
Metrics and Techniques for Quantifying Performance
Isolation in Cloud Environments

Rouven Krebs
SAP AG

69190 Walldorf, Germany
rouven.krebs@sap.com

Christof Momm
SAP AG

69190 Walldorf, Germany
christof.momm@sap.com

Samuel Kounev
Karlsruhe Institute of

Technology
76131 Karlsruhe, Germany

kounev@kit.edu

ABSTRACT
The cloud computing paradigm enables the provision of cost-
efficient IT-services by leveraging economies of scale and
sharing data center resources efficiently among multiple in-
dependent applications and customers. However, the shar-
ing of resources leads to possible interference between users
and performance problems are one of the major obstacles
for potential cloud customers. Consequently, it is one of the
primary goals of cloud service providers to have different
customers and their hosted applications isolated as much as
possible in terms of the performance they observe.
To make different offerings, comparable with regards to

their performance isolation capabilities, a representative met-
ric is needed to quantify the level of performance isolation in
cloud environments. Such a metric should allow to measure
externally by running benchmarks from the outside treating
the cloud as a black box. In this paper, we propose three dif-
ferent types of novel metrics for quantifying the performance
isolation of cloud-based systems and a simulation-based case
study applying these metrics in the context of a Software-
as-a-Service (SaaS) scenario where different customers (ten-
ants) share one single application instance. We consider four
different approaches to achieve performance isolation and
evaluate them based on the proposed metrics. The results
demonstrate the effectiveness and practical usability of the
proposed metrics in quantifying the performance isolation of
cloud environments.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Measurement techniques,
Design studies]; D.2.8 [Software Engineering]: Metrics—
performance measures

General Terms
Performance, Measurement

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSA’12, June 25–28, 2012, Bertinoro, Italy.
Copyright 2012 ACM 978-1-4503-1346-9/12/06 ...$10.00.

Keywords
Performance, Isolation, Metric, SaaS, Cloud, Multi-tenancy

1. INTRODUCTION
Resource sharing promises significant cost savings in cloud

environments, thanks to the reduced per customer overheads
and economies of scale [20] [1]. The most significant obstacle
for potential cloud users, besides data isolation and security
aspects, is unreliable performance [11] [1] [3]. Therefore,
providing performance guarantees is a major research issue
in the area of cloud computing [8]. Providing one cloud cus-
tomer constant Quality of Service (QoS) independent from
the load induced by others is referred to as performance iso-
lation.

NIST [18] defines three service models for cloud com-
puting. The Infrastructure-as-a-Service (IaaS) model lever-
ages virtualization to share hardware resources among cus-
tomers. The Platform-as-a-Service (PaaS) model hosts ap-
plications of different customers within one middleware in-
stance. Software-as-a-Service (SaaS) is the last model which
provides a ready to run, hosted application. Isolating cloud
customers in terms of the performance they experience is an
important concern in each of these scenarios.

The allocation of hardware resources is handled by the
lower levels (e.g., IaaS) in the stack. Therefore, we see per-
formance isolation as a bigger challenge in the PaaS and
SaaS scenarios as they have no direct resource control in con-
trast to IaaS scenarios. Within a SaaS environment, a group
of users sharing the same view onto the application are re-
ferred to as tenant. This view includes the data they access,
the application configuration, Service-Level-Agreements
(SLAs) and Quality-of-Service (QoS) aspects. Multi-tenant
Applications (MTA) share one application instance between
multiple tenants isolated from each other. The tight cou-
pling of tenants results in strong interference. Isolation con-
sidering non-functional system properties is a major open
research issue in the area of SaaS (e.g., by Bezemer [2] and
Fehling [5]).

To the best of our knowledge, no metrics and techniques
for quantifying performance isolation have been proposed
before. In this paper, we present three different method-
ologies and several alternative metrics which provide means
to characterize the isolation capabilities of IT systems. The
focus is in metrics which can be applied for performance
bechmarks. We also propose measurement techniques for
quantifying the proposed metrics. Moreover, we introduce
general approaches for performance isolation at the architec-
tural level in SaaS environments. Finally, we present four

concrete isolation methods including a case study demon-
strating their effectiveness as well as the practical usabil-
ity of the proposed metrics and measurement techniques for
quantifying isolation.
The remainder of the paper is structured as follows. In

Section 2, we define performance isolation. Based on this
definition, Section 3 presents the proposed isolation met-
rics. Section 4 discusses different approaches to ensure per-
formance isolation within a MTA. Section 5 presents the
experiment setup for the evaluation of the approaches and
the metrics. Section 6 presents our evaluation results and
Section 7 assesses the metrics and the isolation approaches.
Section 8, surveys related work and Section 9 concludes the
paper.

2. PERFORMANCE ISOLATION IN SHARED
ENVIRONMENTS

2.1 Fairness
Performance concerns in cloud environments are a serious

obstacle for consumers. To avoid distrust, it is necessary to
ensure a fair behavior of the system with respect to its dif-
ferent customers. Due to sharing of resources, performance-
related issues are often caused by a minority of customers
sending a high amount of requests. We define a system as
fair, if the following conditions are met:

1. Customers working within their assigned quota should
not suffer from customers exceeding their quotas.

2. Customers exceeding their quotas should suffer perfor-
mance degradation.

3. Customers with higher quotas should be provided bet-
ter performance than customers with lower quotas.

Within this paper quota refers to the amount of workload a
tenant is allowed to execute. In the following, more details
on concepts related to the definition of a fair behavior are
presented.

