
Using Quality of Service Bounds for Effective
Multi-objective Software Architecture Optimization

Qais Noorshams, Anne Martens, Ralf Reussner
Karlsruhe Institute of Technology, Karlsruhe, Germany

Email: qais.noorshams@student.kit.edu, {martens,reussner}@kit.edu

ABSTRACT
Quantitative prediction of non-functional properties, such as
performance, reliability, and cost, of software architectures
supports systematic software engineering. Even though there
usually is a rough idea on bounds for quality of service, the
exact required values may be unclear and subject to trade-
offs. Designing architectures that exhibit such good trade-
off between multiple quality attributes is hard. Even with
a given functional design, many degrees of freedom in the
software architecture (e.g. component deployment or server
configuration) span a large design space. Automated ap-
proaches search the design space with multi-objective meta-
heuristics such as evolutionary algorithms. However, as qual-
ity prediction for a single architecture is computationally
expensive, these approaches are time consuming. In this
work, we enhance an automated improvement approach to
take into account bounds for quality of service in order to
focus the search on interesting regions of the objective space,
while still allowing trade-offs after the search. To validate
our approach, we applied it to an architecture model of a
component-based business information system. We com-
pared the search to an unbounded search by running the
optimization 8 times, each investigating around 800 candi-
dates. The approach decreases the time needed to find good
solutions in the interesting regions of the objective space by
more than 35% on average.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures;
C.4 [Computer Systems Organization]: Performance of
Systems—modeling techniques; D.2.8 [Software Engineer-
ing]: Metrics—performance measures

General Terms
Design, Performance, Reliability

Keywords
Optimization, Performance, Quality Attribute Prediction,
Reliability, Software Architecture

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QUASOSS’10, October 4, 2010 Oslo, Norway
Copyright 2010 ACM 978-1-4503-0239-5/10/10 ...$10.00.

1. INTRODUCTION
The design of software architecture is crucial to exhibit

good quality of service (cf. [3]), e.g. performance and reli-
ability. Model-driven, quantitative architecture evaluation
approaches help the software architect to reason about the
architecture and predict its quality attributes and cost. How-
ever, even though there usually is a rough idea of require-
ments for the non-functional properties, the exact required
values may be unclear and subject to trade-offs. For ex-
ample, the decision of how much response time of the sys-
tem is acceptable may depend on the cost to achieve this
response time and is subject to negotiation between stake-
holders. Still, they may agree on bounds specifying the worst
acceptable values of the quality attributes, e.g. the mean re-
sponse time of the system should not exceed 15 seconds. A
system that violates any bounds is declared infeasible, i.e.
useless for the stakeholders.

Designing architectures that provide optimal trade-offs
between multiple quality attributes is difficult. Even with a
given functional design, the many degrees of freedom in the
software architecture (e.g. component deployment or server
configuration) still span a large design space.

Automated approaches support the software architect to
improve their architectural designs and find good trade-offs
between quality attributes. They search the design space
with multi-objective metaheuristics such as evolutionary al-
gorithms to find many Pareto-optimal candidates. However,
as quality prediction for a single architecture is computation-
ally expensive, these approaches are time consuming since
many possible candidates need to be evaluated.

In this work, we present an approach to include rough
bound estimations on quality of service requirements into an
automated improvement approach to make the search for op-
timal trade-offs focus on interesting regions of the objective
space. We extend our previous approach PerOpteryx [14]
by three aspects: First of all, we add a modeling notation for
quality requirements. We extended the existing Quality of
service Modeling Language (QML) [11] to enable the specifi-
cation of optimization goals. Second, we translate the QML
requirements to constraints in an optimization problem. Fi-
nally, we use the constraint domination strategy of Deb et
al. [10] to make the search focus on the feasible space.

The contribution of this paper is a novel approach that,
to the best of our knowledge, is the first to combine multi-
criteria architecture optimization and quality of service
bounds so that the search can focus on feasible regions of the
search space. With this extension, the time needed to find
valuable solutions for the software architects can be reduced.

We have implemented the approach in the PerOpteryx
tool. Using this tool, we demonstrate the benefits of our
approach in a case study. Our extension was able to find
solutions in the interesting regions of the objective space in
average more than 35% faster than the old, unconstrained
approach.

