
HInjector: Injecting Hypercall Attacks for Evaluating
VMI-based Intrusion Detection Systems

Aleksandar Milenkoski1, Bryan D. Payne2, Nuno Antunes3, Marco Vieira3, and Samuel Kounev1

1 Karlsruhe Institute of Technology, Germany (e-mail: milenkoski, kounev@kit.edu)
2 Nebula Inc., USA (e-mail: bdpayne@acm.org)

3 University of Coimbra, Portugal (e-mail: nmsa, mvieira@dei.uc.pt)

1. INTRODUCTION
Virtual machine introspection (VMI) is a mechanism for
monitoring the states of guest virtual machines (VMs) from
a virtualization host. Its use for intrusion detection is an
emerging trend that brings many benefits, such as the pos-
sibility to monitor guest VMs in a transparent manner for
attackers. However, a major issue is the evaluation of the
attack detection accuracy of VMI-based intrusion detection
systems (IDSes), e.g., [1], for detecting virtualization-related
attacks, such as attacks targeting virtual machine monitors
(VMMs). VMMs’ attack surfaces are very narrow making
them difficult to penetrate. As a result there are only a few
publicly available exploits that demonstrate attacks against
VMMs. We believe that the automated artificial injection
of malicious system activities with respect to representative
attack models is a promising approach towards overcoming
this issue.

A malicious VM user may execute an attack against the
underlying VMM via several attack vectors such as device
drivers, VM exit events, or hypercalls. Hypercalls are soft-
ware traps from a kernel of a paravirtualized guest VM to
the VMM. They enable the intrusion in VMMs, initiated
from a malicious guest VM kernel, in a procedural man-
ner through VMMs’ well-defined hypercall interfaces. This
makes the automated injection of hypercall attacks feasible.
Further, given the potential high severity of hypercall at-
tacks, the evaluation of the effectiveness of IDSes for detect-
ing and preventing such attacks is crucial. The exploitation
of a vulnerability in a VMM’s hypercall handler typically
leads to altering the VMM’s memory enabling, for example,
the execution of malicious code with VMM privileges.

In this paper, we present HInjector, a customizable frame-
work for injecting hypercall attacks during regular operation
of a paravirtualized guest VM in a Xen-based environment.
Besides the fact that it is a popular VMM, we chose Xen
as a VMM targeted by injected hypercall attacks because
most of the documented vulnerabilities of VMMs’ hypercall
handlers are those of Xen. This enables the construction of
representative attack models. Further, Xen is open-source
software and thus its codebase can be modified, which, as
shown later, is necessary for injecting hypercall attacks.

The attacks injected by HInjector conform to attack mod-
els based on existing Xen vulnerabilities (e.g., CVE-2008-
3687, CVE-2012-5513). The goal of HInjector is to exercise
the sensors of a typical VMI-based IDS. An IDS may use
VMI to monitor guest VM’s virtual CPU (vCPU) registers
in order to identify, for example, anomalous hypercall pa-

rameter values. It may also monitor guest VM’s memory
and inspect, for example, call stacks to identify irregular
hypercall call sites. Since VMI-based IDSes do not monitor
states of VMMs, HInjector does not inject the effects that
hypercall attacks may have on the state of a given attacked
VMM (e.g., altered VMM’s memory).

To the best of our knowledge, we are the first to consider
the injection of (hypercall) attacks targeting VMMs. Pham
et al. [4] and Le et al. [2] focus on injecting generic soft-
ware faults directly into VMMs. The latter is not suitable
for evaluating VMI-based IDSes since, as mentioned above,
such IDSes do not monitor states of VMMs. Also, generic
software faults are not representative of faults caused by ex-
ploiting security vulnerabilities. Oyama et al. [3] present
a framework for injecting effects of attacks targeting guest
VMs, however, they do not take into account hypercall at-
tacks and attacks targeting VMMs in general.

2. HINJECTOR DESIGN
We constructed attack models based on analyzing previously
discovered vulnerabilities of Xen’s hypercall handlers. We
analyzed relevant publicly disclosed vulnerability reports,
the earliest dating back to 2008, identifying patterns of VM
activities for executing hypercall attacks. We then catego-
rized the identified patterns into attack models. To con-
struct attack models, we also took into consideration hy-
percall characteristics relevant for intrusion detection. We
distinguish the following attack models:

i) Invoking hypercalls from irregular call sites. VMI-
based IDSes (e.g., [1]) may consider hypercalls invoked from
call sites unknown to them, e.g., an attacker’s loadable ker-
nel module (LKM), as malicious. We model the typical sce-
nario where an attacker loads a LKM to execute attacks
from kernel mode, which includes hypercall attacks.

ii) Invoking hypercalls with anomalous parameter values
a) outside the valid value domains, or b) crafted for ex-
ploiting specific vulnerabilities (not necessarily outside the
valid value domains). This attack model is based on the
Xen vulnerabilities described in CVE-2008-3687, CVE-2012-
3516, CVE-2012-5513, and CVE-2012-6035.

iii) Invoking a series of hypercalls in irregular order, in-
cluding repetitive execution of a single or multiple hyper-
calls. This attack model is based on the Xen vulnerability
described in CVE-2013-1920. The repetitive execution of
hypercalls, for example, requesting system resources, is an
easily feasible attack which may lead to resource exhaustion



MVM
 Xen


User


Kernel


Hardware


Injector


LKM


Configuration
 Logs


Filter


Memory


Hypercall 

handler


6


 2


 4

 


vCPU


 3


 5


 3


 5


 1


shared_info


IDS 


(in SVM)


monitor


Figure 1: Architecture of HInjector

of collocated VMs.
There is a possibility that a guest VM’s kernel may exe-

cute hypercalls with parameter values outside the valid value
domains or in irregular order due to generic faults that are
not of a malicious nature. Currently we assume that the
kernels of the guest VMs running in the virtualized environ-
ment where HInjector is deployed work correctly. The inter-
ference of the execution of anomalous hypercalls, triggered
by generic faults, with the operation of HInjector warrants
further study.