2.2 Isolation
In this paper, we focus on the first fairness criterion de-

fined above which is achieved by performance isolation. Per-
formance isolation is defined as follows.
Performance Isolation: A system is performance-isolated,

if for customers working within their quotas the performance
is not affected when other customers exceed their quotas.
Additionally, it is possible to relate the definition to SLAs:
A decreased performance for the customers working within
their quotas is acceptable as long as it is within their SLAs.
One way to achieve performance isolation is by resource

isolation which enforces a strict isolation of resources allo-
cated to different customers.
Weak Performance Isolation: Weak performance isolation

refers to the case where performance isolation is achieved
within a limited range of exceeded quota from a disruptive
customer.
Non-Isolation: We speak of non-isolation, if the behavior

of any customer may influence the performance observed
by other customers. Thus, every customer may suffer from
bad performance caused by one single disruptive customer
exceeding its quota.
Elasticity: To clearly differentiate elasticity from perfor-

mance isolation we present the following example. Assume

a system is in an overloaded situation because of one disrup-
tive tenant. It could be a solution to provision and allocate
additional resources by leveraging underlying technologies
to maintain customers SLAs. This is elasticity. That could
be acceptable, if the disruptive tenant pays for the increased
overall capacity which might relate to his quota (fair with
regards to property 3). If the disruptive tenant does not pay
for the extra resources, the system is no longer fair.

3. METRICS
In the following section, we introduce different metrics to

quantify the isolation capabilities of a system. To provide a
level playing field for comparisons, it is important to explic-
itly consider the workload profiles used when applying the
metrics. For example, a given response time for a system is
meaningless without consideration of the system load during
which the response time was measured. In our case further
aspects like the number of customers with exceeded quota
might also influence the results. In this section, we focus
on the definition of adequate isolation metrics. The met-
rics we define may be applied to quantify the isolation of
any measurable QoS-related system property in any system
shared between different entities. As such, the metrics are
not limited to performance isolation and SaaS environments
although these are in the focus of this paper. Of course, the
actual type of workload and QoS must be selected according
to the scenario under investigation. Later on in Section 5
we propose a set of specific workloads which can be used for
benchmarking performance isolation.

We distinguish between groups of disruptive and abiding
customers. The latter work within their given quota (e.g.,
defined number of requests/s) the former exceed their quota.
Our metrics are based on the influence of the disruptive
customers on the abiding customers. For the definition of
the metrics, we define a set of symbols in Table 1.

Table 1: Overview of variables and symbols

Symbol Meaning

t A customer in the system.
D Set of disruptive customers exceeding their

quotas (e.g., contains customers inducing more
than the allowed requests per second).

A Set of abiding customers not exceeding their
quotas (e.g., contains customers inducing less
than the allowed requests per second).

wt Workload caused by customer t represented
as numeric value increasing with higher load
(e.g., request rate and job size). wt ∈ W

W The total system workload as a set of the work-
loads induced by all individual customers.

zt(W) A numeric value describing the QoS provided
to customer t. The individual QoS a customer
observes depends on the composed workload
of all customer (W). Lower values of zt(W)
correspond to better QoS (e.g., response time).

I The degree of isolation provided by the sys-
tem. In the following paper, we add an index
to distinguish different metrics and present
methods for the quantify each of them.

3.1 Metrics based on QoS Impact
QoS-oriented approaches define an isolation metric based

on considering the influence of disruptive customers by mea-
suring their impact on the QoS provided to customers work-
ing within their quotas.
These metrics depend on at least two measurements. First,

the observed QoS results for every t ∈ A at a reference work-
load Wref . Second, the results for every t ∈ A at a workload
Wdisr when a subset of the customers have increased their
load to challenge the system’s isolation mechanisms. As pre-
viously defined Wref and Wdisr are composed of the same
customers (t ∈ A ∪ t ∈ D) with an increased workload for
the disruptive customers at Wdisr.
We consider the relative difference of the QoS (∆zA) for

abiding customers at the reference workload compared to
the disruptive workload.

∆zA =

∑
t∈A

[zt(Wdisr)− zt(Wref)]∑
t∈A

zt(Wref)
(1)

Additionally, we consider the relative difference of the load
induced by the two workloads.

∆w =

∑
wt∈Wdisr

wt −
∑

wt∈Wref

wt∑
wt∈Wref

wt

(2)

Based on these two differences the influence of the increased
workload on the QoS of the abiding tenants is expressed as
follows.

IQoS =
∆zA
∆w

(3)

A low value of this metric represents a good isolation as the
difference of the QoS in relation to the increased workload
is low. Accordingly, a high value of the metric expresses a
bad isolation of the system.
The metric provides a result for two specified workloads

(Wref and Wdisr) and thus the selection of the workloads
plays an important role. Only one measurement for a given
workload tuple (Wref ,Wdisr) might not be sufficient. Thus,
one could enhance the metric by considering the arithmetic
mean of IQoS for different workload scenarios.
It is conceivable that a provider is interested in the rela-

tive difference of disruptive workload ∆w at which abiding
tenants receive a predefined proportion of the promised QoS
∆zA. This could be used as one additional metric.

3.2 Workload Ratios
The next metrics are not directly associated with the QoS

impact resulting from an increased workload of disruptive
customers. The idea is to compensate the increased work-
load of disruptive customers and try to keep the QoS con-
stant by decreasing the workload of the abiding ones. Such a
behaviour does not reflect productive systems. Thus, these
metrics are planned to be applied in benchmarks with arti-
ficial workloads.
Assume one starts measuring the isolation behavior of a

non-isolated system by continually increasing the disruptive
workload Wd. One would expect to observe a decrease of
zt(W) for all customers. In such a situation, zt(W) would
remain unaffected if the workload of the abiding customers

Wa is decreased accordingly to compensate for the increase
in the disruptive workload.

Non-Isolated
Isolated

Real System

A
b
id
in
g
w
o
rk
lo
a
d

Disruptive workload

Wabase

Waref

Wdref
Wdbase

Wdend

Figure 1: Fictitious isolation curve including upper and
lower bounds.

In Figure 1 the x-axis shows the amount of workload Wd

caused by the disruptive tenants, whereas the y-axis shows
the amount of the workload Wa caused by the abiding ten-
ants. The blue/solid line shows how Wa has to decrease to
maintain the same QoS as in the beginning. This function
would be linear in a non-isolated system. In a perfectly iso-
lated system the increased Wd has no influence on zt(W)
for all t ∈ A. Thus, Wa would be constant in this case as
shown with the red/dashed line in the figure. The red line
and the blue line provide exact upper and lower bounds,
corresponding to a perfectly isolated and a non-isolated sys-
tem, respectively. Figure 1 shows some important points
referenced later and defined in Table 2.