This paper is structured as follows: Section 2 presents re-
lated work to our approach. Section 3 gives background on
the architecture evaluation approach Palladio that we use in
this work. Section 4 discusses the required metamodel for
modeling requirements in this context, and motivates our
choice of QML. Section 5 then presents our architecture op-
timization process, which makes use of the specified bounds
to focus the search on the feasible architecture candidates.
A case study in Section 6 shows the feasibility of our work by
applying the process to an example architecture and com-
paring the effect of the requirements consideration. Finally,
Section 7 concludes.

2. RELATED WORK
Our approach is based on performance prediction [2], re-

liability prediction [12], multi-objective metaheuristic opti-
mization [5], and constraint handling in evolutionary algo-
rithms [6].

In summary, several other approaches to automatically
improve software architectures for one or several quality
properties have been proposed. Most approaches improve
architectures by either applying predefined improvement
rules, or by applying metaheuristic search techniques. All
except one approach do not support trade-off between qual-
ity attributes after the search. In addition, all approaches
do not allow to specify quality requirements for quality at-
tributes that should be optimized, thus, they do not allow
to focus on interesting regions of the objective space.

Xu et al. [18] present a semi-automated approach to im-
prove performance. Based on a layered queueing network
(LQN) model, performance problems (e.g., bottlenecks, long
paths) are identified in a first step. Then, mitigation rules
are applied. The search stops as soon as specified response
time or throughput requirements are met. The approach is
limited to performance only.

The ArchE framework (McGregor et al. [15]) assists the
software architect during the design to create architectures
that meet quality requirements. It provides the evaluation
tools for modifiability or performance analysis, and stepwise
suggests modifiability improvements depending on the yet
unsatisfied requirements. The search stops as soon as spec-
ified requirements are met.

Canfora et al. [8] optimize service composition cost using
evolutionary algorithms while satisfying service level agree-
ment (SLA) constraints. They implement constraint han-
dling with dynamic penalty functions.

Menascé et al. [16] generate service-oriented architectures
that satisfy quality requirements, using service selection and
architectural patterns. They model the degree of require-
ment satisfaction as utility functions. Then, a weighted over-
all system utility is optimized in a single-objective problem
using random-restart hill-climbing. Thus, preferences for
quality attributes and importance of requirements have to
be specified in advance.

Aleti et al.[1] present a generic framework to optimize ar-
chitectural models with evolutionary algorithms for multi-
ple arbitrary quality properties, thus enabling trade-off af-

ter the search. In addition, the framework allows to specify
constraints for the search problem, for example available
memory consumption. However, the constraint handling is
relatively simple: Infeasible candidates are just discarded.
Quality requirements are mentioned, but not included in
the optimization.

3. PALLADIO COMPONENT MODEL
Generally, our concepts can be used for different software

architecture models. To a certain extent, service-oriented ar-
chitectures can be regarded as a specialization of component-
based software architectures. As a consequence, we focus
the scope of our work on component-based software archi-
tectures.

We apply our approach to the Palladio Component Model
(PCM) [4], a modeling language for component-based soft-
ware architectures with an UML-like syntax. The PCM en-
ables the explicit definition of the i) components , ii) archi-
tecture, iii) allocation, and iv) usage of a system in respec-
tive artifacts, which comprise a PCM instance (cf. Figure 1):

1. Component specifications contain an abstract, parametric
description of components. Furthermore, the behavior of
the components is specified using an UML activity dia-
gram similar syntax.

2. An assembly model defines the software architecture.

3. The resource environment and the allocation of compo-
nents to resources are specified in an allocation model.

4. The usage model specifies usage scenarios. For each user,
one of the scenarios applies defining the frequency and
the sequence of interactions with the system, i.e. which
system functionalities are used with an entry level system
call.

Using model transformations, the PCM instance can be an-
alyzed or simulated to predict performance (response time
and throughput) [4], reliability (probability of failure on de-
mand (POFOD)) [7], and cost [14] of a system.

PCM Instance

Component Specifications Assembly Model

Usage ModelAllocation Model

Figure 1: Artifacts of a PCM instance.

