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Abstract—As the Internet of Things (IoT) continues to gain
traction in telecommunication networks, a very large number of
devices are expected to be connected and used in the near future.
In order to appropriately plan and dimension the network, as
well as the back-end cloud systems and the resulting signaling
load, traffic models are employed. These models are designed to
accurately capture and predict the properties of IoT traffic in a
concise manner. To achieve this, Poisson process approximations,
based on the Palm-Khintchine theorem, have often been used
in the past. Due to the scale (and the difference in scales in
various IoT networks) of the modeled systems, the fidelity of this
approximation is crucial, as in practice, it is very challenging to
accurately measure or simulate large-scale IoT deployments.

The main goal of this paper is to understand the level of
accuracy of the Poisson approximation model. To this end, we
first survey both common IoT network properties and network
scales as well as traffic types. Second, we explain and discuss the
Palm-Khintiche theorem, how it is applied to the problem, and
which inaccuracies can occur when using it. Based on this, we
derive guidelines as to when a Poisson process can be assumed for
aggregated periodic IoT traffic. Finally, we evaluate our approach
in the context of an IoT cloud scaler use case.

I. INTRODUCTION

The Internet of Things (IoT) is a networking challenge
where billions of new devices fulfilling numerous purposes
will be interconnected across the digital landscape. According
to the news website Business Insider, IoT devices will account
for 24 billion of the 34 billion devices connected to the Internet
by 2020.! Gartner also gives an estimate of more than 20
billion IoT devices by 2020.2 IoT refers to the inter-networking
of entities such as physical devices and objects. Such objects
are equipped with circuitry, software, sensors, actuators, and
network connectivity, enabling them to collect data from mul-
tiple modalities (e.g., sight, sound, tactile) and react on these
inputs. Generally speaking, the Internet of Things consists of
generic multipurpose devices usually connected to the Internet.
Data to and from the devices is either: (i) collected from the
devices, aggregated by an aggregator, and processed or stored
(a typical client-server approach), or (ii) pushed to the devices,
e.g., in a multicast approach, or (iii) exchanged between the
devices in a peer-to-peer manner. In this paper, we consider
the client-server scenario in the “IoT cloud” use case, where

Uhttp://www.businessinsider.com/top-internet-of-things-trends-2016- 1
Zhttp://www.gartner.com/newsroom/id/3165317

data is collected from a large number of devices and centrally
(sometimes hierarchically) aggregated.

The exponential growth in the number of devices naturally
raises the question of scalability of the underlying infrastruc-
ture. Scalability can be achieved on different levels. Choosing
the right combination of protocols and access technologies
provides the flexibility needed to support a specific choice of
architecture, where brokers and gateways can be dynamically
placed. However, at the same time, it introduces new potential
performance bottlenecks, such as gateways or load balancers.
Achieving scalability may require the development of new,
adaptive load balancing mechanisms that are properly dimen-
sioned. As we consider a scenario where data is collected for
further processing in the cloud, the back-end cloud systems
have to be scaled in a similar fashion.

In order to evaluate the scalability as the number of devices
increases, first and foremost the behavior of IoT devices must
be modeled, in particular the traffic patterns. IoT sensors
are often sending data in a deterministic periodic manner.
Therefore, the aggregated traffic from large numbers of such
devices can be considered as a superposition of deterministic
point processes. Assuming the point processes to be indepen-
dent (see for example [1]-[3]), the aggregated traffic can be
modeled as a Poisson process, which significantly simplifies
the modeling of the aggregated arrival process. However, the
deterministic periodicity of the individual devices introduces
an error term to the Poisson approximation. This was already
addressed by [4], and is, for example, known from works
on aggregated periodic cell patterns in ATM networks [5].
Further work published in [6] discusses how the superposition
of processes can be applied to modeling packets, flows, and
sessions in access and core networks. The aim of our paper is
to quantify this approximation by comparing statistical char-
acteristics of the traffic processes. A cloud server case study
is applied to compare the Aggregated Periodic traffic Process
(APP) with a Poisson Process (PP) approximation. Based on
analytical and numerical results, we formulate guidelines for
when the Poisson process approximation can be used to model
aggregated IoT traffic.

The remainder of this paper is structured as denoted in
Fig. 1 and as follows. Section II gives background on IoT data
characteristics and reviews related work. Section III provides
traffic characteristics of selected IoT applications by surveying
related work. Section IV compares the characteristics of the
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Figure 1. Common architectural elements of IoT networks and related topics
in the indicated sections.

APP and the Poisson process traffic approximation. Section V
introduces the IoT cloud use case and demonstrates the accu-
racy and applicability of the Poisson process approximation.
The gained knowledge is applied to a cloud autoscaler along-
side an experimental evaluation of this scaler in Section—VI.
Finally, Section VII concludes this work.

II. THE IOT ENVIRONMENT

In order to understand the behavior of IoT traffic, we first
take a look at contemporary IoT communication systems and
network structures.

A. Common Architectural Elements

Despite having roots deep in Wireless Sensor Networks
(WSNs) and mesh networks, IoT networks fundamentally
differ from their predecessors’ flat meshed structure. Instead,
most systems exhibit a simple centralized structure. A number
of simple IoT devices — mostly sensors or actuators —
that share a commonality (e.g., having the same owner or
being situated in the same building or region) connect to
one responsible hub, or aggregator. Often there are multiple
hierarchical levels of aggregation (from the edge to the cloud)
to combine different regional hubs together — see also again
Fig. 1 for this basic architecture. This results is a network
structure not unlike that of a mobile operator with its multiple
cells, backhaul, and a common core network, or in our case a
central cloud processing platform.

B. Scalability and Flexibility of the IoT Stack

The IoT devices themselves demand a certain rethinking
of the entire protocol stack as well. The typical Internet
approach of using RESTful HTTP atop TLS and TCP is
regarded as too heavyweight (especially due to its statefulness)
for many such devices, calling for lighter or better scalable
approaches [7]. More suitable examples include, e.g., the
protocols Message Queue Telemetry Transport (MQTT) and
Constrained Application Protocol (CoAP). With its publish-
subscribe approach and a tunable message reliability system
MQTT [8], using TCP/IP with or without TLS, offers a variety
of features that can be beneficial for many IoT use cases.

The protocol is often employed deeper in the IoT hierarchy
or in devices with more resources. A lightweight variant of
MQTT is MQTT-SN, but it is not directly compatible with
MQTT and needs an interconnecting gateway. More in line
with HTTP’s RESTful approach is IETF’s CoAP [9], albeit
being trimmed towards IoT through less overhead, UDP/DTLS
usage, statelessness, and customizable payload data formats.
These communication protocols are designed for centralized or
hierarchical architectures with multiple layers of aggregating
brokers.