Table 2: Overiew of relevant points

Symbol Definition

Wd The total workload induced by the disruptive
customers: Wd =

∑
wt∈W |t∈D

wt

Wdbase The level of the disruptive workload at which
the abiding workload in a non-isolated system
is decreased to 0 due to SLA violations.

Wdend The level of the disruptive workload at which
the abiding workload must decreased to 0 in
the system under test

Wdref The value of the disruptive workload at the
reference point in the system under test. This
is the point to which the degree of isolation
is quantified. It is defined as the disruptive
workload, at which in a non-isolated system
the abiding workload begins to decrease.

Wa The total workload induced by the abiding
customers: Wa =

∑
wt∈W |t∈A

wt

Waref The value of the abiding workload at the ref-
erence point Wdref in the system under test:
Waref = Wdbase −Wdref

Wabase The value of the abiding workload correspond-
ing to Wdbase in the system under test.

Based on this approach, we define several metrics pre-
sented in the following. As discussed before, the workload
scenarios play an important role, and thus it may be nec-
essary to consider multiple different workload scenarios and
average over them as previously.

3.2.1 Significant Points
The significant points marked in Figure 1 provide several

ways to define an isolation metric by themselves. Iend is a
metric derived the point at which the workloads of abiding
customers have to be decreased to 0 to compensate for the
disruptive workload. The metric sets Wdend and Waref in
relation. It is worth to mention again thatWaref = Wdbase−
Wdref . With Figure 1 in mind, Iend is defined as follows:

Iend =
Wdend −Wdbase

Waref

(4)

Another approach uses Wabase as a reference. Setting this
value and Waref in relation results in an isolation metric
having a value between [0, 1]. The formula for metric Ibase
is below:

Ibase =
Wabase

Waref

(5)

Both metrics have some drawbacks resulting from the fact
that they do not take into account the curve progression.
This means, that in a system which behaves linearly until
a short distance from Wdbase and then suddenly drops to
Wa = 0, both metrics would have the same value as in the
case of a completely non-isolated system which is obviously
unfair in this case. Moreover, a well isolated system might
require a very high disruptive workload before Wa drops to
0 making it hard to measure the metric in an experimental
environment. Ibase has some further disadvantages given
that it is only representative for the behavior of the system
within the range ofWdref andWdbase . Given that the metric
does not reflect what happens after Wdbase , it may lead to
misleading results for well isolated systems whose respective
Wdend points might differ significantly.
For systems that exhibit a linear isolation behavior, we

could also define isolation metrics based on the angle be-
tween green line corresponding to the measured system un-
der test and the blue line corresponding to the non-isolated
case. However, linear behavior typically cannot be assumed.

3.2.2 Integral Metrics
We define two further isolation metrics addressing the dis-

cussed disadvantages of the above metrics. They are based
on the area under the curve derived for the measured system
Ameasured set in relation to the area under the curve corre-
sponding to a non-isolated system AnonIsolated. The area
covered by the curve for a non-isolated system is calculated
as W 2

aref
/2.

The first metric IintBase represents the isolation as the
ratio of Ameasured and AnonIsolated within the interval
[Wdref ,Wdbase]. We define fm : Wd → Wa as a function
which returns the residual workload for the abiding cus-
tomers based on the workload of the disruptive customers.
We then define the metric IintBase as follows:

IintBase =

Wdbase∫
Wdref

fm(Wd)dWd

−W 2
aref

/2

W 2
aref

/2
(6)

IintBase has a value of 0 in cases the system is not isolated
and a value of 1 if the system is perfectly isolated within
the interval [Wdref ,Wdbase]. The metrics major advantage
is, that the value provided allows to set the system directly
into relation to an isolated and non-isolated system. This
metric again has the drawback that it only captures the
system behavior within [Wdref ,Wdbase].

In a well isolated system it might not be feasible to mea-
sure the system behavior only up to Wdbase. Thus, the
following metric IintFree allows to use any predefined artifi-
cial upper bound pend which represents the highest value of
Wd that was measured in the system under test. We define
the metric as follows:

IintFree =

 pend∫
Wdref

fm(Wd)dWd

−W 2
aref

/2

Waref · (pend −Wdref)−W 2
aref

/2
(7)

This metric quantifies the degree of isolation provided by the
system for a specified maximum level of injected distructive
workload pend. A value of 1 represents a perfect isolation
and a value of 0 a non-isolated system.

4. PERFORMANCE ISOLATION IN MULTI-
TENANT APPLICATIONS

This section discusses different approaches to enforce iso-
lation within a multi-tenant application. We start with an
overview of a multi-tenant architecture presented by Kozi-
olek [14] and discuss related performance isolation extension.
Following this, we present some detailed approaches to en-
force performance isolation.

4.1 Multi-tenant Software Architectures
Koziolek [14] [13] analyzed several existing multi-tenant

solutions. Based on this, he developed a generic architec-
ture and a corresponding style describing the existing multi-
tenant applications. Figure 2 presents Koziolek’s architec-
ture. The numbers were added by us and present potential
points where the system performance can be influenced. The
architecture relies on the common three tier web application
model enhanced with a Meta-Data Manager and a Meta-
Data Database responsible for tenant-specific customization
regarding the functional/non-functional behavior and/or ap-
pearance of the application.

Figure 2: Potential points for a performance adaptation in
multi-tenant architectures based on [14] [13]

Admission Controll(1): Controlling the incoming requests
based on awareness of the tenant they originate from can
enable a MTA to differentiate the provided QoS level and to
isolate tenants. One solution could be to discard requests

sent by a disruptive tenant in order to maintain the service
level for the abiding tenants.
Cache Restrictions (2): In some MTA, cached objects

might be shared between tenants. Some applications (like
multimedia platforms) could use high amounts of tenant spe-
cific data. Restricting the size of the cache available to ten-
ants is one way to isolate them from using space reserved
for others.
Load Management (3): The ability of a MTA to serve

different tenants with one instance does not prevent us from
having several application instances available. Thus, a load
balancer could enforce some isolation by forwarding requests
of disruptive tenants to different application instances than
those of abiding tenants.
Thread Priorities (4) and Thread Pools (5): The main

computing power is consumed by threads handling requests.
Thus, it is possible to implement isolation approaches by
leveraging thread management functionality. For example,
using a separate thread pool for every tenant limits the num-
ber of threads one tenant could allocate at a time. Another
idea is to dynamically control priorities of threads depending
on the tenant.
Database admission (6): Controlling the incoming database

requests based on the tenant they originate from can enable
a MTA to differentiate the provided QoS level and to isolate
tenants. Controlling tenant specific database cache sizes at
the application level is another approach to isolate tenants.

