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Abstract—Engineering collective adaptive systems (CAS) with
learning capabilities is a challenging task due to their multi-
dimensional and complex design space. Data-driven approaches
for CAS design could introduce new insights enabling system
engineers to manage the CAS complexity more cost-effectively at
the design-phase. This paper introduces a systematic approach
to reason about design choices and patterns of learning-based
CAS. Using data from a systematic literature review, reasoning
is performed with a novel application of data-driven method-
ologies such as clustering, multiple correspondence analysis and
decision trees. The reasoning based on past experience as well as
supporting novel and innovative design choices are demonstrated.

Index Terms—collective adaptive systems, design pattern,
multi-agent system, learning, data mining, reasoning, decision
tree, clustering

I. INTRODUCTION

Collective adaptive systems (CAS) are distributed systems
comprising multiple heterogeneous agents. Each agent does
not individually possess system-wide knowledge and can:
(7) interact with other agents either directly or indirectly;
(i) exhibit learning capabilities to expand its personal knowl-
edge; and (ii7) make decisions based on collective or aggre-
gated knowledge from its peers [[1]]-[3].

Employing agents with such characteristics allows con-
structing highly autonomous systems exhibiting self-adaptive
properties. As a result, learning-based CAS can cope with
uncertainties and adapt accordingly to fulfill their requirements
and improve their performance and reliabilityﬂ

Engineering learning-based CAS is complex due to their
non-deterministic and highly dynamic operational environ-
ment, emerging from simultaneous interactions of several
autonomous entities. Moreover, system-wide knowledge is
distributed among the agents, entailing that advanced mecha-
nisms should be used for efficient knowledge acquisition and
sharing. Finally, the use of learning adds yet another layer
of complexity, influenced by the availability of data, choice
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of technique, model instantiation, and model update. Thus,
the numerous influencing decisions emerging from such a
multi-dimensional and the complex design space perplex the
engineers’ choices when designing learning-based CAS.

With the growing availability of software engineering data,
data-driven techniques have emerged as an effective methodol-
ogy to provide software practitioners with up-to-date and perti-
nent information supporting the decision-making process [4].
Data-driven methodologies support dimensionality reduction
by recognizing correlations in data [5] and have been exten-
sively applied in the literature, e.g., to understand software
evolution [6] or to discover instances of design patterns from
the system’s source code [7].

Collecting data about relevant past experiences, extracting
knowledge from it, and making the knowledge available in a
manner that can be reasoned upon is a first step towards sup-
porting CAS engineers in navigating through the large design
space of such systems and making cost-effective choices [§].

This paper contributes to this direction in the following
ways. (i) We extend our previous systematic literature review
on learning-enabled CAS [9] and use the analysis results as
data capturing relevant past experiences. (i) By employing
data-driven methodologies, we identify correlations in the
collected data, based on which we present relevant design-time
reasoning knowledge in the form of design guidelines. And
(#i1) we structure the data (i.e., past experiences) as a decision
tree representing a reasoning knowledge that can serve either
as a design-time recommender or to spot design gaps.

The paper is organized as follows. Section [II] introduces the
data acquisition process and the data-driven methodologies.
Section presents the design guidelines elicited from the
analysis and shows the knowledge as a decision tree. Sec-
tion [[V| concludes the findings and discusses future work.

II. METHODOLOGY

In this section, we present how we extended our systematic
literature review on learning-enabled CAS [9] and use its
results as input for our data-driven methodologies. Then we
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K Vector of clusters stabilities Times each cluster is
dissolved in 100 re-sampling

2 h0.90,0.85 ho,0
3 h0.82,0.86,0.50 h2,0,59
4 h0.87,0.86,0.60,0.61 h0,1,48,9
5 h0.84,0.77,0.64,0.69, 0.27 h0,8,43,29,92
9 h0.70,0.69,0.61,0.64,0.84,0.74,0.47,0.51,0.38 18,32,40,36,21,29,67,69,93
(a) Silhouette values (b) Bootstrapping results @K =2
dK =3 (e)K =4 MHK=9 (g) Autonomy
(h) Emergent behaviour (i) Cooperative agent

() Trigger rst
(k) Trigger update

(m) Knowledge access

() Behaviour

(o) Domain
(n) Technique

Fig. 1: HAC results: evaluation (a-b), choiceskf (c-f), design dimensions mapped to HAC (g-0).