Figure 2 illustrates an example PCM instance of the so-
called business reporting system (BRS) using annotated
UML. The BRS provides statistical reports about business
processes and is loosely based on a real system. The system
consists of 9 components and is allocated to 4 servers. The
behavior description (incl. CPU demands) of one compo-
nent is here illustrated by an activity diagram. Having only
one usage scenario, a user interacts with the system every
5s requesting a sequence of reports and views.

4. QUALITY REQUIREMENT MODEL
To deal with quality requirements, i.e. requirements on

quality attributes (e.g. throughput or availability), their for-
mal representation is essential. For our work, we identified

Loop 2 times

S1

S2

S3

Core

Online Engine

Cache

Scheduler

Database

Graphical

Reporting

Online

ReportingUser

Management

Webserver

graphicalReport

onlineReport

graphicalView

onlineView

login/logout

maintain

Core

Graphic Engine

S4

Business

Reporting

System

<<implements>>

P=0.9

P=0.1

prepare

Demand =

150 KInstr prepare

detailed report

Demand =

46.5 KInstr

generate

report
Demand =

37.5 KInstr
prepare

simple report

Demand =

3.75 KInstr

Call

DB.getReport
Call Cache

.getCachedData

Call

DB.getReport

user

arrival

every 5s

Figure 2: PCM instance of the BRS.

the following requirements for the representation of quality
requirements:

1. Independent quality attribute definition – Quality attrib-
utes and their general information should be definable in-
dependent of their use or their requirements. E.g. differ-
ent projects can have different requirements that refer to
the same definitions.

2. Definition of objectives and requirements – Objectives
(what is to be improved?) and requirements (what is a
feasible system?) should be flexibly definable on quality
attributes. E.g. a project could aim at improving re-
sponse time with a cost limit. Another project could have
a bound for reliability yet searching for improvement of
this quality attribute.

3. Different aspects of attributes – Objectives and require-
ments can be evaluated deterministically and/or stochas-
tically. E.g. the exact cost of a service could be deter-
mined in advance whereas the response time of this ser-
vice could be guaranteed stochastically. Thus, the model
needs to be able to differentiate between different evalua-
tion aspects of a quality attribute.

4. Fine-grained requirement application – Requirements can
also apply for parts of a system, e.g. a sequence of system
functionalities or single functionalities.

We focused on reusing the Quality of service Modeling
Language (QML) created by Frølund and Koistinen [11] as
it meets almost every requirement. QML allows the speci-
fication of quality attributes as well as the specification of
quality requirements. QML is defined in Extended Backus-
Naur Form (EBNF). To exploit tool support of the Eclipse
Modeling Framework [17], we metamodeled QML using the
Ecore metamodel. We extended the language to be able to
define objectives and explicitly distinguish between objec-
tives and requirements. Furthermore, we modified the lan-
guage to associate the requirements with usage scenarios or
entry level system calls, as QML is normally bound to service
interfaces defined with e.g. the interface definition language
(IDL). The following section will introduce the QML meta-
model. For a better understanding, the sub-metamodels are
simplified. Our extensions to QML are marked with f? .

QML has three main levels: A contract type defines qual-
ity categories, a contract specifies quality requirements or
quality objectives on a contract type, and a profile binds a
contract to an entity, e.g. a method of an interface.

Illustrated in Figure 3, a QML contract type can have mul-
tiple dimensions, each with an optional unit and an obliga-
tory dimension type. A dimension type specifies the possible
values of a dimension, which can be numeric or consist of
user defined elements (this is omitted in the figure). The
relation semantics specifies if the dimension improves with
increasing or decreasing values. As an example, the con-
tract type ‘performance’ can have the dimensions ‘through-
put’ and ‘response time’. ‘Throughput’ has an increasing
numeric dimension type and is measured in ‘number of jobs
per second’. ‘Response time’ has a decreasing numeric di-
mension type and is measured in ‘seconds’.

Dimension

DimensionTypeNumeric

relSem : EnumRelationSemantics

Unit

«enumeration»
EnumRelationSemantics

decreasing
increasing

QMLContractType

1 0..1

1

1
1

*

Figure 3: Metamodel of a QML contract type.