4.2 Performance Isolation Solutions
In this section, we introduce four approaches for enforcing

performance isolation focusing on response time as primary
QoS metric. These concepts leverage on admission control
and thread pool management mechanisms. In the follow-
ing, you will find figures, explaining the basic architectural
structure of the different approaches. Every approach im-
plements two top level components: A Request Manager
handling the incoming request and an Application Server
providing the Request Processor. In the default case, the
Application Server’s Request Processor has one thread pool
with restricted size processing the requests.
Artificial Delay: This approach (Figure 3a) artificially de-

lays incoming requests depending on the request rate of the
corresponding tenant. In closed workload scenarios this re-
sults in artificially increased response times for tenants ex-
ceeding their quotas and generates backpressure. Thus, the
overall workload induced by a tenants is controlled. A new
request arrives the Request Manager’s Quota Checker which
evaluates the tenants currently used quotas, and stores the
results together with the allowed quotas in the tenants meta
data. After that, the quota checker triggers the request de-
layer, which possibly delays the processing of a request be-
fore it is forwarded to the Request Processor for processing.
The duration of the artificial delay could be constant. The
current demand of the system and the difference between
the allowed and actual usage of the system could be used
to calculate a dynamic delay. Within the application server,
the request might be FIFO-queued again, because of the
restricted size of the thread pool.
Round Robin: Round robin (Figure 3b) introduces sep-

arate queues for different tenants. There is no more need
for a queue at the application server in this scenario, as re-
quests are directly buffered at the Request Manager. When
a new request approaches the system, it is queued in the

corresponding tenant’s queue. If the Request Processor has
free threads, it triggers the Next Request Provider to deliver
a new request. The Next Request Provider then uses round
robin to retrieve the next request. An empty queue for one
tenant is skipped and does not block the processing of the
others.

Blacklist: The blacklist method (Figure 3c) triggers the
quota checker for every request. It checks if the quota for
this particular tenant is exceeded. The quotas available to
tenants and the quotas actually used by them are maintained
in the tenants meta data. If a tenant exceeds its quota, it is
blacklisted. Requests from blacklisted tenants are enqueued
in a separate list. When the Request Processer requests
for the next request, the Next Request Provider takes the
next request from the white queue on a FIFO basis. Usu-
ally, requests from the blacklist queue are only handled if
the normal queue is empty. This leads to a problem, when a
tenant is removed from the blacklist but he has requests still
pending in the blacklist queue. If there are always requests
in the white queue, blacklisted requests will never be han-
dled. We realized a mechanism that slowly drops requests
from the blacklist (e.g., every 30th request). The method
takes the first request, at which the tenant is actually not
blacklisted anymore.

Separate Thread Pools: The separate thread pool method
(Figure 3d) provides a separate thread pool for each ten-
ant. The limited size of these pools isolates the tenants from
each other. The conceptual model includes a separate FIFO
queue for each tenant. Every time, one of the tenant specific
thread pools has an idle thread, the Worker Controller re-
quests a new request from the Next Request Provider. The
Next Request Provider selects a pending request according
from the tenants thread pool.

5. EVALUATION METHODOLOGY
To evaluate the practical usability of the proposed isola-

tion metrics we applied them to quantify the performance
isolation that can be achieved using the methods presented
in the previous section.

5.1 Simulation
We employed the ssj1 discrete event simulation frame-

work [16] as a simulation allows us to evaluate different
concepts and the metrics efficiently without disturbing in-
fluences. The major artifacts that were simulated are the
RequestManager, RequestProcessor, Tenant and Scheduler.
The RequestManager is responsible to realize the different
approaches for performance isolation discussed previously.
The RequestProcessor is responsible to simulate the behav-
ior a request has when it is served by using the scheduling
strategies defined. The capacity of requests it could handle is
limited. The Scheduler used within our evaluation simulates
a resource which is partially shared. Thus, the processing
time for a request is not increasing linearly with the number
of requests, as it is typical for real-life systems. Every Re-
quest handled by the RequestProcessor contains information
about its assumed service time without contention. This
value is continuously decreased. When the residual time be-
comes 0 the request is seen as processed and sent back to
the corresponding Tenant. The calculation of the residual
service time for each request, in each iteration, is based on

1http://www.iro.umontreal.ca/s̃imardr/ssj/indexe.html

Request

Manager

App.

Server

New Request

Request Processor

R

Quota Checker

Tenants

Request Delayer

R

(a) Artificial Delay (b) Round Robin

App.

Server

Request

Manager

Normal

Queue

Request Adder

R

R

R

Blacklist

Queue

R

R

New Request

R

FIFO

Queues

Quota Checker Tenants

R

Next Request Provider

Normal

queue

always first

Request Processor

(c) Blacklist

App.

Server

Request Processor

Request

Manager Request Adder

New Request

Next Request Provider

Pool t1

W

W

W

Pool tn

W

W

R

Worker Controller

W

t1
Queue

R

R

R

tn
Queue

R

R

(d) Thread Pool

Figure 3: Methods for performance isolation in multi-tenant applications

the number of requests in the RequestPocessor and a user
defined factor.

5.2 Evaluation Scenarios
In this section, we present the workload profiles, the per-

formance related QoS of interest and the configuration we
have chosen for our evaluation.