Table I: DIMENSIONS OF LEARNING-BASED CAS g jierarchical Agglomerative Clustering (HAC)

Dimension Description

i : _ _ As a starting point, HAC [12] considers each observation
ggﬂ';;“on The domain for which a CAS is developed (i.e., each reviewed paper in our case) as a separate cluster.
Then, HAC incrementally identi es and merges the two most
similar clusters. The notion of similarity between papers refers
to similarity between their design dimensions (see Table I).

Autonomy The agents' ability to act autonomously or in need
of a supervised entity

Knowledge The amount of information available to an agent from . . . . . . L
Access its peers or the environment Since the dimensions identied in our systematic literature
- , review are categorical, we adopt the Gower Distance [13]
Behaviour Agent's comportment toward self-goals and system- L . . . . .
wide goals measure, which is a simple but widely applied distance metric
Emergent Whether the collective demonstrates a behaviour suitable fo_r ca_tegorlcal data. In particular, the_‘ distadgg )
Behaviour different than the one of single agents for any pair of inputs; andx; across the e@mmed number of
. ; o S m
Cooperative Whether agents are cooperating dlmenspnsj\/l IS given byd(l’] ) =1=M . m=1 dij ) where
Agent di' =0 if x" = x"; andd]’ =1 otherwise. Evaluating other
Learning The technique used by agents to exhibit leaming  distance metrics is outside the scope of this paper.
Technique A typically applied method for identifying the desired
Trigger First The initial knowledge used to instantiate learning Number of nal clusters in HAC (given b¥ ) involves using
models clustering validation criteria [14]. In our analysis, we rely on
Trigger Update  Criteria for updating the learning models the silhouette values [15] and the bootstrap method [16]. The

results of clustering using this method are depicted in Figure 1.
The silhouette value is a measure of data consistency, where
explain the two employed data-driven methodologies, i.ehigher values represent higher coherence between the data
Hierarchical Agglomerative Clustering (HAC) and Multiplepoints within a cluster. Figure 1a shows the silhouette values
Correspondence Analysis (MCA). for HAC up to 10 clusters. The plot suggests that after ve
Clustering allows us to capture the set of design choicelisters, the consistency of data points within each cluster
applied on CAS based on past experience (i.e., the state of #eéps and reaches a local maximum with=9.
art). The rationale is that clustering analysis can be used toThe bootstrap analysis enables the assessment of the sta-
detect design patterns and reduce the complexity of the desigity of the considered number of clusters by investigating
space. Correspondence analysis, on the other hand, focysgg easily clusters dissolve. To conduct the bootstrap analysis,
on identifying the correlation between the design dimensionge select the clusters with average silhouette width greater
This allows capturing system constraints that impose certaifan or equal t:18, i.e., the average silhouette width with
design choices. As a result, the engineer obtains better K-= 9 (see the dotted line in Figure 1a). Lower silhouette
sights about the interplay and interactions between differapflues result in weak or arti cial structures. The results of the
design dimensions. The relevance and effectiveness of thgsetstrapping are presented in Figure 1b. For each number
techniques for system design decisions has been shown in [Hj].considered cluster& we report: the vector of cluster
stabilities (values close td indicate stable clusters) and
o ) the number of times each cluster is dissolved aft@0 re-
In [9], we conducted a systematic literature review S#  gampling (clusters that are dissolved often are unstable). The
studies related to learning-based CAS. The investigated papgls§,its suggest tha€ = 2 forms two stable clusters that are

are classi ed based on their choices for the nine design dimefsyer dissolvedK = 3 andK = 4 introduce mild degrees of
sions envisioned for learning-enabled CAS. Table | enumera§ﬁ§tability whileK =5 andK =9 result in high instability.

