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ABSTRACT
Model-based performance prediction approaches on the soft-
ware architecture-level provide a powerful tool for capacity
planning due to their high abstraction level. To process
the increasing amount of data produced by today’s appli-
cations, modern storage systems are becoming increasingly
complex having multiple tiers and intricate optimization
strategies. Current software architecture-level modeling ap-
proaches, however, struggle to account for this development
and are not well-suited in complex storage environments due
to overly simplistic storage assumptions, which consequently
leads to inaccurate performance predictions. To address
this problem, in this paper we present a novel approach to
combine software architecture-level performance models with
statistical models that capture the complex behavior of mod-
ern storage systems. More specifically, we first propose a
general methodology for enriching software architecture mod-
eling approaches with statistical I/O performance models.
Then, we present how we realize the modeling concepts as
well as model solving to obtain performance results. Finally,
we evaluate our approach extensively in the context of three
case studies with two state-of-the-art environments based
on Sun Fire and IBM System z server hardware. Using our
approach, we are able to successfully predict the application
performance within 20 % prediction error in almost all cases.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques, Per-
formance attributes; D.2.11 [Software Engineering]: Soft-
ware Architectures
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I/O, Statistical Model, Storage, Software Architecture, Per-
formance, Prediction
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1. INTRODUCTION
Over the past couple of decades, the I/O resource demands of
modern IT systems have grown exponentially [28]. Until the
year 2020, the amount of digital data is expected to double
every two years [9]. As a consequence of this development,
storage systems have evolved significantly from simple disks
to sophisticated tiered systems employing intricate caching
and optimization algorithms.

With the increasing amount of I/O-intensive applications,
however, performance modeling and evaluation techniques
are required for capacity planning at deployment time as well
as to guarantee the continuous compliance to Service-Level
Agreements (SLAs) during operation as application work-
loads evolve. Component-based software architecture-level
performance modeling techniques are popular approaches to
address capacity planning issues at design time and during
operation. It is clear and well-understood that the execution
environment has a significant impact on the performance of
a software system [15]. Current software architecture-level
performance modeling approaches, however, struggle to ac-
count for the increasingly complex storage infrastructures
and only provide rudimentary support for I/O performance
prediction.

Existing approaches model the storage performance of I/O-
intensive applications on a low abstraction level, e.g., [10, 16],
however, it is difficult to include such models into software ar-
chitecture models, because the required information between
the two modeling abstraction levels needs to be synchronized.
Such a synchronization is not straightforward and multiple
questions arise, such as, for instance: i) What system in-
formation is required to enable fine-granular performance
analysis? ii) What information needs to be part of the com-
ponent interfaces? iii) How can the information be analyzed
to reason about the end-to-end system performance?

To address this issue, in this paper we propose a novel ap-
proach for performance modeling of modern storage systems
combining high-level component-based software architecture
models with low-level statistical I/O models. More specifi-
cally, we first propose a general methodology for enriching
software architecture modeling approaches with statistical
I/O performance models. Statistical models are a powerful
approach to capture the complex behavior of storage systems
and they can be typically obtained in a fully automated man-
ner. Then, we present how we realize the modeling concepts
as well as model solving to obtain performance results. We



PCM Instance

Component Specifications

Allocation Model

Assembly Model

Usage Model

RDSEFF

Figure 1: PCM Model Instance (Source: [3])

show how we model I/O requests on the architecture-level
and how we map the requests to the required information
on the storage level. Finally, we extensively evaluate our
approach in the context of three case studies with two state-
of-the-art environments based on Sun Fire and IBM System z
server hardware. Using our approach, we are able to suc-
cessfully predict the application performance within 20 %
prediction error for both end-to-end response time as well as
I/O response time in almost all cases.

In summary, the contribution of this paper is two-fold:
i) We present a novel approach to integrate statistical I/O
models into software architecture-level performance mod-
els allowing to predict the performance in modern storage
environments. ii) We validate our approach in two state-of-
the-art real-world environments based on Sun Fire and IBM
System z server hardware.

The remainder of this paper is organized as follows: Next,
we introduce the background of our approach in Section 2.
In Section 3, we present our general methodology. Section 4
presents the realization of our approach. We evaluate our
approach in Section 5. Finally, Section 6 reviews related
work and Section 7 summarizes and concludes the paper.