5.2.1 QoS-Metric and Considered Workload
The QoS metric we focus on is the response time. The

time is measured from the moment a request leaves a tenant
to the point in time a tenant receives the response. Thus,
zt(W) returns the average response time for t. As a measure
for the workload caused by the tenants, the number of users
associated with each tenant is used.
The workload profile we used is described by the users’

behavior, the type of requests sent, the amount of tenants
in each group D and A, and the number of users associated
with each tenant.
In a MTA the workload induced by the tenants is rather

homogeneous (except the amount). In our simulation, all
users send requests of the same type with a mean think time
of 1000ms and a standard deviation of 100ms in a closed
workload scenario. We expect that the system runs with a
high utilization for economic reasons. Another reason for
running under high utilization is our goal of evaluating per-
formance isolation aspects. In a system with low utilization,
the increased workload of one tenant would have low impact.
Therefore, we designed our system to serve total 80 users.
The mean service time for a request in the system without
contention is 1000ms with a standard deviation of 150ms.
We consider one normal scenario and one with over com-

mitment. In the first scenario, the quota is set to 8 users
and in the overcommitted one to 24. In both situations,
we expect only one disruptive tenant (t0). The number of
users in the first scenario is 8 and in the overcommitted one
t0 = 24, t1..t3 = 8, t4 = 4, t5..t8 = 1, t9 = 24.
Thus, the total workload was set to a value at which the

system is already at its limit of 80 users and the disruptive
tenant allocates his full quota. We consider this to be the
best reference point. First, an increased workload of one
tenant in a non-isolated system would immediately cause

SLA violations. Second, with the next increase of workload
by the disruptive tenant the isolation mechanisms should
intervene.

For the QoS-oriented metrics, we also have to define the
disruptive workloads. For t0 we have chosen 24, 40 and 251
users in the normal mode. In the overcommitted scenario the
number of users are set to 40, 56 and 251. In the following,
we indicate the number of users by adding indexes to the
various symbols in order to distinguish the results.

5.2.2 Configuration
In the chosen configuration with a standard, non-tenant

aware FIFO queue as RequestManager, the maximum through-
put achieved is 18 requests/second at a response time of
2110ms (Figure 4). This results in 38 requests handled in
parallel. Thus, the size of the thread pool is restricted to
38 threads for an optimal throughput. Without a restricted
thread pool, most of the presented performance isolation
approaches would fail, as the RequestManager would al-
ways forward the requests to the processor. When 80 users
are simulated, a standard FIFO queue results in an aver-
age response time of 3500ms and 62 requests in the system,
whereby 24 are queued.

6. EVALUATION RESULTS
In this section, we present the results from the simulation

described above and briefly comment on the observations
made in the various considered scenarios. The overall as-
sessment follows in a separate section.

Exemplary we calculate Iqos24 for the normal non isolated
case and IintFree251 for the delay method in the overcom-
mitted scenario. In the non-isolated case the simulation
returns a response time of 3446ms at the reference work-
load of 8 users for t0 and 4334ms at the disruptive work-
load with 24 users for t0. Due to the absence of isola-
tion the average response time for the abiding customers
is the same as for the disruptive customers. This results
in ∆zA24 = 4334−3446

3446
= 0.258. The relative increase of

workload is ∆w = 96−80
80

= 0.2. Consequently the isolation

metric is calculated as Iqos24 = 0.258
0.2

= 1.29.
In the delayed scenario with IintFree251 the point pend is

at 251, Wdref is 24. The integral desribing the area below

0

500

1000

1500

2000

2500

3000

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R
e

sp
o

n
se

 t
im

e
 (

m
s)

T
h

ro
u

g
h

p
u

t
(R

e
q

u
e

st
s/

m
in

)

Workload (Requests/s)

Requests/min

Respone time

Figure 4: Measurement of Throughput and Response Time

the curve of remaining abiding users
∫
f(Wd)dWd within the

limits [24, 251] is directly deduced from the measurements
(Figure 5) and has a value of 4687. Waref was set to 56 in

the workload definition. Thus, W 2
aref

/2 = 1568 and conse-

quently IintFree251 = 4687−1568
56·(251−24)−1568

= 0.28

Concerning the overview of all results we begin with the
QoS related metrics presented in Table 3. The value for the
isolation in the non-isolated situation is almost the same
in every case as the impact on the performance is linear,
because it stems from the extended length of the queue.

Table 3: Results of QoS based metrics

normal overcommitted
Approach IQoS24 IQoS40 IQoS251 IQoS40 IQoS56 IQoS251

Non-
Isolated

1.29 1.29 1.29 1.29 1.29 1.29

Round
Robin

0.00 0.00 0.000 0.02 0.02 0.06

Thread
Pools

0.00 0.00 0.00 0.01 0.00 -0.01

Delay 0.32 0.59 1.22 -0.49 0.19 1.22
Black
List

0.09 0.10 0.01 -0.73 -0.26 0.02

Table 4 and Table 5 present the integral related metrics
for the different approaches and workloads. The n/a en-
tries stem from a very high value of Wdend which was not
in the range of our evaluation. The rest of the section dis-

Table 4: Results of integral based metrics at normal work-
load

normal
Approach Iend Ibase IintBase IintFree251

Non-Isolated 0 0 0 0
Round Robin n/a 1 1 1
Thread Pools n/a 1 1 1
Delay 1.11 0.58 0.68 0.23
Black List n/a 0.94 0.96 0.97

cusses different behaviors of the isolation methods and their

Table 5: Results of integral-based metrics for overcommitted
workload

overcommitted
Approach Iend Ibase IintBase IintFree251

Non-Isolated 0 0 0 0
Round Robin n/a 1 1 0.99
Thread Pools n/a 1 1 1
Delay 1.5 0.75 0.86 0.28
Black List n/a 0.96 0.94 0.96

impact onto the metrics aligned with selected conspicuous
measurements.

Round Robin: This method provides a good isolation in
every scenario. In the chosen scenario, the waiting queue
for the disruptive tenant was never empty at the reference
workload. Therefore, t0 was not able to disrupt the other
tenants by increasing its workload. In cases where at the
reference workload the queue of the disruptive tenant runs
empty, the increased load is expected to influence the others
tenants.