C. Appropriate Radio Access Technologies for IoT

While in many settings, such as home automation, localized
Personal Area Network (PAN) communication is desirable
(e.g., using an interface from the IEEE 802.15.4 family), other
scenarios require RF interfaces with a larger coverage area
to reach the aggregation node. This can be provided by new
forms of Ultra Narrow Band (UNB) radio connectivity, and
opens up an entirely new category of communication modes,
aptly dubbed Low-Power Wide-Area Network (LPWAN). This
umbrella term subsumes a wide range of different protocols,
including the chirp spread spectrum based LoRa [10] and
its standardized link layer stack LoRaWAN [11]. Since it
operates in unlicensed radio spectrum, LoRaWAN has received
public interest through provider-backed installations (e.g., a
deployment providing nation-wide coverage in South Korea®),
but also through community-operated gateway networks where
anyone can participate.* With a projected range of up to
20km in rural areas, such gateways can aggregate the traffic
from thousands of devices. LPWAN standards that operate
on unlicensed bands may, however, face certain congestion
challenges that are not unlike that of 2.4 GHz WiFi, where the
band occupation and the resulting collisions and interference
have become worryingly high, especially now that variants of
LTE exist that offload into this band [12]. Due to the much
higher range of LoRa and other approaches, as well as the
number of legacy devices that operate on these bands, this
situation may become reality sooner rather than later [13].
Adhering to a strict communication discipline and minimizing
the amount of transmitted data and transceiver air time might
alleviate the situation.

Other LPWAN options include new IoT-friendly variants
of the 3GPP cellular networks, particularly NarrowBand IoT
(NB-IoT) [14], which operators are now starting to adopt in
their networks. While LoRa specifies only a very shallow
protocol stack and leaves all other details to the specific
implementation (with the option to use LoRaWAN), NB-IoT
brings along the usual deep 3GPP stack.

With the broad selection of protocol stacks and RF inter-
faces, a few different communication patterns emerge in IoT.
Using a RESTful or a publish/subscribe approach, the ability
to constantly send large amounts of data or being restricted
to minimal data and large periods will directly influence the
traffic characteristics. This is discussed in the next section.

3https://www.semtech.com/company/press/LoRaWAN-ToT-Network-
Deployed-Nationwide-in-South-Korea-by-SK-Telecom-Covers-99-Percent-
of-Population

4See, e.g., https://www.thethingsnetwork.org/



III. A SURVEY OF 10T TRAFFIC CHARACTERISTICS OF
SELECT IOT APPLICATIONS

In general, IoT-traffic can be roughly partitioned into peri-
odic and event-based modes of communication (see also, e.g.,
[15], [16]). Some applications will always be event-driven.
Consider for example a smart home equipped with motion
detection sensors. They are triggered by events outside of the
domain of influence of these devices. But even here, emergent
periodicity can ensue. For example, leaving for work and
returning home each day at roughly the same time might
activate motion sensors installed in the home hallway in a
predictable, periodic manner, cf. [17]. Additionally, many IoT
devices from other fields of application often intrinsically
communicate in a periodic fashion. A prominent example are
Smart Grids. This includes not only the measurement and
collection of current power usage values from residential and
industrial Smart Meters, but also the supervision, management,
and maintenance of the power generation and distribution
network [18]. Once again, these usually operate periodically
with different intervals depending on the type of data, but may
switch to pushing events in case of critical readings.

Summing up, for the purpose of this paper one can describe
IoT traffic by describing either the communication periods,
i.e. the period lengths (and, if applicable, the variability of the
period) and the amount of data sent, or using a probabilistic
model to describe the triggering event (and again the data
amount). Depending on the scenario other factors might play
a role as well, e.g. the directionality of the transmission. This
is then combined with QoS criteria. In the case of IoT this is
usually the expected maximum end-to-end delay and the loss
rate.

A. IoT Traffic Models and Characteristics in Literature

Due to their shared heritage and similarities, the literature
covered here includes works from WSN and Machine-Type
Communications (MTC), where traffic models have been
investigated more closely in the past.

For example, [19] provides numerical simulation results
and investigates aggregate packet counts in which both pe-
riodic and event-driven communication appears. [20], [21]
attempt to show that in MTC the classical Markovian arrival
process assumption does not hold due to the burstiness of
the traffic. Instead, a Beta distribution should be employed.
On the other hand, the work conducted in [22] strives to
verify that a Poisson distribution can indeed be applicable at
least to the general (LTE-A) connection establishment process
(without limitation to IoT devices). [23] explores a large-
scale mobile network measurement dataset for well-known
Machine-to-Machine (M2M) device types and evaluates the
traffic characteristics of these devices.

When speaking of IoT traffic characteristics, of special note
are as mentioned the periodic patterns (or the session Inter
Arrival Time (IAT)) and message sizes that stand apart from
typical mobile phone session arrival processes. The minimum
period length can even depend on the underlying communica-
tion technology. GPRS for example can not support arbitrarily
short messaging periods for a large number of devices without

modification due to the imposed signaling interactions and
limited available radio resources [24]. In a typical scenario
the shortest period is estimated to be 5 min [25]. Additional
work proposes to better utilize the Random Access Channel
(RACH) in current and future mobile technologies to allow
for more devices and be more resource efficient [26], [27].

With such limitations in mind, Table IV compiles measured,
assumed, and modeled traffic characteristics from various pub-
lications and standards with a focus on their communication
periods. Further publications overview existing and proposed
applications of 10T, e.g. in industry automation and supervi-
sion [28], cloud-backed at home or in enterprise-settings [29],
or smart environment scenarios [30] as well. In the table it is
immediately evident that most scenarios assume at least some
kind of periodic component, usually with a period length in
the order of minutes, and a very high density of distributed
devices, albeit with a rather low amount of data per device per
period.

B. Traffic Projections Using a Toy Model

But one does not need to solely rely on traffic data from past
publications and can instead set up some rough toy models
for ToT traffic as well. The predictability of the household
smart meter distribution and their communication behavior can
be exploited for such a forecast [21], [25], [31], since there
should always be only one per household and their installation
is mandated by law in many countries.

Assuming that every household will have a smart meter that
connects to the same LPWAN network, we can for example
map population data from the German Federal Statistical
Office [32] to the expected radio coverage from LPWAN
gateways. The statistical offices give data on city population
and population density for all major German cities, as well as
a forecast on the average household size in Germany (1.97 for
the year 2020, 1.9 in 2035).

This data can now be combined in a simple model, using a
naive radial range model, e.g., for LoRa gateways, to calculate
an estimate of the expected number of households — and thus
the number of household smart meters along with it — per
gateway for a given city. A toy mapping for a few exemplary
cities is integrated into the aforementioned Table IV. The
model considers a conservative urban LoRa range of one mile,
and thus results in an estimated mean number of smart meter
numbers per gateway ranging from roughly 2,000 (for the city
of Salzgitter) up to 19,000 (for Munich).

One hierarchy level above, in the case of a citywide ag-
gregation of the smart meter data, the number of households
can reach 1.7M (e.g. in Berlin). Aggregators would have to
deal with these numbers of devices, with the sending intervals
probably even getting shorter in the future (depending on up-
coming legal regulations, since, e.g., time-precise smart meter
readings can have direct repercussions for the household’s
privacy). Naturally, this raises immediate dimensioning and
scalability questions for those aggregation nodes.