2. BACKGROUND
In general, our approach can be applied to any software
architecture modeling approach supporting a model-based
performance prediction. We apply our approach to the Pal-
ladio Component Model (PCM) [4], a modeling language for
component-based software architectures, since it is a mature
approach with a significant amount of validation case studies,
e.g., [3, 4, 11, 12, 17, 19]. The PCM is aligned with the
component-based software engineering (CBSE) development
process and provides modeling constructs to describe the i)
software components, ii) system architecture, iii) resource al-
locations, and iv) usage profile of a component-based software
system in respective sub-models, cf. Figure 1:
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Figure 2: Model-based Performance Prediction (Source: [3])

− Component specifications contain an abstract, paramet-
ric description of components. Furthermore, the behav-
ior of a component as well as its resource demands can
be specified in RDSEFFs (short for Resource Demand-
ing Service EFFect specification) in a UML activity
diagram-like syntax.

− An assembly model defines the software architecture,
i.e., which components are used and how they are
connected.

− The resource environment and the allocation of compo-
nents to resources are specified in an allocation model.

− The usage model specifies the usage of the system, i.e.,
a description of the sequence and frequency of users
accessing the system operations.

Using model transformations, e.g., to simulation code or to
queueing networks, a PCM model instance can be simulated
or analytically solved to predict the system performance.
The performance prediction serves as feedback and enables
a model-based quality assessment of software systems. The
model-based performance prediction process is illustrated in
Figure 2.

In the PCM, I/O resources are represented as a single-/
multi-server queue with FCFS (First-Come-First-Serve) or
processor sharing service policy and I/O requests are repre-
sented merely by their demands, which need to be estimated
by the modeler manually. While this has been shown to be a
reasonable abstraction for basic hardware environments [3],
modern storage systems are much more complex and have
many influencing factors [26, 27]. Therefore, we focus on
enhancing the PCM with statistical I/O models, especially
since their creation can be fully automated and does not
require additional expert knowledge [24, 25].

3. METHODOLOGY
In this section, we show how we extend the model-based
performance prediction process to allow performance predic-
tions in modern storage environments. An overview of our
approach is given in Figure 3 (the upper elements are analog
to the corresponding elements in Figure 2). First, we present
an analysis of the factors that need to be considered when
modeling I/O performance using a storage analysis model.
Based on the factors, we design a storage interface that is
integrated into the software architecture model. Finally, we
propose a combination approach of the software architecture
model with the storage analysis model.
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3.1 Performance-Influencing Factors
Starting point for creating a performance model of a stor-
age system is analyzing the performance-influencing fac-
tors. In [26], we identified and evaluated the performance-
influencing factors of applications deployed in a sophisticated
environment with a complex storage system. We catego-
rized the factors into workload-specific characteristics and
system-specific configuration parameters.

It is important to find an appropriate abstraction level for
the factors. On the one hand, too coarse-grained factors lead
to inaccuracies in the performance models. On the other
hand, too fine-grained factors cannot be specified by software
developers and deployers. The performance-influencing fac-
tors are included into the architecture model and the storage
analysis model. While the system-specific factors are spec-
ified once in the architecture model, the workload-specific
factors need to be specified for every I/O request in the
modeled application.

3.2 Storage Analysis Model
Based on the systematic evaluation of the performance-influ-
encing factors, we create storage analysis models by applying
multiple statistical regression techniques. Regression-based
models are powerful techniques to capture and learn the
influence of multiple independent variables, e.g., requests
size and request type, on a dependent variable, e.g., request
response time. The models are especially suited as they can
be obtained in a fully automated manner, thus, lifting the
burden for performance engineers to manually develop the
models.

We have automated the storage model building process as
part of our Storage Performance Analyzer (SPA) [23] frame-
work. We specify the workload factors (i.e., the independent
variables) that should be analyzed and the performance
metric (i.e., the dependent variable) we want to character-
ize. Using the specified workload factors, a system profile
is created by exploring the possible workload values with
systematic measurements. The measurements are then used
to optimally tune and build a statistical I/O model, i.e., a
specific I/O model using a statistical regression technique,
which in turn can be integrated into the software architecture
model.