thes_,e nine design dimensions, _vvhich_are used to de ne theFigures 1c-1f show how the reviewed papers, distinguished
design space of CAS. These dimensions are the result 0fAyqir id. are partitioned in 2, 3, 4, and 9 clusters, respec-
thorough discussion and analysis of the domain at the Gle\y n particular, each gure shows how cluster partitions,
Dagstuhl seminar on Software Engineering for Intelligent angq i ed with different colors, map to the dendrogram tree

Autonomous Systems [11]_. _ __generated by the HAC. For instance, Figure 1c depicts the
This paper extends the literature review of [9] by followmg?esult of clustering fork = 2, where the two clusters are
the same search and analysis methods. The analysis of jtfi& i ed with blue (31 papers) and red2g papers).

most recent stud_les addgd / addl_tlonal research papers. Algigures 1g-1o illustrate the results of clustering the dataset
a result, 59 studies are included in our updated systema6|

. . . i . i ; Ksed on each design dimension introduced in Table I. In
literature review. A vector including the nine design choice 9

of a paper (see Table I) constitutes a data point for our da articular, each gure shows how the concrete values of a
apap ; : i . pol u apeci ¢ design dimension partition the papers in the dataset.
driven analysis. Accordingly, the considered dataset $fas

dat int Different colors in each dendrogram represent a value for
ata points. the considered design dimension. In Figure 1i, for instance,

2The updated review and replication package of the analysis can be sg%ﬁ deqdrogram parFitions the papers acqordipg to the de_Sign
at: https:/mi-da.github.io/learning-to-learn-CAS/ dimension Cooperative Agent. The paper ids (i.e., data points)

A. Data Acquisition



Fig. 2: Variance retained by MCA dimensions.

in red employ cooperative agents while the paper ids in black
exclude cooperation among the employed agents.

The partitions identified by the design dimension Coopera-
tive Agent in Figure [l1|are similar to the those depicted by the
clustering analysis with K = 2 in Figure [Ic| (except for paper
40). Similarly, mapping the results of the clustering based on
the design dimensions and the results of HAC can be leveraged
to capture the relevant set of design choices for CAS based
on past experience.

C. Multiple Correspondence Analysis (MCA)

MCA is a generalization of the principal component analy-
sis (PCA) for categorical data, which aims to summarize the
underlying structures in the fewest possible dimensions [17].
In particular, MCA identifies new latent dimensions, which
are a combination of the original dimensions and hence can
explain information that is not directly observable.

Figure |2| depicts the variance of the new dimensions (i.e.,
principal components) identified by MCA after applying the
optimistic Benzécri correction [17]. The larger variance of the
dimensions indicates capturing more meaningful correlations
by the considered dimensions.

In order to have a good intuition of the MCA results, it is
necessary to choose the number of components to retain and
observe how the design dimensions of CAS map to the new
identified dimensions. Following the average rule introduced
by Lorenzo-Seva et. al. [18]], we kept all the dimensions with
variance greater than 7% (i.e., four dimensions are retained).
Figure [3|depicts the contributions (in percentage) of the design
dimensions’ values to the definition of the MCA dimensions.
Figures show only the five most contributing variables,
as small contributions imply low relevance. The dashed lines
represent the expected contribution if all the values of the
design dimensions would contribute equally to the definition
of the MCA dimension.

III. APPLICATION

We first present the observations and guidelines emerging
from applying our data-driven analysis. Then, we present the
extracted reasoning knowledge in the form of a decision tree
that can be used both as a recommender system and as a
mechanism to identify design gaps.

A. Observations and Guidelines

Emergent behaviour and cooperative agents are two of the
most important design dimensions identified by MCA (see
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Fig. 3: Contribution of design dimensions to MCA dimensions.

Figure [3a) that promote the formation of two stable clusters
(see Figure [Ic).

Our analysis highlights that designing non-cooperative (see
Figure and selfish agents (see Figure often results in a
collective emergent behaviour (see Figure [Th).