Illustrated in Figure 4, a QML contract can define criteria
on dimensions of a QML contract. Deviating from standard
QML where only constraints are definable, a criterion is ei-
ther an objective or a constraint. An objective specifies an
evaluation aspect of a dimension aimed for improvement.
A constraint defines a restriction on an evaluation aspect.
An evaluation aspect can be deterministic or stochastic. A
deterministic aspect refers to the determined value(s) of a
dimension. A stochastic aspect could e.g. be the mean value
of a dimension. Using a contract, it is possible e.g. to de-
fine the mean response time as objective and a maximum
variance as constraint. Note that it is also possible to de-
fine constraints on objectives by defining an objective and a
constraint on the same evaluation aspect of a dimension.

Figure 4: Metamodel of a QML contract.

Illustrated in Figure 5, a QML profile binds a contract to
an entity by defining requirements. In our context, the entity
is either an usage scenario or an entry level system call.
Semantically, a contract is either required from a specific
entity or from every entity of the usage model.

5. FINDING SATISFACTORY ARCHITEC-
TURES

The goal of our work is to optimize component-based soft-
ware architectures. To achieve this, we use metaheuristic
techniques, particularly the multi-objective evolutionary al-
gorithm (MOEA) NSGA-II developed by Deb et al. [10]. A
disadvantage of a MOEA is that it may spend too much time

Figure 5: Metamodel of a QML profile.

exploring uninteresting regions of the objective space. Inte-
grating quality requirements into the search aims at improv-
ing this algorithm due to the following advantages identified
by Branke [6]:

1. Focus – MOEAs are approximate and non-deterministic.
Quality requirements can be used to focus the search and
identify particularly interesting alternatives.

2. Speed – Focusing the search avoids wasting computational
effort on irrelevant regions of the search space.

3. Gradient – With increasing number of objectives, MOEAs
are unable to determine the most promising search direc-
tion (gradient). Quality requirements provide additional
information ensuring optimization progress.

Figure 6 illustrates the optimization process as a whole
with four main steps:

1. The system to be optimized is modeled with the PCM.
Additionally, the degrees of freedom, i.e. the possibili-
ties to influence the non-functional properties of a system
without changing its functional properties, are specified.
In a component-based context, the degrees of freedom of
a system can be e.g. component selection, component de-
ployment, and hardware configuration (cf. [14] for details).

2. The quality requirements of the system are modeled using
QML as described in Section 4. The link between PCM
model and QML model is a QML profile.

3. With our tool PerOpteryx, the models are used to op-
timize the system. The optimization starts with one or
more initial candidates, i.e. predefined system configura-
tions, which can also be created randomly. Optimizing
quality attributes and minimizing cost is pursued using
NSGA-II with consideration of the constraint domination
principle of Deb et al. as described in [10].

4. As solving multi-objective optimization problems results
in a set of solutions rather than one single solution [9], the
set of Pareto-optimal1 architecture configurations feasible
with respect to the quality requirements is presented. Fi-
nally, the software architect makes the trade-off decision
and chooses one of the solutions.

To integrate requirements into this process, we extended
the Opt4J framework [13], which implements NSGA-II, by
the constraint domination strategy. Constraint domination
enables the comparison of candidates on the basis of con-
straint violations. For the comparison of feasible candidates,
i.e. candidates fulfilling all requirements, the strategy has
no effect. The comparisons are essential for evolving candi-
dates. The more a candidate violates the bounds, the less
the probability of examining this candidate more closely be-
comes, i.e. the feasible objective space is most likely to be

1A solution x is Pareto-optimal if no other solution y is
better than x w.r.t. all considered attributes (cf. [9]).

Component-based
software architecture

Degrees
of freedom

Quality
requirements

Present
Results

Optimization
(MOEA)

QML Profile

Initial
candidate(s)

Feasible, Pareto-optimal
architecture configurations

1 2

3 4

PCM
Model

QML
Model

Figure 6: Process Overview.

examined more closely. We chose this means of constraint
handling because of the following advantages: First, it dis-
tinguishes explicitly between feasible and infeasible solutions
and declares all feasible solutions superior to infeasible solu-
tions as opposed to e.g. approaches based on penalty func-
tions. Second, additional parameters are not required as
many approaches are sensitive to parameter changes. Fi-
nally, it neither requires a specific number of constraints nor
assumes a relation between objectives and/or constraints.