Separate Thread Pools: In the normal mode, the size of
the thread pools was set to 4 which results in around 38
allowed threads in the system. To keep the response time
for the tenants with 24 users lower than 3500ms we had
to increase the thread pool to 17 threads. This resulted in
an overloaded situation, but thanks to the reduced queueing
time we still achieved a response time of 3.5s at the reference
workload. Overall, the thread pool approach showed a very
good isolation.

Artificial Delay: The threshold for the artificial delay was
based on the number of users logged in for one tenant. The
negative values of IQoS40 and IQoS56 stem from the con-
stant penalty added to every request arising from the dis-
ruptive tenants. Therefore, a part of the disruptive tenants’
resources become available for the other tenants and con-
sequently the QoS for the abiding tenants improves. This
results in negative isolation values. The isolation works only
within a limited range because of the constant character of
the delay. This point can be seen in Figure 5 when the
abiding workload begins to decrease.

0

10

20

30

40

50

60

2
4

2
9

3
4

3
9

4
4

4
9

5
4

5
9

6
4

6
9

7
4

7
9

8
4

8
9

9
4

9
9

1
0
4

1
0
9

1
1
4

1
1
9

1
2
4

1
2
9

1
3
4

1
3
9

1
4
4

1
4
9

1
5
4

1
5
9

1
6
4

A
b

id
in

g
 w

o
rk

lo
a

d

Disruptive workload

Non-Isolated

Delayed

Figure 5: Reduction of abiding workload while artificial de-
lay is activated in the overcommitted scenario.

Blacklist: The blacklist exhibits a similar behavior as the
artificial delay in the beginning. Therefore, a negative isola-
tion was measured. The relevant metric for blacklisting the
tenant is its throughput. The raw data shows, that some-
times a white tenant is also blacklisted for a short while.
This occurs in situation when the actual disruptive tenant
becomes blacklisted and his part of the resources become
available for the other tenants. In that situation the re-
sponse time and consequently the request rate of the abiding
tenants improves and exceeds the quota. However, the effect
is negligible with regards to the average response times.

7. FINAL ASSESSMENT
In the following we evaluate the metrics, regarding their

expression and feasibility. Moreover, we present a short eval-
uation of the isolation approaches.

7.1 Metrics
For the evaluation of the metrics we concentrate on the

following aspects. First, how feasible is the metric for the
target group of a system owner/provider or a developer/re-
searcher. Second, the metric’s expressiveness in terms of the
type of evidence it provides. Third, the number of measure-
ments required to obtain a valid value. Fourth, situations in
which the metric is not meaningful.
QoS Impact: These metrics show the influence of disrup-

tive workloads on the QoS of abiding tenants. This helps
system owners to manage their systems, because it indicates
the influence of disruptive workload onto the QoS they pro-
vide, which is important for capacity planning. QoS-based
metrics can prove that a system is perfectly isolated, how-
ever they fail in ranking a systems isolation capabilities into
the range between isolated and non-isolated. In the example
shown, we were able to measure the system’s behavior in a
non-isolated case. In reality this is rarely possible, as a sys-
tem owner or user might not be able to change the system’s
isolation method. A single IQoS metric can be derived with
only two measurements to obtain evidence for one point of
increased workload. However, to obtain some more detailed
information concerning the systems isolation more measure-
ments are required.
Significant Points: The metric Iend might not be feasible

to quantify isolation in well isolated systems. Furthermore,
it is not possible to directly deduce relevant system behav-
iors like response times. If the metric is given, it could help
to compare two systems regarding the maximum disruptive
load they can handle. To determine Iend, more measure-
ments as for QoS-based metrics are required.
Ibase orders a system within the range of isolated and non-

isolated systems for one specific point in the diagram. Nev-
ertheless, it does not provide information about the behavior
of the system before that point. It is limited to comparing
the isolation behavior of the systems at one selected load
level and it is inadequate to derive direct QoS-related val-
ues. The usefulness of this metric appears to be of limited
value in contrast to the integral methods. One advantage is
the evidence at a well-defined and reliable point with only
two measurements.
Integral Metrics: IintBase and IintFree are widely compa-

rable metrics. IintBase has the advantage to be measured at
a predefined point. For IintFree, the endpoint of the inter-
val must be considered as well to have an expressive metric.
Both metrics provide good evidence of the isolation within

the considered interval, ordered between the magnitudes of
isolated and non-isolated systems. They lack in providing
information concerning the degree of SLA violation. For
example, the SLA violation could be very low and accept-
able or critically high in each iteration when we reduce Wa.
However, in both cases, the results of the metrics are simi-
lar. This limits the value of IintBase and IintFree for system
owners/providers. However, for comparison of systems and
analyzing their behavior, the metrics are very useful and
can be exploited by developers or researchers. Finally, on
the negative side, a disadvantage of these metrics is that
their measurement may be a time consuming task.

7.2 Effectiveness of the Isolation Methods
The evaluation of the isolation methods is primarily based

on the results from our simulation study. Additionally we
highlight some other aspects that struck our attention.

Round robin provides a very good isolation. However,
it is not sufficient for overcommitted systems as it cannot
fully leverage the unused resources from some tenants. It is
possible to increase a tenant’s throughput by skipping empty
queues. However, as long as requests are pending in every
queue, tenants with more users have higher response times.
In our case the tenants with 24 users had around 4660ms
response time, even in cases in that the total amount of
users was within the limits in which the system could provide
3500ms for every tenant. This is an issue in overcommitted
systems. Furthermore, it is not possible to provide different
QoS to different tenants using a simple round robin.

Thread pools achieve good isolation in the simulations and
QoS differentiation is achievable by using different thread
sizes. Besides that, the processing speed and throughput
of tenants is better if some tenants do not allocate all of
their threads. This also increases the throughput. In the
chosen overcommitted scenario, the response time is widely
constant over all tenants at the reference workload. A dis-
advantage is that the total number of potential threads is
above the optimal working point of the server. Thus, there
is a danger of congesting the server.

The delay approach seams to be ineffective, because of its
weak isolation. A dynamically assigned delay could increase
effectiveness with the drawback of increased complexity of
the method. The introduction of different thresholds enables
QoS differentiation.