IV. ANALYSIS OF AGGREGATED TRAFFIC PATTERNS

As outlined in the previous section, IoT traffic emerges
from a large amount of sensor nodes which is aggregated



in the IoT architectures at different points, like the IoT
gateways or [oT load balancer at an IoT cloud. For the
performance analysis of such an IoT system, queuing theory
provides fundamental results that are applied in this section.
Such analytical approaches are required e.g. to investigate the
dimensioning of gateways and scalability of the entire system,
since simulations or testbeds are limited in size due to the
necessary computational time and incurred costs. In particular,
we will take a closer look at the superposition of periodic
traffic processes from a large number of unsynchronized IoT
nodes. Thereby, the Palm-Khintchine theorem tells that the
aggregated traffic can be approximated with a Poisson process
under certain conditions and for a large number n of nodes.
To this end, we will investigate in this section whether the
Poisson approximation is valid in the IoT case or whether
certain traffic characteristics are not properly reflected. For this
investigation, we define several metrics to compare the Poisson
approximation with the aggregate of periodic IoT traffic. Then,
we analyze how large n must be in order to have a sufficiently
high accuracy between the Poisson approximation and the
aggregated IoT traffic in terms of those metrics.

A more comprehensive treatment can be found in our
previous work in [33].

A. Superposition of Traffic Processes

The fundamental theorem for the superposition of traffic
processes is the Palm-Khintchine theorem which shows that
the superposition of a large number of independent renewal
processes will be described by a Poisson process. A point
process is a renewal process if and only if the interarrival
times are independent and identically distributed (iid). For a
Poisson process, the interarrival times X follow an exponential
distribution with rate A with cumulative distribution function
Fx (t) and probability density function fx ().

X ~Exp\): Fx(t)=1—e . fx(t)=Xxe M (1)

Theorem 1 (Palm-Khintchine Theorem). Let us consider n
independent renewal processes with iid interarrival times X;.
The expected interarrival time for each process is E[X;] =
1/X; where \; is the arrival intensity. Then the superposition is
asymptotically a Poisson process for n — oo, if the following
assumptions hold.

1) The intensity \ of the superposition process is finite,
D=1 A = A < 00 when n — 00
2) No single process dominates the superposition process,

The implication of the theorem for an IoT system is that
a superposition of the periodic traffic processes that models
the collection of data from a large number n of sources can
potentially be approximated by a Poisson process. This is
because it is reasonable to assume that the sources generate
messages independent of each other and with a sampling
frequency in the same order of magnitude, as discussed in
Section III. This means that the interarrival time X, reflects
the sampling period of sensor i. The aggregated traffic can
be described by the interarrival times, which are the times

between the sensor messages as seen by the aggregator e.g.
gateway. Please note that the Palm-Khintchine theorem makes
no further assumptions about the individual renewal process
which may also include periodic processes.

B. Asynchronous Periodic Traffic with same Periodicity

As described in the previous sections in an IoT system the
nodes are often periodically generating messages. We formally
define such periodic traffic as follows.

Definition 1 (Periodic Traffic). In a periodic traffic process
messages from a single node i are generated at time T, j in
period k such that:

Tik =t + kT; (k‘ S N). 2)

The time between messages is constant and equal to a constant
T;, and the arrival rate is also constant 1/T;. The first message
is sent at time t; = T; o.

The superposition of periodic traffic from IoT nodes is
constituted by

1) Synchronous periodic traffic 7; , = 7 for any node i
and 7, and thus identical sampling period T; = T, Vz,

2) Homogeneous asynchronous periodic traffic with the
same sampling period, T; = T ; V7, but independent start
times ¢; # t;, Vi # j,

3) Heterogeneous asynchronous periodic traffic with differ-
ent periodicity, 31; # T}, Vi # j

where ¢; is the time of the first sample from process i, and 7;
the period (inter-message time) of process <.

Synchronous sources can simply be modeled through pe-
riodic batch arrivals of size n. The superposition process is
then of the same type as the individual processes. However,
in a realistic scenario it is reasonable to assume that the IoT
traffic sources are asynchronous. In this section we mainly
consider homogeneous asynchronous periodic traffic with the
same periodicity>, which is defined as

Definition 2 (Asynchronous Homogeneous Periodic Traffic
(APP)). The system consists of n nodes with the same message
sampling period, T. In asynchronous mode, the nodes start
randomly at time t; ~ U(0,T). Each node i periodically
generates messages at time 7; , = t;+k-T fork =0,1,2,....
The interarrival time between the messages of node i and node
i+ 1in (0;T) is denoted A; = tiy1 —t; (i=1,---,n—1),
with to = 0, and A,, = (T+t1) —t, = (T—tn) + (t1 —to)
(which is the interarrival time between the first message in a
window and the last message in the previous window).

Note that the message sequence of the APP in (0;7) will
be periodically replicated every 7.

Figure 2 illustrates a message sequence at sample times ¢,
with constant period 7' (interarrival times). In this paper we
consider asynchronous sources ¢; # t;, Vi # j, with the same
sampling period, T; = T, Vi, where each source ¢ is sending
once (and only once) in the interval [to; to + 7.

SIn Section IV-D heterogeneous asynchronous periodic traffic is briefly
revisited.
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Figure 2. Asynchronous periodic traffic processes with n sources with
identical period T', with uniformly distributed start time ¢; ~ U(0,T"). The
interarrival times A; between the i-th and the (¢ + 1)-th ¢ = 1,...,n)
message are identical in each period and t; + kT for k € Ng.

C. Performance Metrics

In this section we will compare the performance of the APP
and the Poisson Process (PP) approximation. The purpose is
to investigate when a Poisson Process can approximate an
APP, and when not. In the following we define and look at
different metrics that express the difference (in relative error)
of the arrival times, interarrival distribution, correlations. An
IoT aggregator sees the aggregate traffic and may be imple-
mented in such a way that certain thresholds of interarrival
times or timeout values are utilized to dynamically adapt the
aggregator, e.g. switching to stand-by mode to save energy
after a certain idle time. Hence, the interarrival time patterns
are crucial (Sec. IV-Cl1), as they may trigger thresholds and
timeouts. This could lead to differences for APP and PP. We
quantify this by the relative error of the interarrival times
(Sec. IV-C2) as well as the shift of expected arrival times
(Sec. IV-C5).

The variance and distribution of the interarrival times are
relevant when for example considering the processing of the
sensor node messages (see the IoT load balancer in Section V).
In such a case, our aggregator reflects a queuing system, which
are well-known to be sensitive to variances of the arrival
process, e.g. regarding the waiting and response times of the
messages. To this end, we compare the variances of APP
and PP in terms of the coefficient of variation (Sec. IV-C3).
We compare the interarrival distributions by utilizing the
Kolmogorov-Smirnov statistic, which quantifies the maximum
difference of the interarrival time CDF values of the APP and
the PP (Sec. IV-C4). Of course, when scaling the resources
of the aggregator (e.g. scaling cloud resources for processing
IoT data as in Section VI), a relevant measure is the current
load in the system. To this end, we consider the number of
arrivals within a certain period and quantify the differences
between APP and PP based on the variances of message
arrivals (Sec. IV-C6).