3.3 Storage Interface Design
The goal is to combine the low-level storage analysis model
with the high-level software architecture model. A prerequi-
site for the combination of the two modeling abstractions is
the design of a storage interface at the software architecture-
level. The storage interface determines the well-defined use

Annotated 
Architecture 

Model

Storage 
Analysis
Model

Annotated* 
Architecture 

Model

completion

use

Analysis*
Model

Refined with 
Static Storage 
Information

Target Analysis 
Model Combined 

with Storage 
Analysis Model
using Storage 

Interface

Configured 
with Feature 
Tree Model

analysis
transformation

Figure 4: Refinement Transformation Approach

of the storage analysis model in the software architecture.
The storage interface includes the required dynamic infor-
mation (i.e., the workload-related performance-influencing
factors) in the software architecture model that is passed
as input to the storage analysis model (e.g., the distinction
between read and write requests and their access patterns).
Furthermore, the set of static storage-relevant information
(i.e., the system-related performance-influencing factors) is
used to configure or choose the appropriate storage analy-
sis model. While the static information needs to be passed
only once, e.g., when initializing the storage analysis model,
the dynamic information needs to be passed with every I/O
request.

3.4 Refinement Transformations
For the combination of the software architecture model with
the statistical I/O model, we propose to use refinement trans-
formations. As illustrated in Figure 4, the transformations
may include both i) a completion [33] as well as ii) an analysis
transformation.

The completion refines the architecture model with the
static storage-relevant information and is configured, e.g.,
using feature tree models, cf. [13]. Depending on the context,
the completion may be realized using a full-blown higher-
order transformation (HOT) [13] or by simply adding the
required static information where required. The analysis
transformation uses the architecture model and creates the
target analysis model to predict the system performance, cf.
Figure 2. This transformation is extended to combine the
target analysis model with the storage analysis model over
the storage interface using a bridge or adapter. Finally, the
combined analysis model is solved to obtain the performance
results of the modeled software architecture.

4. REALIZATION
In this section, we present how we realize our approach
presented in the previous section in the PCM and how we
combine the software architecture model with the statistical
I/O model. We start by presenting the modeling concept.
Then, we detail how we obtain our I/O model and we show
how the software model is solved to obtain the performance
results. Finally, we outline the process how to use our ap-
proach for performance prediction.

4.1 Modeling Concept
For the models, we use the modeling concept of layered
execution environments of the PCM introduced in [11] and
illustrated in Figure 5.

We distinguish business components running at the ap-
plication layer and resources running at the infrastructure
layer. The interface of one or more business components may
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be exposed to users. The business components access the
CPU and I/O resources using so-called resource interfaces.
We use this concept to model our storage system as an I/O
resource enabling to realize our storage interface introduced
in Section 3.3.

To use the storage interface, the I/O requests of the busi-
ness components are modeled in the RDSEFF as illustrated in
Figure 6. The storage interface is comprised of the following
four parameters:

− Request size: specifies the I/O demand

− Request type: read or write request

− Sequentiality : percentage (or probability) of a sequen-
tial request

− File set : name and size of the file set the request is
operating on

The need for former two parameters is apparent, e.g., to
distinguish between small read requests and big write re-
quests. The latter two parameters are required to estimate
the impact on the caching hierarchy at the storage system,
e.g., if the file set is too large to fit in the caches or if the
requests are sufficiently sequential such that the requests
can be reasonably anticipated and pre-fetched by the storage
system.

The storage resource encapsulates the statistical I/O model.
The exact model depends on a number of static parameters,
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Figure 7: Feature Tree of Statistical I/O Model (cf. [26])

e.g., which target environment is used. The feature tree
we employ leading to the fitting I/O model is shown in
Figure 7. The system under study and its setup, i.e., I/O
scheduler and file system, are captured by separate models.
While it would be possible to use all the information in
one big statistical model, we chose to integrate only the
information that is necessarily required as part of the model
for a clear conceptual separation and reduced model building
effort (e.g., required measurements). Moreover, for given
measurements, the model can be extracted with different
statistical techniques with different strengths and weaknesses
(cf. [24]).

4.2 Statistical I/O Model
In our previous work [24], we showed how to effectively
create I/O performance models in complex environments
with statistical regression techniques. Our approach is briefly
summarized in the following for the sake of completeness.
For more details, the reader can refer to [24]. As previously
mentioned, the process is fully automated.

We first identify the independent variables, we need to
capture in the models. The space spanned by the independent
variables is then explored to extract a system profile with
systematic measurements. The independent variables we use
for I/O performance modeling are:

− Number of clients (concurrent requests)

− Request type (read or write)

− Mean read request size

− Mean write request size

− Read access pattern (random or sequential)

− Write access pattern (random or sequential)

− Read/write ratio

− File set size

The dependent variables are read response time and write
response time.