The blacklist approach provides a good isolation over a
wide range of disruptive workloads. Furthermore, it could
achieve different QoS, especially for throughput, by using
different thresholds. Additionally, unused resources are equally
used by all tenants. For the abiding tenants, in the over-
committed scenario, this results in the same response time
(around 3500ms) for each. In our setup, the response time
at Wdisr56 was around 9360ms for t0 when the thread pool
is used. In the black list approach, it was around 16040ms.
In both cases, the mean response times for the other tenants
was around 3500ms. This stems from the abiding tenants
that were blacklisted from time to time resulting in unstable
performance.

8. RELATED WORK
We divided the related work into two parts. The first

is about related work in the area of the defined isolation
metrics. The second covers related work in the field of per-
formance isolation in MTA.

8.1 Metrics
The lack of performance guarantees is one of the major

obstacles in cloud computing [1] [3]. As a result different
benchmarks and metrics were developed in the last years.
Usually these publications focus on single aspects of cloud
services like databases (e.g., [4]). Others discuss metrics
for cloud features like elasticity (e.g., [15]). However, the
most relevant related work we found, comes from the field
of virtualization, which is the main enabling technology for
IaaS.
One industrial example is VMmark [9], a benchmark de-

veloped by VMWare. They define a tile as a set of VMs serv-
ing different applications (e.g., mail server and SPECweb2005).
Several tiles are deployed on a virtualized hardware. The
benchmark score is based on a normalized overall through-
put of the applications, a hosting platform could achieve.
The total throughput increases with the number of tiles de-
ployed as long as the system is not saturated. VMWare
publishes the number of tiles in addition to the throughput.
However, VMmark focuses on overall performance of a host-
ing platform and fails to quantify the mutual influence, of
the different workloads.
Georges et al. [6] developed two metrics to express the

efficiency of a virtualized environment. One similar to VM-
mark. The other, Average Normalized Reduced Throughput
(ANRT), reflects the loss of throughput on a per VM basis,
when additional VMs are deployed. Nevertheless, they do
not set the amount of changed workload in relation to ANRT
and use static amount of workload for the VMs. Thus, these
metrics are not feasibly to be used for quantifying perfor-
mance isolation.
Koh et al. [12] collected data within an experimental envi-

ronment to closely characterize the performance inference of
workloads in different VMs. In addition, a prediction mecha-
nism was implemented to predict the inference of these work-
loads. Huber et al. [10] created a feature tree capturing the
mutual influences of different VMs with different resource
requirements. This was done in an automated way.
Nevertheless, Huber and Koh did not extract a single

value describing the systems isolation behavior which might
be used within a benchmark. Furthermore, their approaches
focus on hardware related resources, only available in white
box scenarios. Consequently the approaches are hard to be
used in SaaS or PaaS scenarios.
Guo et al. [7] defined performance isolation based on their

understanding of a fair system behavior. From their point
of view a system should prevent high performance for one
tenant at the cost of another. In cases the SLAs of the
tenants differ, providing different performance is still seen
as fair. However, our definition of fairness was explicitly
divided into three different aspects. Additionally, we see
performance isolation as only one part of a fair behavior.
Ensuring different SLAs on the system is important and is
integrated as one aspect in our definition of fairness although
it does not directly relate to performance isolation.

8.2 Performance Isolation in MTAs
The popularity of multi-tenancy arose with the increasing

interest in SaaS applications. Several publications focus on
general aspects of MTA, their requirements and potential
implementations [2] [7] [19].
Regarding performance, related work is mostly concerned

about resource efficiency. Fehling et al. [5] analyzed the

challenges arising from multi-tenant scenarios and provided
a method to place tenants onto locations with different QoS.
Zhang [22] developed a method to place on boarding tenants
on a restricted set of nodes without SLAs violations. A good
placement helps to decrease the interference. However, it
cannot completly ensure isolation.

Schroeter et al. [21] present a tenant aware component
model which allows automated reconfiguration. This might
be leveraged to ensure isolation by placing a disruptive ten-
ant onto single nodes or by adding resources (elasticity).
Nevertheless, performance isolation is not in the focus of
this paper and based on our definition, elasticity does not
automatically ensure isolation.

An approach to achieve performance isolation within MTAs
was proposed by Lin et al. [17]. They provide different
QoS on a tenant’s base. Additionally, one test case evalu-
ated the system regarding tenant specific workload changes
and their interference. Two proportional-integral controllers
were used to achieve this. The first one ensures the average
overall response time by regulating the request rate; the sec-
ond one leveraged different thread priorities to control the
response times for different tenants. However, this approach
was built mainly with the goal to differentiate QoS. Al-
though it provides minimal admission rate settings for each
tenant, the rates used are far below the system’s limit. No
evaluation was done for scenarios where the tenant quotas
were sized to work at a saturated system. Furthermore, com-
pared to the above approach our proposed isolation methods
reduce the complexity of the implementation.

9. CONCLUSION
Cloud environments are becoming widely adopted due to

their cost efficient way of providing resources. However, per-
formance isolation is still a widely open issue, especially for
SaaS offerings.

This paper presents two different approaches and three ba-
sic metrics, for quantifying performance isolation, decoupled
from a concrete scenario and evaluated them in the context
of multi-tenant SaaS applications. The first one is based on
the impact of an increased workload, from one customer, on
the QoS of other customers. This metric has strengths to ex-
press the impact of workload on the QoS which is relevant for
capacity planning. The second group of metrics does reduce
the workload of the customers working within their quota
(Wa), if the workload of the disruptive customers increases.
This maintains constant QoS for the residual workload of
Wa. One subgroup of metrics relies on resulting significant
points (e.g., when Wa becomes 0), another one on the area
under the curve of Wa. The results show strengths of these
metrics in ordering a system between the magnitudes of iso-
lated and non-isolated which makes systems easily compa-
rable.

Furthermore the paper provides an overview of different
approaches to achieve performance isolation within a multi-
tenant application. In addition, we realized four approaches
within a simulated environment. The subsequent discussion
showed that either round robin for scheduling requests of dif-
ferent tenants or blacklisting disruptive tenants is a suitable
approach.