6. CASE STUDY
This section describes a case study demonstrating the ben-

efit of the consideration of requirements during the optimiza-
tion process. The system under study is the business report-
ing system (BRS) described in Section 3. The software archi-
tect has to choose a candidate that minimizes mean response
time, probability of failure on demand (POFOD), and cost.
As degrees of freedom, the components can be allocated to
up to nine different servers. Additionally, each server has
a continuously variable CPU rate between 0.75 GHz and
3 GHz. The cost of the servers depends on the processing
rate and the cost model is derived from Intel’s CPU price list.
A power function is chosen to be fitted to the data result-
ing in a cost model of cost =

∑
i cost(i) =

∑
i 0.7665 p6.2539i

[monetary units (MU)] with a coefficient of determination
R2 = 0.965 and the processing rate of each server pi [GHz].
In terms of reliability, the servers have a mean time to failure
(MTTF) of 17520 hours and a mean time to repair (MTTR)
of 6 hours. We assume that for the quality attributes and
cost the following requirements have been roughly identi-
fied2: cost < 2000 MU, POFOD < 0.2%, and mean re-
sponse time < 3.5 s.

After modeling the system, the requirements are modeled
with our metamodel of QML. Note that for our optimization,
cost is modeled as a quality attribute as we only consider the
cost of the system. Figure 7 illustrates the model. First, the
QML contract type defines the PCM contract type having
three dimensions: cost, POFOD, and response time. On this
contract type, the objectives and the constraints are defined
in QML contracts (the objectives contract is similar to the
constraints contract without Restrictions, thus omitted in
the figure). The evaluation aspects of the cost and POFOD
constraints are defined as Value as the dimensions are eval-
uated as single values that the constraints refer to, whereas
the constraint on response time refers to the mean value of
the dimension.

Figure 8 illustrates the QML profile associating the re-
quirements with the PCM model. Using UsageScenario-

2The aspect of requirements engineering is beyond the scope
of this paper.

Cost : Dimension

unit = monetary units
relSem = decreasing

PCM : QMLContractType

Respone Time : Dimension

unit = seconds
relSem = decreasing

POFOD : Dimension

unit = %
relSem = decreasing

Constraints : QMLContract

 : Constraint

 : Mean

 : Constraint

 : Constraint

 : Value

 : Restriction

operator = less
value = 2000

 : Restriction

operator = less
value = 0.2

 : Restriction

operator = less
value = 3.5

 : Value

Figure 7: Simplified model of the QML contract
type and the QML contract.

Requirements, the objectives and constraints are bound to
the usage scenario of the usage model of the BRS.

PCM : QMLContractType

Constraints : QMLContract

Objectives : QMLContract

Binding : QMLProfile

Objectives : UsageScenarioRequirement

BRS : UsageModel

Constraints : UsageScenarioRequirement

Figure 8: Simplified model of the QML profile.

With this presetting, the system is optimized using Per-
Opteryx. In total, 8 runs have been performed, each initial-
ized with the same set of 20 randomly created candidates.
For comparison reasons, 4 runs integrated the requirements
in the optimization (type α), 4 runs filtered the infeasible
candidates after the run and were unconstrained during the
optimization (type β). The n-th run of optimizations of type
α and type β will be denoted as αn and βn respectively. In
200 iterations, every run analyzed around 800 candidates.
Figure 9 illustrates the result of a type α optimization. As
an example, the quality attributes of one optimal candidate
are shown. Visually, the evaluated candidates are concen-
trated around the area of feasible solutions, i.e. the solutions
respecting the bounds. However, due to the metaheuristic
nature of the optimization, which “may incorporate mecha-
nisms to avoid getting trapped in confined areas of the search
space” [5], there is still spread in the search.

Initial candidate Feasible & trade-off optimal candidatesEvaluated candidate

response time (RT)

cost

rt

cost bound

RT bound

zoom
box

600 800 1000 1200 1400 1600 1800 2000
2,2

2,4

2,6

2,8

3

3,2

3,4

cost

cost: 1008 MU

POFOD: 0.10%
mean RT: 2.8s

RT

Figure 9: Result of an optimization run with incor-
porated constraint handling.

