

VII. Summary of Lessons Learned

We summarize the lessons that we learned while experi-
menting with ECperf and present a list of tuning and op-
timization techniques that could be applied to boost the
performance of an arbitrary J2EE application. Following
is a list of take-away points from the discussions presented
in this paper:

1. Use CMP instead of BMP whenever possible.
2. When reading large amounts of data for listing pur-

poses, use SMP.
3. Use the lowest isolation level that does not compromise

data integrity.
4. Configure the database’s locking granularity properly.
5. Exploit container’s caching services to their full extent.
6. Always access entity beans in the same order in all

transactions throughout the application.

10

7. Make transactions as short as possible.

- Don’t allow a transaction to span user interactions,
network communications or any other activities that
might potentially take a long time. Execute long
operations asynchronously.

- Make sure that transactions are demarcated cor-
rectly - check the transaction attribute settings.

8. Use Asynchronous Processing and Messaging instead of
traditional Request-Reply Processing whenever possible
- Messaging brings significant performance, scalability
and reliability benefits.

9. Use your container’s facilities for monitoring connection
pools, bean pools, threads, transactions and other re-
sources used during operation. At the same time use
available tools and facilities to monitor all database
servers in use. This might help you discover subtle pro-
cessing inefficiencies and scalability bottlenecks.

10. If you are using a DBMS for persistence try testing
your application with different database servers.

VIII. Conclusions

ECperf specifies a heavy duty problem and the necessary
settings of application servers to guarantee an unbiased
performance comparison. However, a few problems with
the specification of ECperf were identified and solutions
proposed to the ECperf Expert Group. In particular, the
redefinition of the interaction with suppliers was proposed
and the benefits of asynchronous message-based processing
were illustrated leading to a performance boost of at least
a factor of 5. It was shown that J2EE entity beans are a
powerful platform but entity beans must be used carefully.
Apparently minor differences in the use of entity beans may
result in significant performance gains or losses.

Acknowledgments

We gratefully acknowledge the many fruitful discussions
with Shanti Subramanyam and Akara Sucharitakul from
Sun Microsystems Inc, Dan Fishman and Steve Realmuto
from BEA Systems, Chris Beer from SPEC and our col-
leagues Christian Haul and Mariano Cilia from Darmstadt
University of Technology.

References

[1] Bea Systems, Inc. WebLogic Server Documentation. Technical
report. http://e-docs.bea.com/wls/.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley
Publishing Company, 1987.

[3] P. Bernstein and E. Newcomer. Principles of Transaction Pro-
cessing. Morgan Kaufmann Publishers, Inc., 1997.

[4] P. Brebner and S. Ran. Entity Bean A, B, C’s: Enterprise Java
Beans Commit Options and Caching. In Proc. of IFIP/ACM
International Conference on Distributed Systems Platforms -
Middleware, 2001.

[5] TheServerSide.com J2EE Community. The ECPerf homepage.
http://ecperf.theserverside.com/ecperf/.

[6] S. Deshpande, B. Martin, and S. Subramanyam. Eight Rea-
sons ECperf is the Right Way to Evaluate J2EE Perfor-
mance. TheServerSide.com J2EE Community, 2001. http:
//www.theserverside.com/.

[7] J. Gray and A. Reuter. Transaction Processing - Concepts and
Techniques. Morgan Kaufmann Publishers, Inc., 1993.

[8] S. Kounev. Eliminating ECperf Persistence Bottlenecks
when using RDBMS with Pessimistic Concurrency Control.
Technical Report http://www.dvs1.informatik.tu-darmstadt.
de/~skounev, Technical University of Darmstadt, Germany,
September 2001.

[9] S. Kounev and A. Buchmann. Optimizing Sun’s ECperf Bench-
mark for Measuring Performance and Scalability of J2EE-
Application Servers. In To appear in Proc. of the 22nd Interna-
tional Conference on Distributed Computing Systems - ICDCS,
2002.

[10] F. Marinescu. Enterprise Java Beans Design Patterns. John-
Wiley & Sons, Inc., 2002.

[11] B. Newport. Why prepared statements are important and how
to use them properly. TheServerSide.com J2EE Community -
http: // www. theserverside. com/ , 2001.

[12] C. Pancake and C. Lengauer. High-Performance Java. Commu-
nications of the ACM, 44, 2001.

[13] R. Ramakrishnan and J. Gehrke. Database Management Sys-
tems. McGraw-Hill, 2nd edition, 2000.

[14] Ed Roman, S. Ambler, and T. Jewell. Mastering Enterprise Java
Beans II and the Java 2 Platform, Enterprise Edition. John-
Wiley & Sons, Inc., 2002.

[15] A. Sucharitakul. Seven Rules for Optimizing Entity Beans. Java
Developer Connection - http: // www. java. com/ , 2001.

[16] Sun Microsystems, Inc. Enterprise JavaBeans 1.1 and 2.0. Spec-
ifications. http://java.sun.com/products/ejb/.

[17] Sun Microsystems, Inc. Java Message Service API 1.0.2. Speci-
fication. http://java.sun.com/products/jms/.

[18] Sun Microsystems, Inc. The ECperf 1.0 Benchmark. Specifica-
tion, June 2001. http://java.sun.com/j2ee/ecperf/.

[19] Y. Tay, N. Goodman, and R. Suri. Locking Performance in Cen-
tralized Databases. ACM Transactions on Database Systems,
10/4, 1985.

[20] C. Vawter and Ed Roman. J2EE vs. Microsoft .NET - A com-
parison of building XML-based web services. TheServerSide.com
J2EE Community - http: // www. theserverside. com/ , 2001.

[21] G. Weikum and G. Vossen. Transactional Information Systems
- Theory, Algorithms, and the Practice of Concurrency Control
and Recovery. Morgan Kaufmann Publishers, 2002.