Finally, we take a closer look at the autocorrelations of the
interarrival times (Sec. IV-C7) which may influence queuing
systems as well. In particular, we are interested in the autocor-
relation of the interarrival times of the n-th lag. For the APP,
the n-th lag indicates the messages from the same sensor node,
i.e. the n-th lag corresponds to the fixed sending period 7" and
the autocorrelation of lag n is 1. However, for the PP, we will
observe a random value of the interarrival times due to the
Poisson process approximation, hence, the autocorrelation at
lag n is < 1. Such differences may be crucial when the IoT
system triggers actions for individual sensors based on the

interarrival time of messages, e.g. to dynamically adjust the
sampling period for reducing the overall load at an aggregator,
to reduce the energy consumption of the sending node, or
to improve the accuracy of sensor information. As we will
see in this section, depending on the concrete metric (and
hence the concrete use case which justifies the consideration
of the related metric), there may be strong differences between
measures for which size n the Poisson process approximation
gives acceptable results for an APP.

The Palm-Khintchine theorem only holds when n is suffi-
ciently large and with independent and identically distributed
(iid) interarrival times for each node. This raises two ques-
tions. When is n sufficiently large such that the superposed
process can assumed to be a Poisson process? How large
of an error does this assumption introduce, and which traffic
characteristics are affected by it? As discussed in Sec.III the
expected scale of IoT applications spans a wide range, the
theorem must be carefully investigated before it can be applied
to a given scenario. As mentioned above, the queuing per-
formance depends on the autocorrelation and variance of the
arrival process so if the PP approximation has very different
characteristic w.r.t. these properties then the assessment of the
queuing performance will be wrong.

The following sections explore this notion on the basis of
several measures and using the following definition of the
Poisson process approximation.

Definition 3 (Approximating Poisson Process (PP)). The
Poisson process approximating of an APP has arrival rate
A* = %, where T is the sampling period and n is the
number of asynchronous nodes of the corresponding APP.
The interarrival time distribution in the Poisson approximated
traffic process is exponentially distributed with intensity \*,

that is A* ~ Exp (\*).

1) Interarrival Time (IAT) — Expected value: By definition,
the arrival intensities of the APP and the PP are identical.
The expected interarrival time of the PP is E[A*] = 1/\* =
T /n. However, for the APP we observe different values of the
expected interarrival times E[A;] fori =1,...,n.

Clearly the average of these expected interarrival times over
all n must be equal to the expected interarrival time of the
PP, since the rates of the two processes are set to be equal.
Nevertheless, in order to gain a better understanding of the
relationship of these processes we prove this equality in the
following by explicitly considering the probabilistic behaviors
of the (offset) random variables A;.

We consider the first order statistic X of the uniform distri-
bution. The ¢; are iid and uniformly distributed in (0;T), i.e.
t; ~ U(0,T) with Cumulative Distribution Function (CDF)
F;,(t) = P(t; <t)=t/T for 0 <t <T.Let X = min{¢;}
be a random variable (RV) that describes the minimum of the
t;. Then, the CDF of X is Fx(t) =1—P(t; > ¢,...,t, >
t)y=1-[[-,1—F(@{) =1—(1—¢/T)". Thus, the first
order statistic X follows a four parameter Beta distribution
with ¢ = 1,b = n,c = 0,d = T, i.e. X ~ Beta(a,b,c,d)
in the interval [c;d]. The Beta distribution converges to an
exponential distribution as the number of nodes n increases
[34].



From Definition 2, we know that the interarrival time
between the messages of source ¢ and source ¢ + 1 is
A, = tiy1 —ti, 2 = 1,---,n — 1, with {;, = 0, and that
A, = (T+t,)— (t1 —tg). A proof in [35, pp. 122-123] shows
that all A;,7 = 0,...,n — 1 follow the Beta distribution X.
Itis E[A;] =T/(n+1). For A, = (T +t,) — (t1 — o), the
interarrival time is the sum of two interarrivals, A,, = X + X,
i.e. a sum of two Beta distributions, and we observe E[4,,] =
E[T,] + E[Ao] =2T/(n + 1).

An intuitive explanation for the expected interarrival times
is as follows. The interval (0;7) is divided equally by the
n arrivals, and we thus observe n + 1 interval segments of
length %5 Hence, E[A;] = ;25 for (i=0,---,n —1) and
E[A,] = E[T,] + E[4¢] = 2T/(n + 1).

2) Interarrival Time (IAT) — Error between average ex-
pected IATs: First, we consider the average A of the expected
interarrival times E[A;] of APP and E[A*] of the Poisson
process. For this we calculate the average of the expected
interarrival times of APP over the n nodes

n+1 n+1 n

LI ol /((n=1)T 2T \ T
A_R;E[Al]—n( + >_ 3)

The expected interarrival time of the Poisson process is
also E[A*] = T'/n. Hence, there is no difference between the
average expected interarrival times in the APP and Poisson
process. The error is zero.

3) Interarrival Time (IAT) — Coefficient of variation: The
coefficient of variation (CoV) of the IAT of the aggregate
arrivals in the APP is C; = Std[A4;] /E[A;], which gives an
average CoV of

N
czgi;ci @)

The average coefficient of variation over all n nodes of
APP can be numerically derived and fitted. The numerical
derivation was conducted in our previous work [33] and led
to

-1 1
e 5)

n n

C:

For the Poisson process, the interarrival times follow an
exponential distribution with a CoV of C4« = 1. The rela-
tive error between the average coefficient of variation C' of
interarrival times A; of APP and PP is

re=1-C/Cy = % (6)

Thus, for r¢ < €, then follows n > 1/e, which implies that
the relative error of the coefficient of variation is smaller than
€, e.g. an € = 1% requires n > 100.

4) Interarrival Time (IAT) — Kolmogorov-Smirnov statistic:
The average Kolmogorov-Smirnov (KS) statistic %,, between
distributions of interarrival times in the APP and Poisson
process should approach zero as n increases. We use k;
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Kolmogorov-Smirnov statistic
o o o o
N w B~ (¢

o
[

0

10° 102 10° 10*

number of nodes

10t

Figure 3. For all n nodes, the mean, median, and maximum Kolmogorov-
Smirnov statistics are derived (over all ;).
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Figure 4. Expected arrivals ¢;,7 = 1,...,n of aggregated periodic process

(blue O) and expected arrivals ¢ of a Poisson process (red x) with A = n /T
in [0; T]. The shift in expected arrivals between APP and Poisson process is
A, =t; — t:

to quantify the distance between interarrival distributions
Fa,(t) = P(A; <t) and Fs«(t) = P(A* <), such that

1 n
R = - Zmi < € with (7
=1
Ky = mtax|FAi(t) — Fa=(1)]

The mathematical analysis has been omitted here for brevity,
but instead we derive the values numerically. For n — oo
the maximum value (emerging from the n-th interarrival)
converges towards

~ 0.3679, (8)

. 1
lim &, = —
n— oo e

while the average and median converge towards zero.

lim &, =0 (©))
n—oo

Figure 3 plots the mean, median, and maximum KS statistic
as a function of n. Thereby, the mean, median, and maximum
KS statistic are computed over the n KS values x;. As an
example, this gives n > 136 and & < € for e = 0.01.