Since regression techniques usually have configuration pa-
rameters (e.g., the maximum number of modeling terms) that
influence their effectiveness in a certain application scenario,
we apply a heuristic search algorithm (introduced in [24])
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to optimally tune the regression techniques. For given mea-
surements, we iteratively search for best fitting regression
parameters that minimize the average root mean square error
of a 10-fold cross-validation.

In this paper, we use Multivariate Adaptive Regressions
Splines (MARS) [8] for the statistical models. However, other
popular methods, e.g., binary decision trees such as Classifica-
tion and Regression Trees (CART) [5], could be used as well.
MARS models consist of piecewise linear functions, so-called
hinge functions hi. Thus, MARS constructs a model f of the
form f(~x) = β0 +

∑n
i=1 βi hi(~x) with coefficients β0, . . . , βn.

Furthermore, we consider MARS models with interaction
terms, which includes terms that are a product of one or
more hinge functions.

4.3 Simulation for Model Solving
We use a simulation approach to solve the PCM model
and to obtain the performance results. We transform the
annotated PCM Model to the target analysis model, which
is simulation code, as indicated in Figure 4 and realized
as schematically shown in Figure 8. In the simulation, we
integrated the statistical I/O model that is used over the
storage interface. More specifically, we have extended the
PCM simulator SimuCom [3] by a storage system scheduler
as illustrated in Figure 9 to simulate the I/O delay at the
storage system. The simulation is comprised of the following
five steps:

I. Initially, the I/O requests of the business components,
which are modeled as shown in Figure 6, are passed to
the storage resource.

II. The arriving request is added to an internal status list,
where the last n requests are stored in order to deter-
mine and derive the current state of the I/O workload
at the storage system, e.g., the current read/write ratio
of requests accessing the storage system, since such
information is not given by the request itself. The
choice of n determines the memory length and can be
estimated from the workload using the average I/O
delay and the number of I/O requests arriving per time

delayavgI/O · requestsIntensity
I/O . While this may not always
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Figure 10: Performance Prediction Steps

be the best choice, the memory length n can also be
calibrated for a given model.

III. The workload state information is calculated and passed
together with the request information to the statistical
I/O model. The exact information (i.e., the independent
variables) required by the statistical model is given in
Section 4.2.

IV. The statistical I/O model, which is encapsulated by the
resource component, uses the independent variables to
calculate the actual I/O delay. Since the model is a
mathematical function, the calculation is fast and does
not introduce significant simulation overhead.

V. By using the workload state information of the storage
resource including the number of concurrent requests,
the statistical model inherently captures the contention
at the resource. Thus, the calculated response time is
assigned to the arriving request such that the request
is delayed by this calculated value.

4.4 Prediction Process
Figure 10 illustrates the process to obtain performance pre-
dictions of an application with our approach. The process is
comprised of the following five steps:

1. The starting point is creating the PCM model instance
of an application whose performance should be eval-
uated. The model instance is comprised of the sub-
models as before our extension (cf. Figure 1) with the
added information on the I/O requests, which are the
parameters of the storage interface (cf. Figure 6).

2. Using a feature configuration of the feature tree model
shown in Figure 7, the required statistical I/O model
is chosen. The feature tree is used by simply choosing
the statistical technique and evaluating the appropriate
system configurations. The statistical models can be
stored in a repository or created with measurements
when they are needed, e.g., for a new environment. If a
new model is created, it can be created incrementally by
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fixing some independent variables when measuring the
environment, e.g., if an application is known to access
a file set of a certain size, this independent variable is
not needed to be fully evaluated and its exploration
can be postponed to save time.

3. If the structural and behavioral model of the applica-
tion is created, the resource demands of the non-I/O
operations of the model need to be estimated and cali-
brated, e.g., for CPU resources.

4. Additionally, the parameters used for the storage com-
ponent as illustrated in Figure 9 might be calibrated
for the application model, e.g., the memory length can
be adapted if required.

5. After the model creation and calibration steps have
been completed, the solution of the model, which is
fully automated, can be triggered and the performance
results can be used to predict the performance of the
application, e.g, to predict the performance for an
increasing number of users.

5. EVALUATION
In this section, we present three case studies to evaluate our
approach. We start by introducing our system environments
and conclude with a summary and discussion of the results
after the case studies.

5.1 System Environments
For the evaluation of our approach, we use two representative,
state-of-the-art server environments.