Our future research goals are targeted at developing more
advanced isolation approaches which address all fairness as-
pects discussed in the beginning of the paper and consider
multiple server instances. Furthermore, we will investigate

the implications of different request types on the isolation
methods and metrics.

10. ACKNOWLEDGEMENTS
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement No 258862.

11. REFERENCES
[1] Armbrust, M., Fox, A., Griffith, R., Joseph,

A. D., Katz, R. H., Konwinski, A., Lee, G.,
Patterson, D. A., Rabkin, A., Stoica, I., and
Zaharia, M. Above the clouds: A berkeley view of
cloud computing. Tech. Rep. UCB/EECS-2009-28,
EECS Department, University of California, Berkeley,
Feb 2009.

[2] Bezemer, C.-P., and Zaidman, A. Multi-tenant
SaaS applications: maintenance dream or nightmare?
In Proceedings of the Joint ERCIM Workshop on
Software Evolution (EVOL) and International
Workshop on Principles of Software Evolution
(IWPSE) (New York, NY, USA, 2010),
IWPSE-EVOL ’10, ACM, pp. 88–92.

[3] bitcurrent. Bitcurrent cloud computing survey 2011.
Tech. rep., bitcurrent, 2011.

[4] Cooper, B. F., Silberstein, A., Tam, E.,
Ramakrishnan, R., and Sears, R. Benchmarking
cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing (New
York, NY, USA, 2010), SoCC ’10, ACM, pp. 143–154.

[5] Fehling, C., Leymann, F., and Mietzner, R. A
framework for optimized distribution of tenants in
cloud applications. In Cloud Computing (CLOUD),
2010 IEEE 3rd International Conference on (2010),
pp. 252 –259.

[6] Georges, A., and Eeckhout, L. Performance
metrics for consolidated servers. In HPCVirt 2010
(2010).

[7] Guo, C. J., Sun, W., Huang, Y., Wang, Z. H.,
and Gao, B. A framework for native multi-tenancy
application development and management. In
E-Commerce Technology and the 4th IEEE
International Conference on Enterprise Computing,
E-Commerce, and E-Services, 2007. CEC/EEE 2007.
The 9th IEEE International Conference on (2007),
pp. 551 –558.

[8] Hauck, M., Huber, M., Klems, M., Kounev, S.,
Müller-Quade, J., Pretschner, A., Reussner,
R., and Tai, S. Challenges and opportunities of cloud
computing. Karlsruhe Reports in Informatics 19,
Karlsruhe Institute of Technology - Faculty of
Informatics, 2010.

[9] Herndon, B., Smith, P., Roderick, L., Zamost,
E., Anderson, J., Makhija, V., Herndon, B.,
Smith, P., Zamost, E., and Anderson, J.
Vmmark: A scalable benchmark for virtualized
systems. Tech. rep., VMware, 2006.

[10] Huber, N., von Quast, M., Hauck, M., and
Kounev, S. Evaluation and modeling virtualization
performance overhead for cloud environments. In
Proceedings of the 1st International Conference on

Cloud Computing and Services Science (CLOSER
2011), Noordwijkerhout, The Netherlands (May 7-9
2011), pp. 563 – 573.

[11] IBM. Dispelling the vapor around cloud computing.
Whitepaper, IBM, IBM CorporationNew Orchard
RoadArmonk, NY 10504 U.S.A., January 2010.
Produced in the United States of AmericaJanuary
2010All Rights Reserved.

[12] Koh, Y., Knauerhase, R., Brett, P., Bowman,
M., Wen, Z., and Pu, C. An analysis of performance
interference effects in virtual environments. In
Performance Analysis of Systems Software, 2007.
ISPASS 2007. IEEE International Symposium on
(april 2007), pp. 200 –209.

[13] Koziolek, H. Towards an architectural style for
multi-tenant software applications. In Proc. Software
Engineering (SE’10) (February 2010), vol. 159 of LNI,
GI, pp. 81–92.

[14] Koziolek, H. The SPOSAD architectural style for
multi-tenant software applications. In Proc. 9th
Working IEEE/IFIP Conf. on Software Architecture
(WICSA’11), Workshop on Architecting Cloud
Computing Applications and Systems (July 2011),
IEEE, pp. 320–327.

[15] Kupperberg, M., Herbst, N., Kistowski, J., and
Reussner, R. Defining and quantifying elasticity of
resources in cloud computing and scalable platforms.
Tech. rep., Karlsruhe Institute of Technology, 2011.

[16] L’Ecuyer, P., and Buist, E. Simulation in java
with SSJ. In Proceedings of the 37th conference on
Winter simulation (2005), WSC ’05, Winter
Simulation Conference, pp. 611–620.

[17] Lin, H., Sun, K., Zhao, S., and Han, Y.
Feedback-control-based performance regulation for
multi-tenant applications. In Proceedings of the 2009
15th International Conference on Parallel and
Distributed Systems (Washington, DC, USA, 2009),
ICPADS ’09, IEEE Computer Society, pp. 134–141.

[18] Mell, P., and Grance, T. The NIST definition of
cloud computing. digital, 2011.

[19] Mietzner, R., Unger, T., Titze, R., and
Leymann, F. Combining different multi-tenancy
patterns in service-oriented applications. In Enterprise
Distributed Object Computing Conference, 2009.
EDOC ’09. IEEE International (sept. 2009), pp. 131
–140.

[20] Momm, C., and Krebs, R. A qualitative discussion
of different approaches for implementing multi-tenant
SaaS offerings. In Proceedings of Software Engineering
2011 (SE2011), Workshop(ESoSyM-2011) (2011).

[21] Schroeter, J., Cech, S., Goetz, S., Wilke, C.,
and Assmann, U. Towards modeling a variable
architecture for multi-tenant SaaS-applications. In
Proceedings of Sixth International Workshop on
Variability Modelling of Software-Intensive Systems
(VaMoS ’12) (2012).

[22] Zhang, Y., Wang, Z., Gao, B., Guo, C., Sun, W.,
and Li, X. An effective heuristic for on-line tenant
placement problem in SaaS. Web Services, IEEE
International Conference on 0 (2010), 425–432.