5) Arrival process — Shift in expected arrival time: When
considering the interarrival times, using a Poisson process as
an approximation of the APP will introduce a shift in the
difference between the expected arrivals of the two processes.
As illustrated in Figure 4 we consider the expected arrivals
in a Poisson process which implies that we have equidistant



arrivals with expected interarrival of 1/\*. The expected shift
A,; of the i-th arrival is then defined as

T T
A =i (=—
! Z(n n+1

The expected shift over the measurement period (0;7T) is
then
n T
E[S|=) A=+
(5] Z:; 5

and the expected shift per node in (0; ') is E[S]/n = 2. For
large n the average shift becomes small, e.g., with n > 50
nodes, the error is smaller than € = 1% for T' = 1.

6) Arrival process — Deviation from Expected Number:
The APP generates a fixed number of n arrivals in (0;7),
while for the Poisson process the expected number of arrivals
in (0;T) is E[N*] = A*T = n. The Poisson distribution yields
the probability that exactly n arrivals will occur in (0; 7).

( A* T)n

—_2\F n-o_
PN*(n):Te AT n' n

) (10)

(1)

12)

This probability is decreasing with increasing n, from the
maximum at n = 1, Pp(1) = 0.3679.

When considering the coefficient of variation of the Poisson
distribution, it is

Cne = 1 <¢ (13)

Vvn
which should be close to zero, as for the APP the CoV of
the number of arrivals is 0. For n > ¢~2, the error is smaller
than e.

7) Arrival process — Autocorrelation: The autocorrelation
p*(7) in a Poisson process is 0 for any lag 7 > 0, since the
interarrival times are iid. However, in an APP the autocor-
relation is p*(7) = 1 for 7 = kn, due to the deterministic
periodic pattern of arrivals. Thus, a Poisson approximation is
not able to properly capture any autocorrelation characteristics
of the APP see also Fig. 8. For many scenarios, this may not be
relevant. However, when, for example, considering the waiting
times of a queue where the offered traffic is an APP, then the
nodes will always observe the same waiting times in every
period. Section V-C looks at the waiting times for a single
server queuing system in such a scenario.

D. Heterogeneous Traffic Mixes

Besides homogeneous, single-period traffic, there will also
be heterogeneous traffic from sources operating on different
sending periods. For this, we may consider £ APP classes with
sending frequencies 7. In addition, as seen in Table IV, many
scenarios also exhibit a mix between periodically sending
sources as well as event-based transmissions, which could be
represented as a mix of APPs with additional Poisson traffic.
To model this kind of rare events, we use a factor 0 < a <1
for the share of Poisson traffic. Since the total load in the
system is A the rate of Poisson traffic is aA. That leaves a
ratio of (1 — a)\ for the periodic traffic portion.

Taking a look at the interarrival time in a numerical simula-
tion of this setup a rather close fit can already be observed for
a = 10% and n = 20 when compared to pure Poisson traffic

1
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0.6
LL
[a)]
®)
0.4+
Poisson
n=1&P
0.2 n=2&P
— n=20 & P
n=100 & P
O L L L L
0 0.5 1 1.5 2 2.5 3

interarrival time A

Figure 5. CDF of the interarrival time in a single simulation run of a mixed
traffic scenario with 10 % Possionian traffic and a varying number of periodic
nodes n.

Table T
RELATIVE ERROR OF THE COEFFICIENT OF VARIATION OF IAT WITH
INCREASING NUMBER OF NODES 72 AND AN INCREASING POISSON
TRAFFIC PORTION .

[e
n 0 0.1 0.5
109 | 1 0.7332  0.3127
101 | 02139 0.1803  0.0781
102 | 0.0763  0.0624  0.023
103 | 0.0246 0.0199  0.0076
10% | 0.0081 0.0068  0.0035

(cf. also Fig. 5). For small n, the aggregated mixed traffic has
a bounded maximum interarrival time (which is at most 7).
Better approximations for the expected maximum interarrival
time exist, but are out of scope for this paper. Investigations of
the relative error of the coefficient of variation between mixed
and Poisson traffic shed further light on the heterogeneous
scenario. The results in Tab. I indicate that an increasing
portion of Poisson-modeled event-based traffic quickens the
convergence towards Poissonian behavior in the mixed APP
case. Since this is not unexpected, and only improves the
fidelity of the approximation, we continue the examination
with the homogeneous assumption that can serve as a lower
limit. Since in praxis, traffic mixes can change or are not
entirely predictable, it can be advisable to work under this
worst case assumption in any case.

E. Clock Drifts

Up until now, this section has assumed that each source
has a constant sending period over the whole duration of the
experiment. But in reality this may not always be the case,
especially with low-cost IoT devices that do not have a high
quality crystal oscillator or even a PLL on their PCB. This
causes deviations in the frequency generation and thus also
in the clock source. E.g. a typical ceramic resonator as used
as the primary clock source on an Arduino Uno board has
a frequency tolerance of 0.5 %. Aggregated drifting periodic



Table II
GUIDELINES FOR THE MINIMUM NUMBER 7 OF NODES SUCH THAT THE
RELATIVE ERROR DUE TO POISSON APPROXIMATION IS BELOW A
THRESHOLD €. WE CONSIDER 1" = 1, SUCH THAT n DEPICTS THE NUMBER
OF MESSAGES PER SECONDS A = n/T. COV’ ABBREVIATES THE
COEFFICIENT OF VARIATION OF A RANDOM VARIABLE.

Measure  Description Formula e=0.1

Bias of Poisson process to approximate APP arrival pattern

TA mean interarrival time rg4 =0 any n >0
_ (IAT)

S avg. shift of IAT n>T/2e n/T > 50
T CoV of IAT Eq.(5) n>1/e n > 100

R KS statistic of IAT numerically n > 136
CN* CoV of arrivals in T’ n>1/e? n > 10000

Example: Waiting times at IoT load balancer

rw(p) rel. error waiting time numerically depends on p
for p = 0.95 n > 38,899
for p = 0.55 n > 486
for p =0.15 n > 110
- autocorrelation ~ waiting  not possible not possible
times

systems will therefore not have identical interarrival times in
each period, as assumed in Fig. 2 but drift relative to each
arrival over the course of a number of periods. In the simplest
case, the drift can be assumed constant for each source,
meaning that each source has a different but constant period.
This effectively results in the case of periodic heterogeneous
traffic again. But this model does not cover varying drifts, e.g.,
due to temperature variations of the frequency source.

F. Guidelines for the Lower Limit of n

With the help of the metrics introduced here one can set
up guidelines for a lower limit of nodes n in order to keep
the relative error below certain thresholds. This has been
conducted in Table II. Depending on the concrete use case
or characteristic under consideration, the minimal value of n
varies significantly. Let us consider a concrete example of an
IoT aggregator which goes to stand-by after a certain idle time
L. For that use case, the maximum difference between the
interarrival time distributions is considered to be on the safe
side. Hence, we need to consider the KS statistic from the
guideline table. For n > 136, the PP approximates the APP
(to be more precise: the entire distribution) with a small bias.
For example with L = T'/2, the probability that the IAT is
larger than the threshold L is P(X > L) = e~/ for the
PP. For the APP, the beta distribution (see Section IV-C1) is
considered. The difference is already below 0.1% for n > 14
and the guideline table gives a safe recommendation, since
the KS statistic considers n wrt. the maximum difference
between the two distributions, not only the difference of the
tail probabilities.