5.1.1 Sun Fire
Our first environment is a Sun Fire X4440 x64 server sys-
tem and is illustrated in Figure 11. It contains four 6-core
processors and 128 GB of memory. The storage back end is
a RAID array with 8 Serial Attached SCSI (SAS) hard disks.
The array contains a battery-backed, non-volatile write cache
(NVC).

The application runs in a guest Linux virtual machine
(VM) virtualized using a Citrix XenServer hypervisor. The
scheduler of the hypervisor manages the access of the guest
VMs to the CPUs. For I/O requests, XenServer uses a privi-
leged host VM (Dom0) able to access the physical devices.

The guest VM is equipped with 4 cores and 2 GB of
memory and we focus the measurements on the storage per-
formance using POSIX configuration. The file system is con-
figured to the de facto standard EXT4 and as I/O scheduler,
we use the default scheduler in virtualized environments [22].

5.1.2 IBM System z
Our second environment is based on the IBM mainframe
System z and the storage system DS8700. As illustrated in
Figure 12, the System z provides processors and memory,
whereas the DS8700 provides storage space. The resources
are managed by the Processor Resource/System Manager
(PR/SM), which is basically a hypervisor creating logical
partitions (LPARs) of the machine.

The System z supports special Linux ports for System z
commonly denoted as z/Linux. The System z is connected
to the DS8700 via fibre channel. In the DS8700, storage
requests are handled by a storage server containing a volatile
cache (VC) and a non-volatile cache (NVC). The storage
server is connected via switched fibre channel to SSD- or
HDD-based RAID arrays. Furthermore, the storage server
applies several pre-fetching and destaging algorithms for
optimal performance [7]. When possible, read requests are
served from the volatile cache, otherwise, they are served
from the RAID arrays and stored together with pre-fetched
data in the volatile cache for future accesses. Write-requests
are propagated both to the volatile and non-volatile cache
and are destaged to the RAID arrays asynchronously.

In our experimental environment, the DS8700 contains
2 GB NVC and 50 GB VC with a RAID5 array containing
seven HDDs and measurements are obtained in a z/Linux
LPAR. The I/O-related operating system configuration is as
in our previous environment.

5.2 Case Study I
In our first case study, we model a file server application in
the Sun Fire environment. The file server application is emu-
lated using the popular Filebench1 framework. Filebench has
a workload definition language used to describe and emulate
typical I/O-intensive applications. The application workload
is comprised of a sequence of file system operations that is
repeatedly executed by a number of clients (threads), e.g., a
file in a file set is opened, read, and then closed. Filebench
uses the following operations to define the workload:

− openfile: Opens a randomly chosen file returning the
file handle.

− closefile: Closes an opened file.

1
https://github.com/Filebench-Revise/Filebench-Revise (version

with fixes from http://sourceforge.net/projects/filebench/)



Listing 1: File Server Workload

File set:

- number of files = 10000

- mean file size = 128 KB

- file preallocation = 80%

5 Threads:

- 50 (default)

Operations:

- createfile

- writewholefile

10 - closefile

- openfile

- appendfilerand , mean size = 16 KB

- closefile

- openfile

15 - readwholefile

- closefile

- deletefile

- statfile

− createfile: Creates an empty file.

− deletefile: Deletes a randomly chosen file.

− statfile: Requests the meta information of a file.

− readwholefile/writewholefile: Read or write a file in one
request.

− appendfilerand: Appends a random amount of data
(with specified mean size) to a file.

Using these operations, the file server application is defined
as shown in Listing 1. During the application runtime, the
operations are executed in a sequence repeatedly by the
clients.

We run the file server application three times with one
minute warm up time and five minutes measurement time
and averaged the measurements across the three runs. We
modeled the create and delete operations as requests to
the CPU resource. We modeled the open, close and stat
operations as requests to a so-called DELAY resource (infinite
server resource). We modeled the I/O operations read, write,
and append as requests to our new storage system resource.

We calibrate the PCM model of the file server with 40
clients (a value below the default value to also predict the
default number of clients), where we calibrate the operations
using the CPU and Delay resource as well as the memory
length for the statistical model and the passed parameters.
We increase the number of clients and evaluate both the
mean I/O response time prediction as well as the end-to-
end response time prediction. The mean I/O response time

prediction error errI/O and the end-to-end response time
prediction error errE2E are defined as

errI/O =
1

n
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Figure 13: Prediction Error in Case Study I

respectively, where opsIOM
i and opsIOP

i is the measured and
predicted response time of the i-th I/O operation (i.e., read,
write, or append), respectively, and opsMi and opsPi is the
measured and predicted response time of the i-th operation,
respectively.