In Figure 1, we depict the architecture of HInjector, which
consists of the components Injector, LKM, Filter, Configu-
ration, and Logs. We refer to the VM injecting hypercall
attacks as malicious VM (MVM). The IDS under test is de-
ployed in a secured VM (SVM) collocated with MVM, which
is normally the virtualization host VM or Domain0, as ref-
fered to in Xen terminology. We implemented a preliminary
version of HInjector using Xen 4.2.2 on Debian 7.1 as virtu-
alization host and Debian 6.0.7 as MVM.

The Injector, deployed in the hypercall interface of MVM’s
kernel, intercepts hypercalls invoked by the kernel during
regular operation and modifies hypercall parameter values
on-the-fly making them anomalous. The Injector is used for
injecting hypercalls invoked from a regular call site.

The LKM, a module of MVM’s kernel, invokes regular
hypercalls, hypercalls with anomalous parameter values, or
hypercalls in irregular order. The LKM is used for injecting
hypercalls invoked from an irregular call site.

The Filter, deployed in Xen’s hypercall interrupt handler
(i.e., 0x82 interrupt), identifies hypercalls injected by the
Injector or the LKM, blocks their execution, and returns
a valid error code. The latter is important for preventing
MVM crashes by allowing the control flow of MVM’s kernel
to handle failed hypercalls that have been invoked by it. The
Filter blocks the execution of Xen’s hypercall handlers to
prevent Xen crashes. The Filter identifies injected hypercalls
based on information stored by the Injector/LKM in the
shared info structure, a memory region shared between a
guest VM and Xen. To this end, we extended shared info
with a string field named hid (hypercall identification).

The configuration is a set of user files containing configu-
ration parameters for managing the operation of the Injector
and the LKM. Currently, it allows for specifying duration
of an injection campaign, valid parameter value domains
and/or specifically crafted parameter values for a given hy-

percall (relevant to the Injector and the LKM), and valid
order of a series of hypercalls (relevant to the LKM). We are
implementing support for specifying workload profile param-
eters such as average injection rate of a specific hypercall,
total average injection rate, and temporal distribution of in-
jection actions.

The logs are user files containing records about injected
hypercalls, i.e., hypercall IDs (hypercall identification num-
bers assigned by Xen) and parameter values, as well as
timestamps. The logged data serves as reference data (i.e.,
as “ground truth”) used for calculating IDS attack detection
accuracy metrics. We are currently implementing logging of
statistics about injection campaigns such as achieved total
average injection rate and temporal distribution of injected
hypercalls.

In Figure 1, we depict the steps involved in injecting a sin-
gle hypercall by the Injector/LKM. An illustrative example
of the Injector injecting a hypercall with a parameter value
outside of its valid domain is as follows: 1) The Injector in-
tercepts a hypercall invoked by MVM’s kernel and replaces
the value, for example, of the first parameter, with a gener-
ated value outside the parameter’s valid value domain spec-
ified in the configuration; 2) The Injector stores the ID of
the hypercall, the number of the parameter with anomalous
value (i.e., 1), and the parameter value itself in hid ; 3) The
Injector passes the hypercall to MVM’s vCPU which then
issues a 0x82 interrupt and passes control to Xen; 4) The
Filter, using the data stored in hid, identifies the injected
hypercall when it arrives at Xen’s 0x82 interrupt handler;
5) The Filter returns a valid error code without invoking
the hypercall’s handler; 6) After the return code arrives at
MVM’s kernel, the Injector stores in the log files, the ID and
parameter values of the injected hypercall, and a timestamp.

As part of our future work, we plan on identifying and
defining representative characteristics of the hypercall at-
tacks that can be injected by HInjector (e.g., parameter val-
ues, hypercall order). The identification and definition of
representative characteristics of hypercall attacks is a new
and challenging research direction. It is challenged primarily
by the lack of publicly available and detailed technical in-
formation on vulnerabilities of VMMs’ hypercall handlers as
well as on hypercall attacks performed in practice. As such
information becomes available, we plan to refine and extend
the features of HInjector, and to provide readily available
configuration files for injecting representative attacks. We
also plan on extending the customizability of HInjector to
enable the injection of IDS evasive hypercall attacks, for ex-
ample, mimicry attacks.

3. REFERENCES
[1] S. Bharadwaja, S. Weiqing, M. Niamat, and S. Fangyang.

Collabra: A Xen Hypervisor Based Collaborative Intrusion
Detection System. In Proc. of ITNG 2011, pages 695–700,
2011.

[2] M. Le, A. Gallagher, and Y. Tamir. Challenges and
Opportunities with Fault Injection in Virtualized Systems.
In VPACT, 2008.

[3] Y. Oyama and Y. Hoshi. A Hypervisor for Injecting
Scenario-Based Attack Effects. In Proc. of COMPSAC 2011,
pages 682–687, 2011.

[4] C. Pham, D. Chen, Z. Kalbarczyk, and R. Iyer. CloudVal: A
Framework for Validation of Virtualization Environment in
Cloud Infrastructure. In Proc. of DSN 2011, pages 189–196,
2011.