While many realistic traffic scenarios (looking back at
Table IV) might fulfill this requirement due to their scale,
others may not be large enough for the Poisson approximation
to apply. And for some metrics, like the autocorrelation of
waiting times, the Poisson process is simply not able to capture
the characteristics of the APP. This has to be kept in mind
when one wants to employ this Poisson approximation as

—
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Figure 6. Illustration of the load balancer at an IoT cloud.

basis of their traffic model for scalability and dimensioning
decisions.

V. USE CASE: PERFORMANCE OF I0T CLOUDS

In this section, we take a look a more complex use case
where the performance of an IoT cloud load balancer is
considered. To this end, we need to examine the load, as we
are interested in the waiting times of messages of the IoT
load balancer. From the guidelines in Table II, we need to
pick the CoV of the number of arrivals during an arbitrary
sample period 7', as the number of arrivals per time interval
determines the load of the IoT load balancer and hence the
waiting times. The guideline table tells us that only for large
systems with n > 10,000 nodes the Poisson approximation
is appropriate and the CoV C- of the number of arrivals
is close to zero. However, when studying waiting times of
the aggregated traffic in high load scenarios, an even larger
number of nodes is required for a small bias, since we need
to consider the processing of the message. The waiting system
is sensitive to the overall system load and hence the relative
error €c,,. for the CoV should be adjusted to the system load
in the queue. We postulate that the higher the load p is, the
smaller the acceptable bias ec,,. is for Cy- (i.e. the higher
n), such that the relative error in waiting times v (p) is lower
than a threshold, Ty (p) < ew.

oy~ (p) = ew(1—p) (14)

Based on that assumption in Eq. (14), we derive the required
number of nodes depending on the system load of the IoT load
balancer and postulate that Eq.(15) will lead to a sufficiently
small bias between the Poisson process approximation queuing
model and the aggregated periodic IoT traffic.

1
e (1= p)?
We will analyze the performance of the load balancer in the

next section and check the postulated number of required
nodes for a small bias of the waiting times.

n(p) > (15)

A. Poisson Process Approximations Queuing Models

We now take a look at the concrete case of an IoT cloud,
where n nodes are periodically sending messages to a cloud
instance to be processed. The nodes are asynchronous, but
have the same sending period 7'. The processing time S to
handle the messages at the load balancer is considered to
be constant. This system is modeled as an nD/D/1 queuing
system [5], [36]. We consider S = 1 time units and express
time-related measures relative to S. The crucial performance



measure for dimensioning this load balancer is the waiting
time. We simulate the autocorrelation of the waiting times
as well as the impact of additional network transmission
delays, which is modeled as an nG/D/1 system. The use case
demonstrates the limits of the Poisson process approximation,
but also shows that for the analysis of scalability it is a very
good approximation.

Roberts and Virtamo analyze the state probability for the
nD/D/1 queue in [5], [37] based on [38]. They compare the
system to M/D/1 and find that the Poisson approximation
can lead to a significant overestimation of buffer requirements,
particularly in case of heavy load. A summary of waiting
time approximations for high load is for example available
in [36]. For the M /D /1-approximation, in which the arrivals
are generated by a Poisson process with rate A = 7, Iversen
and Staalhagen provide an efficient calculation of the M/D/1
system state probabilities [39], i.e. the number of customers
¢ in the system. The state probabilities P (i) are recursively
computed based on Fry’s equation [40]. The load in the system
is p = AS with constant service time S. We can define
P(i,p) as P(i,p) = ‘Z’.—:efp. When comparing the system state
of nD/D/1 and M/D/1 under high load (p = 0.95), the
Poisson approximation overestimates the buffer requirements
when dimensioning the load balancer according to a certain
threshold P(X > x). However, for fairly low load (p = 0.55),
the difference between nD/D/1 and M/D/1 is negligible.

B. Mean Waiting Time and Relative Error
For M/D/1, the expected waiting time is

A\S? S-p

E[Whypp] = 20-1S)  2(1—p)°

For nD/D/1, the expected waiting time is derived based on

a result from Eckberg [41] which depends on the Erlang-

B formula B(M,a) quantifying the blocking probability in

an M/GI/n/n loss system. For the computation of the

Erlang-B formula, the iterative method is used, B(0,a) =
1,B(n,a)_1 = ]. + m.

(16)

(n—1)Sp

E|W, = a7
[ D/D/l] 2nB (n -2, %)
. n _1._)&
lim B <n _2, E) —1-A5 (18)

Figure 7 shows the mean waiting times in relation to the
service time .S on the y-axis, while the system load is depicted
on the x-axis. For heavy load, there are significant differences.
The higher the number of nodes the closer the nD/D/1
system approaches M/D/1. Under high load (p = 0.95) the
relative error

E[W.p/pp]
E[War/pj)

of the expected waiting time is smaller than epsilon for
n > 38,900. An intuitive explanation of the differences
between the mean waiting times of M/D/1 and nD/D/1
is the boundedness of individual waiting times. In nD/D/1,

rw(p) = |1- (19)
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Figure 7. Mean waiting times (normalized by service time S) for nD/D/1
and M/D/1 reveal significant differences for high load, e.g. p = 0.95.

the individual waiting time is bounded by S(n — 1), which
happens if all n arrivals occur simultaneously. Ramamurthy
and Sengupta explain it with the busy period [42]: “In the
M/D/1 queue both the waiting time and the busy period arej
unbounded as the utilization gets close to one [i.e. heavy load].
On the other hand, in our [nD/D /1] model the busy period
(and consequently the waiting time) is always upper bounded
by one. For this reason, it is not surprising that the M /D /1
results overestimate those of our [nD/D /1] model.”

However, when investigating the scalability of the IoT load
balancer, we observe that the Poisson process approximation
fits very well to the nD/D/1 system. Especially, in situations
where the load is not very high, traffic from just a few
hundred sensor nodes already allows using the simple Poisson
approximation, and the differences are negligible. In general,
basic queuing theory gives us a powerful tool for scalability
investigations to easily derive exact performance measures. We
will also utilize the Poisson approximation in Section VI for
IoT cloud scaling.

Please note that the numerically derived numbers in the
guideline Table II fit very well to our basic thoughts in
Section IV-F, where we came up with a simple relationship
to estimate the number of nodes, see Eq. (15). For the
considered system loads (p = 0.15,0.55,0.95), we postulated
n = 138;494; 40,000 for ¢ = 0.1, which is very close to the
numerically derived exact numbers (110;486; 38,899).

C. Autocorrelation of Waiting Times

Periodic systems naturally exhibit deterministic arrival time
and the system state pattern. The autocorrelation of the waiting
times at lag n is 1, i.e. w; = wijyg, for £k = 0,1,2,....
Figure 8 compares the autocorrelation of the waiting times for
nD/D/1 and M/D/1 by means of a numerical simulation.
In the M/D/1 system, the autocorrelation converges towards
zero, while the convergence rate depends on the system load
p. Thus, the characteristics of the autocorrelation of nD/D/1
cannot be approximated by a Poisson process.
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Figure 8. Autocorrelation of waiting times in nD/D/1 and M/D/1 for
medium and high load.