To make a qualitative statement, αn will be compared
with βm for all n,m. We compare the feasible, Pareto-

optimal set P of each run n after i iterations, denoted as
P (αn, i) and P (βn, i) respectively. For this reason, the cov-
erage metric of [19] is slightly modified: Let A and B be non-
dominated sets3 and Q ⊆ A∪B be the non-dominated set of

A∪B. The coverage metric C is defined as C(A,B) := |A∩Q|
|Q|

(∈ [0, 1]). If C(A,B) > 0.5 then A is considered better than
B as A has a higher contribution to Q than B.

With 4 runs per type, we have 16 combinations for com-
parisons of feasible, Pareto-optimal sets of solutions. In 13
combinations, the run with constraint handling was superior
to the run without constraint handling. One type α run was
inferior to three type β runs. For each combination, the cov-
erage metric for type α runs is calculated over the iterations.
Figure 10 illustrates the maximum, minimum and mean of
the combinations C(P (αn, i), P (βm, i)) with n,m = 1, 2, 3, 4
over all iterations i. The data can be interpreted as fol-
lows: In the first 45 iterations, the non-determinism causes
a high variance in the progress with type α runs getting a
better start as the candidates are pushed into the feasible
region. After 55 iterations, the standard deviation stabilizes
at approximately 0.11 as the optimizations converge. Addi-
tionally, the coverage of type α runs increases continuously
until most near global solutions have been found reaching
a mean coverage of approximately 0.61 at the end. Except
for the first few iterations, the type α runs are superior to
the type β runs for every iteration considering the mean
coverage value.

0 50 100 150 200

iteration
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
coverage

max

mean

min

Figure 10: Type α run coverage of type β runs
C(P (αn, i), P (βm, i)) with n,m = 1, ..., 4 and i = 0, ..., 200.

Furthermore, we examined after how many iterations type
α runs find solutions equivalent to the final result of type
β runs, i.e. formally stated, we first find the smallest j for
C(P (βn, j), P (βm, 200))= 0.5, then we find the smallest i for
C(P (αn, i), P (βm, j)) = 0.5. In other words, we compare the
runs with constraint handling with the earliest iteration of
runs without constraint handling where there is no change
in solutions w.r.t. the final iteration. As an example, we
compare α3 and β2. β2 has the last changes in the solution
set in iteration 193. α3 has an equivalent solution set after
161 iterations, i.e. the run with constraint handling found
equivalent results 193−161

193
= 16.6% faster. Table 1 shows all

combinations demonstrating that we achieve a maximum
time saving of 89.2%. Overall, we achieve a mean time sav-
ing of 38.8%. In verification, a Student’s t-test considering
all combinations of the time savings confirms that the dif-
ference is statistically significant (p-value = 0.0006685).

3In a non-dominated set, the elements are pairwise non-
dominated (cf. [9]).

β1 β2 β3 β4

α1 72 (38.1%) 76 (39.4%) 170 (87.2%) 120 (60%)

α2 87 (46.0%) 172 (89.1%) 174 (89.2%) 130 (65%)

α3 13 (6.9%) 32 (16.6%) 83 (42.6%) 124 (62%)

α4 -76 (-38.2%) -61 (-30.7%) 102 (52.3%) -8 (-4.0%)

Table 1: Absolute and relative time savings in it-
erations when using constraint handling during the
optimization.

7. CONCLUSION
This paper presents a novel extension of multi-criteria ar-

chitecture optimization to consider bounds for quality re-
quirements so that the search can focus on feasible regions
of the search space. We extended the existing Quality of
service Modeling Language to enable the specification of op-
timization goals and quality requirements. We translate the
QML requirements to constraints in an optimization prob-
lem. Finally, we use existing constraint domination strategy
to make the search focus on the feasible space.

With this extension, software architects can reduce the
time needed to find valuable solutions. We demonstrated
this ability in a case study. Our extension found solutions
in the interesting regions of the objective space in average
more than 35% faster than the old, unconstrained approach.