In contrast, when interactions are introduced, it is often the
case that designers have a target system behavior in mind. This
is derived from the observation that systems using altruistic
approaches or adopting a certain level of collaboration are
characterized by employing cooperative agents and no emer-
gent behaviour.

MCA finds correlation between the two dimensions in-
dicating the triggers for instantiating (i.e., trigger first) and
refining the learning models (i.e., trigger update). The process
employed for learning a new or updating the existing model
is a major factor affecting the ability of agents within CAS to
operate in uncertain environments.

Values for Dimension 9

| Do.V4 | | Do. V> |

Fig. 4: Decision tree representation of reasoning knowledge.
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Fig. 5: Design dimensions as decision nodes.

Our analysis suggests that in the presence of maximum
knowledge access (see Figure [Im), domain or human knowl-
edge is often used to instantiate the learning model and
the refinement is typically through episodes or task-based
(see Figures [[JHIK| and Figure 3b). On the other hand, we
identify a group of systems that are characterized by minimal
or neighborhood knowledge access and, as a result, their
learning models operate under high uncertainty. In this case,
the learning model is typically instantiated without any prior
knowledge and the refinement is threshold-based or via social
interactions. Our analysis highlights how agents often rely on
their peers’ knowledge in the presence of learning uncertainty
to construct a bigger picture of the environment as a means
to tackle uncertainty.

We summarize our findings by proposing the following
design guidelines, which are the result of how existing CAS
are usually engineered.

Design for System-wide vs. Agent-level Goals. If the
objective of the CAS is to fulfill a system-wide goal, then:
(i) cooperative agents shall be used; (ii) agents should exhibit
altruistic or collaborative behaviour; and (iii) there should be
a degree of knowledge exchange among agents (i.e., minimal
level of knowledge access should be avoided). The engineer
should decide/reason about the trade-off between the desired
level of knowledge and the introduced cost in terms of
performance.

In contrast, designing a CAS with agent-level objec-
tives in mind: (i) eliminates the need for employing co-
operative agents; (ii) agents demonstrating selfish behaviour
(hence, prioritizing agent-level goals) should be employed; and
(iii) knowledge access among agents is not required since no
coordination is needed. In such a scenario, the engineer can
expect the (implicit) system-wide goal to be fulfilled as an
emergent behaviour.

Access to Training Data/ Domain Knowledge. The choice
of a learning technique can be greatly affected by the avail-
ability of training data or domain expert knowledge for
model instantiation and update. When access to sufficient
data for model-based learning techniques is limited, model-
free techniques should be employed. When no sufficient data
is available, the refinement should be threshold-based or via
social interactions. Domain expert knowledge can be leveraged
to set the model refinements trigger to episodic or task/action-
based. Finally, the choice of the learning technique should
be independent of the application domain of interest as we
observe no correlation between these two design dimensions.

B. Mining the Knowledge

We employ decision tree modeling [19] to generate a decision
tree from the collected data. The identified design dimensions
introduced in Table [[| form the nine decision nodes of the
tree as depicted in Figure 4] Each dimension Dj is further
decomposed into multiple values D;j.Vj. We collected the
values for each design dimension from our survey in [9].
Figure [5| expands the design dimensions introduced in Table [[|
to their different values.

Representing the reasoning knowledge as a decision tree
provides a top-down scheme to explore the design space of
learning-based CAS for the CAS designers. The decision
tree can be traversed starting from the root node (i.e., D;
in Figure ) and making decisions among the available choices
for each dimension Dj, (i.e., D;j.Vj in Figure [4)) until all the
dimensions are visited. The highlighted trajectory in Figure [
shows an exemplary path in the decision tree where value
Vi is selected for dimension D1, value V; is chosen for Do,
and for dimension Dg value Vi is selected. The path can be
summarized as (D1.Vi, D2V, ..., Dg.Vi).

Each dimension D1—Dy in Figure 4| is mapped to a design
dimension introduced in Table [I| and is depicted in Figure 5]