Although the autocorrelation of the waiting time is not
crucial for the scalability analysis of an IoT load balancer,
as the aggregated load is of importance, the autocorrelation
plot and the deterministic pattern show that messages from
the same sensor nodes will experience the same waiting times.
Hence, such a Poisson approximation may lead to different
results when e.g. considering the timeliness of sensor data.

D. Impact of Network Transmission Times (nGIl/D/1)

We now refine the nD/D/1 10T cloud model by addition-
ally taking into account a shift in the arrival pattern caused
by different and varying transmission (and propagation) times
from the sources to the cloud instances. We assume the delay
to be an exponentially distributed random variable 6 ~ Exp(pu)
with mean delay §,, = i Thus, any packet sent at time ¢
arrives at the cloud at time ¢+ At with At ~ . Consequently,
the interarrival times I per node do not follow a deterministic
distribution, instead they are the convolution of the network
transmission delay, I = (i+ 1)T+0 — (T +6) =T+ — 9,

with
%eu(t*T)
F(t) = - %efu(th)

At<T

20
A>T 20

However, additional network delay does not have an impact
when n is sufficiently large and the mean waiting time
primarily depends on the number of nodes. Therefore, the
minimal number of nodes n to keep the error below a threshold
is similar. Only in the (unrealistic) case that the additional
network delay § is much larger than the period 7' then the
aggregated process leads to a Poisson process, as the sending
period T has no significant influence anymore. Detailed results
can be found in [33].

VI. USE CASE: PERFOMANCE OF I0T CLOUD SCALERS

The aggregated IoT arrival patterns can also cause load
fluctuations in the cloud backend and thus also introduce
variations in the required number of cloud instances. There-
fore, we investigate how this interacts with cloud auto-scaling.

Based on the survey of Lorido-Botran et al. [43], auto-scalers
reconfigure the cloud depending on the application and the
deployment in the order of minutes. Islam et al. [44], for
instance, uses a scaling interval of 12 minutes. Due to the
high frequency of the IoT devices, we scale every minute in
this use case.

We compare how both the effects of an APP, a Poisson
process approximation, and mixed scenarios (similar to the
ones in Sec. IV-D) affect the auto-scaling performance. In the
following experiments, we first take a look at a representative
auto-scaler in the form of React [45], since it is a simple and
straight-forward approach. Second, we specifically design a
threshold-based auto-scaler that targets the mean waiting time.

A. Introducing the Auto-Scalers

In 2009, Chieu et al. [45] presented a reactive scaling
algorithm for horizontal scaling, called React. React provisions
resources based on a threshold or a certain scaling indicator
of a web application. The considered indicators include: the
number of concurrent users, the number of active connections,
the number of requests per second, and the average response
time per request. React gathers these indicators for each
resource and calculates the moving average. Afterward, the
current web application resources with active sessions which
are above or below the given threshold are determined. Then, if
all resources have active sessions above the threshold, new web
application instances are provisioned. If there are resources
with active sessions below the threshold and with at least one
resource that has no active session, idle instances are removed.
In this work, we used a version modified by Papadopoulos et
al. [46] that is available online.®

Besides the investigation of React, we design a custom
auto-scaler that models each service unit as a queue and
takes the mean waiting time into account. The decisions
how many instances should be provided are made based on
the arrival rate A, the service rate u, and the number of
instances n. The scaling depends on predefined thresholds of
the maximum utilization p_max, minimum utilization p_min,
and the maximum waiting time w_max. Algorithm 1 depicts
the pseudo code of the scaling logic of this auto-scaler. In lines
2-4, the current system state is retrieved consisting of arrival
rates, service rates, and the number of running instances.
Based on this information, the average utilization for each
service unit (line 6) and the mean waiting time w (line 7) is
calculated. If the utilization exceeds the maximum threshold or
the waiting time is higher than the associated threshold, the up-
scaling procedure is started: As long as p and w exceed their
thresholds, the number of supplied instances is theoretically
increased (lines 8—10). Otherwise, if the utilization falls below
the minimal threshold, the number of provided instances is
decreased analogously (lines 13—15). Finally, the new number
of supplied instances n is returned in line 16.

B. Quantifying Scaling Behavior
To evaluate the scaling decisions made by the auto-scalers,
we consider both user- and system-oriented metrics. For the

6Competing auto-scalers: https:/github.com/ahmedaley/Autoscalers



Algorithm 1: Pseudo code of scaling logic.

1 Scaling Logic

2 A = getArrivalRate();
3 = getServiceRate();
4 n = getNumlnstances();
5 p= ,U«i’ﬂ’ // calculates the average utilizatior
6 w = calcWaitingTime(p, (,...); // carcurates s(w)
7 if p > p_max or w > w_max then
8 while p > p_max or w > w_max do
9 =2 . calculates the new average utilizatio
P () // cateutates the new average utilization
10 w = calcWaitingTime(p, ,...);
11 n = min(n, maxInstances());
12 else if p < p_min then
13 while p < p_min do
— A . . )
14 ‘ p = u-(ff'n) 5 // calculates the new average utilization
15 n = max(n, minlnstances());
16 return n;
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Figure 9. The core idea of elasticity is depicted with over-provisioning (yellow
boxes) and under-provisioning (red boxes) .

user-oriented metrics, we use the mean waiting time. In
literature, there are many approaches on how to measure
the auto-scaling quality at the system level. Some of the
approaches are intuitive while others seem to be arbitrary.
In this work, we want an intuitive comparison that can be
precisely described using mathematical formulas. Thus, we
consider for the system-oriented metrics the elasticity, which
is commonly considered as a central characteristic of the cloud
paradigm [47]. Herbst et al. [48] introduce metrics endorsed
by the Research Group of SPEC’ and define the elasticity as
follows:

“Elasticity is the degree to which a system is able

to adapt to workload changes by provisioning and

de-provisioning resources in an autonomic manner,

such that at each point in time the available re-

sources match the current demand as closely as

possible.” [48]

Figure 9 shows the core idea behind the elasticity. The green
dashed curve is the load intensity, the solid black curve is the
minimal resource demand to handle the load, and the dotted
blue curve shows the supplied resources. The red areas labeled

7Standard Performance Evaluation Corporation (SPEC)

with an U represent the under-provisioning, i.e., the demand is
higher than the supply. Analogously, the yellow areas labeled
with O represent over-provisioning. The width of each area is
used for the time share and the surface of each area is used
for the accuracy. In this work, we focus on metrics describing
the system during under-provisioning: The under-provisioning
time share Ty captures the time relative to the measurement
duration in which the system has less instances than required.
The under-provisioning accuracy 0y represents the relative
amount of resources that are under-provisioned during the
measurement interval. The best value of 0% is achieved when
the system is not under-provisioned. We define both metrics
as

100
%] = - E max(sgn(dy — s¢),0)At
t=1
T
100 max(d; — $¢,0)
0u|%] i= — - E —At,
ol%] =7 dy

~
Il

1

where d; is the minimal amount of resources (see black solid
curve in Figure 9) required under the load intensity at time ¢,
s¢ is the resource supply (see dotted blue curve in Figure 9)
at time ¢, and T is the experiment duration. At denotes the
time between two scaling intervals, i.e., in this case 1 min.