The application of this approach can be interesting in dif-
ferent phases of the software architecture design process.
First, the approach can be applied after a first phase of cre-
ating an architecture with focus on functional requirements
(definition of components and interfaces). This architecture
can be used as an input for the optimization to improve the
non-functional properties. Second, the optimization could
already be used to support decisions during the architectural
design: When making a more high level decision, the opti-
mization can be used to assess the potential of the different
alternatives. Finally, by modeling more high level decisions
as transformations, these decisions could be included in the
optimization process as degrees of freedom, thus letting the
optimization explore different combinations of decisions.

We plan to extend the approach by also adding bounds
for quality attributes that can express that a certain quality
is enough and we are not interested in trading other qual-
ities for extra improvement in this aspect. These bounds
are not considered at the current stage, as we do not want
to treat these bounds as infeasible regions when optimizing
architectures. Additionally, we plan a more extensive val-
idation that allows more detailed statistical conclusions on
the effects of this work.

8. REFERENCES
[1] A. Aleti, S. Bjornander, L. Grunske, and

I. Meedeniya. Archeopterix: An extendable tool for
architecture optimization of AADL models.
International ICSE Workshop on Model-Based
Methodologies for Pervasive and Embedded Software
(MOMPES), pages 61–71, 2009.

[2] S. Balsamo, A. Di Marco, P. Inverardi, and
M. Simeoni. Model-Based Performance Prediction in
Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[3] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice, Second Edition.
Addison-Wesley Professional, 2003.

[4] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. JSS, 82:3–22, 2009.

[5] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
ACM Comput. Surv., 35(3):268–308, 2003.

[6] J. Branke. Consideration of partial user preferences in
evolutionary multiobjective optimization. In
Multiobjective Optimization: Interactive and
Evolutionary Approaches, pages 157–178, Berlin,
Heidelberg, 2008. Springer-Verlag.

[7] F. Brosch, H. Koziolek, B. Buhnova, and R. Reussner.
Parameterized Reliability Prediction for
Component-based Software Architectures. In
G. Heineman, J. Kofron, and F. Plasil, editors, Proc.
of the 6th Int’l Conference on the Quality of Software
Architectures, LNCS. Springer, 2010. To Appear.

[8] G. Canfora, M. D. Penta, R. Esposito, and M. L.
Villani. An approach for qoS-aware service
composition based on genetic algorithms. In H.-G.
Beyer and U.-M. O’Reilly, editors, Genetic and
Evolutionary Computation Conference, GECCO 2005,
Proceedings, Washington DC, USA, June 25-29, 2005,
pages 1069–1075. ACM, 2005.

[9] K. Deb. Multi-Objective Optimization Using
Evolutionary Algorithms. Wiley, Chichester, 1st
edition, 2001.

[10] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm :
Nsga-ii. Evolutionary Computation, IEEE
Transactions on, 6(2):182–197, August 2002.

[11] S. Frølund and J. Koistinen. Qml: A language for
quality of service specification. Tech. report hpl-98-10,
Hewlett-Packard Laboratories, 1998.

[12] S. S. Gokhale. Architecture-based software reliability
analysis: Overview and limitations. IEEE Trans. on
Dependable and Secure Computing, 4(1):32–40, 2007.

[13] M. Lukasiewycz. Opt4j - the optimization framework
for java. http://www.opt4j.org, 2009.

[14] A. Martens, H. Koziolek, S. Becker, and R. Reussner.
Automatically improve software architecture models
for performance, reliability, and cost using
evolutionary algorithms. In Proc. WOSP/SIPEW,
pages 105–116, New York, NY, USA, 2010. ACM.

[15] J. D. McGregor, F. Bachmann, L. Bass, P. Bianco,
and M. Klein. Using arche in the classroom: One
experience. Technical Report CMU/SEI-2007-TN-001,
Software Engineering Institute, Carnegie Mellon
University, 2007.

[16] D. A. Menascé, J. M. Ewing, H. Gomaa, S. Malex,
and J. a. P. Sousa. A framework for utility-based
service oriented design in SASSY. In Proc. of
WOSP/SIPEW, pages 27–36. ACM, 2010.

[17] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley Longman, 2nd edition, 2009.

[18] J. Xu. Rule-based automatic software performance
diagnosis and improvement. Performance Evaluation,
In Press, Corrected Proof:–, 2009.

[19] E. Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. PhD thesis,
ETH Zurich, Switzerland, 1999.