C. Experiment Discussion

In the first experiment, we compare the scaling with React in
three different scenarios. Each scenario represents the arrivals
of smart meter readings per gateway with the same sampling
period (see the highlighted section of Table IV) during a whole
day. We investigate the maximum distance of the waiting time
cumulative distributions (in the form of the KS-statistic )
between the two arrival types (deterministic and Markovian),
the average waiting time (WT), the under-provisioning time
share 7y, the under-provisioning accuracy ;. The results are
listed in Table III. In accordance to our guidelines in Table II,
we set the threshold for k, i.e. the relative error, to 0.1.

In the context of the approximation of Markovian with de-
terministic arrivals under consideration of a tolerating relative
error of 0.1, we see that 10,496 (x = 0.02 < 0.1) sending
devices are enough to sufficiently approximate Markovian
arrivals. In contrast, with 2,422 (v« = 0.11 > 0.1) sending
devices the relative error exceeds the threshold. In the context
of auto-scaling, React achieves better values for 7y and 6y in
all scenarios with the deterministic arrival pattern than for the
Markovian ones. This result is also reflected by the average
waiting time as in the deterministic case the time is lower
than in the Markovian case. That is, the auto-scaler can better
handle deterministic load than Markovian load.

Next, we also compare the scaling of React under heteroge-
neous arrival periods and additional exponentially distributed
arrivals (at a portion of 10% and 50 %). We focus in this
experiment on 7y and 6y that are listed in Table III. In each
scenario, the auto-scaler begins to struggle with the increasing
number of random events and achieves worse performance.

In a final experiment, we compare React to the performance
of a custom auto-scaler that scales based on the mean waiting



Table 111
SCALING WITH DETERMINISTIC VS. MARKOVIAN ARRIVAL PATTERN. THE
FIDELTY OF THE SCALING IS MEASURED BY THE KS-STATISTIC k, THE
AVERAGE WAITING TIME WT, THE UNDER-PROVISIONING TIME SHARE 77
AND THE UNDER-PROVISIONING ACCURACY 0.

#Devices  Arrival Type k WT T 0
Homogeneous Scenarios
Deterministic 0.56s 5.00 % 2.22 %
2422 Markovian 0N 081s 1166 % 575 %
Deterministic 0.14s 26.67 %  2.58 %
10,469 Markovian 0.02 0.15s 3381 % 2.65%
Deterministic 0.11s 20.00 % 1.16 %
16,098 Markovian 0.05 0.13s 3583 % 228 %
#Devices  Arrival Type — — U oy
Heterogeneous Scenarios mixed with Poisson Traffic
Deterministic 20.00 % 0.99 %
2,422 Deterministic + 10% Markovian 25.00 % 1.42 %
Deterministic + 50% Markovian 31.67 % 1.59 %
Deterministic 36.67 % 0.73 %
10,469 Deterministic + 10% Markovian  38.33 %  0.79 %
Deterministic + 50% Markovian  40.00 % 1.06 %
Deterministic 26.66 %  0.55 %
16,098 Deterministic + 10% Markovian  36.66 %  0.74 %
Deterministic + 50% Markovian 4333 % 0.79 %

time, which is calculated in two variants with the first using
Eq. 16 and the second Eq.17. In each scenario, the custom
auto-scaler shows for both variants the same values quantify-
ing the under-provisioning. This result is aligned with Table II
as each experiment has a sufficient amount of sending devices
(n > 486). Further, the custom auto-scaler outperforms React
in each scenario. While React provides in 5% of the experi-
ment time in the first scenario too few instances, the custom
auto-scaler reduces this time to 3.33 %. Also 0y is improved
by the custom auto-scaler from 2.22% to 1.67 %. For the
second scenario, the custom auto-scaler achieves 7y = 6.67 %
and 0y = 0.36 %. In the final scenario, the custom auto-scaler
results in 7y = 0.26 % and 0y = 6.67 %.

D. Threats to Validity

In order to conduct the measurements as realistically as
possible, we analyze experiments covering smart meter grids
from three German cities with simulated data derived from
the toy model in Sec. III-B. Note that the results may not be
generalizable to every kind of IoT scenario. As the defined
thresholds influence the scaling behavior of React and our
custom auto-scaler, we cannot prove that we have chosen the
optimal ones. However, React shows a comparable perfor-
mance as in the related work on auto-scaler evaluation [46].
We address the threat of possible bias by using established sets
of metrics that have been officially endorsed by SPEC [48]. In
general, some of the result statements rely on the guidelines
presented in Table II. That is, if other guidelines or values are
used, some of them may be different.

VII. CONCLUSION

Traffic models for IoT applications often reveal periodic
traffic patterns from asynchronous sources. This superposition

of traffic streams from n nodes can be — and often will be —
approximated by a Poisson process, allowing for a simple com-
putation of even large-scale IoT systems. However, the error
introduced by the Poisson approximation is often neglected
in reality, raising issues of the fidelity of the approximated
model, the magnitude of which depends on the statistic under
investigation (recall Table II). Depending on the concrete use
case or characteristic under consideration, the minimal value
of n varies significantly.

Especially, in many practical IoT scenarios — both already
existing scenarios today as well as forecasted ones — (see
Table IV) the number of nodes is sufficiently large to result in
only a small bias. However, the number of nodes also depends
on to which hierarchical level of the IoT aggregation system
it is applied to. While the cloud backend may usually proof
to be large enough, especially when combining data from a
whole region or city, the first level of aggregation near the
IoT could prove to be too small to accurately apply a Poisson
approximation. However, if the arrival process here is not just
purely homogeneously periodic and includes a mix of other,
e.g. Markovian, components, possibly due to an event-based
nature, the approximations might just become valid again.

In summary, this means that before one can apply the
Poisson process approximation to any scenario, one has to first
both characterize the IoT environment and traffic properties
under scrutiny and needs to know what one wants to achieve
with this model (i.e. determine the observed metrics). Only
if all these conditions have been satisfied can the validity
of the approximation be determined — under the additional
constraint that the Poisson process is not able to capture
the characteristics of the APP for characteristics like the
autocorrelation of waiting times at all. However, if those
characteristics are not relevant, then the Poisson process might
be a good approximation.

Following the data further down the trail towards the cloud
infrastructure and looking at the scaling of these systems for
IoT scenarios, the auto-scaling experiments confirm that in
many realistic IoT scenarios the Poisson approximation can
be safely assumed. However, the scaler might also be able to
exploit the autocorrelation of an APP to its advantage, and
tune itself to the periodicity of the traffic. If the traffic were
just approximated with a Poisson process this advantage would
have been overlooked.

Examining load balancing and scaling for highly autocor-
related IoT traffic might be quite an interesting venue for the
future to explore, since with an increasing number of random
events the scaling performance usually decreases.
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