For the prediction, we increase the number of clients up
to 70, while the end-to-end response time measurements
increase from 103.09 ms (40 clients) to 188.51 ms (70 clients).
Figure 13 summarizes the prediction error with the simulation
model. Overall, the prediction accuracy in this case study is
very high with a prediction error between 5 % and 8% for both
the I/O response time and the end-to-end response time. The
prediction accuracy is significantly high especially considering
the fact that two different types of write operations (128 KB
write and 16 KB append) are predicted using the same
statistical model in the simulation.

5.3 Case Study II
In this case study, we model a mail server application in
the Sun Fire environment. The mail server application is
emulated using Filebench similar as the file server application
in the previous case study. The mail server application is
defined as shown in Listing 2. Similar to the previous appli-
cation, the operations are executed in a sequence repeatedly
by the clients during the runtime of the application.

We also run the mail server application three times with
one minute warm up time and five minutes measurement
time and averaged the measurements across the three runs.
The operations were modeled as in our previous case study.

We calibrate the PCM model of the mail server with
10 clients (a value below the default value to also predict
a number of clients close to the default value), where we
calibrate the operations using the CPU and Delay resource
as well as the memory length for the statistical model and
the passed parameters. We increase the number of clients
and evaluate both the mean I/O response time prediction

errI/O as well as the end-to-end response time prediction
errE2E .



Listing 2: Mail Server Workload

File set:

- number of files = 50000

- mean file size = 16 KB

- file preallocation = 80%

5 Threads:

- 16 (default)

Operations:

- deletefile

- createfile

10 - appendfilerand , mean size = 16 KB

- closefile

- openfile

- readwholefile

- closefile

15 - openfile

- appendfilerand , mean size = 16 KB

- closefile

- openfile

- readwholefile

20 - closefile

For the prediction, we increase the number of clients up to
40, while the end-to-end response time measurements increase
from 24.98 ms (10 clients) to 56.40 ms (40 clients). Figure 14
summarizes the prediction error with the simulation model.
Compared to our previous case study, the prediction error is
slightly higher, however, the accuracy with an I/O prediction
error between 16 % and 20 % and an end-to-end prediction
error between 18 % and 23 % is still very good.

5.4 Case Study III
In our final case study, we model the file server application
introduced in our first case study (cf. Listing 1) in the IBM
System z environment. We again calibrate the PCM model
of the file server with 40 clients and increase the number
of clients to evaluate both the mean I/O response time

prediction error errI/O and the end-to-end response time
prediction error errE2E .

For the prediction, we increase the number of clients up
to 70, while the end-to-end response time measurements
increase from 37.46 ms (40 clients) to 47.04 ms (70 clients).
Figure 15 summarizes the prediction error with the simulation
model. The prediction error in this case study is also very
encouraging with a prediction error between 15 % and 21%
for the I/O response time and a prediction error between
2 % and 10% for the end-to-end response time.

5.5 Summary and Discussion
In the three case studies, we modeled a file server and a mail
server application in two sufficiently complex environments
that are not easily modeled or simulated. We demonstrated
that the combination approach can be used to predict the
performance of the considered applications when the number
of users increases with a mean end-to-end prediction error
across the prediction scenarios of 6.98 %, 20.34 %, and
7.34 % in the three case studies, respectively. This increases
the applicability of such software architecture performance
models where the I/O-intensive operations can be captured
by the statistical I/O model since, e.g., in our final case study,
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only the statistical I/O model needed to be exchanged when
changing the environment and the structural and behavioral
model of the application could be reused.

In addition to the prediction results, the case studies also
revealed some considerations. First, the prediction quality
might also depend on the calibration of the I/O resource pa-
rameterization. For example, the produced I/O load on the
system in our IBM System z environment was reduced due to
a software bottleneck in the file server application during the
measuring of response times because of very fast I/O request
processing by the storage system. We accounted for this
observation by reducing the calculated concurrent request
parameter by 25% when passed to the statistical I/O model
during simulation. Consequently, a more tailored calibration
might increase prediction accuracy locally, however, with the
possible sacrifice of extrapolation quality due to “overfitting”
if the prediction configuration is more beyond the calibrated
configuration. In our case studies, we reasonably limited
the calibration process to obtain a sufficiently accurate pre-
diction model. Another consideration is that the statistical
I/O models employed in the case studies – as every model
and modeling formalism – have an inherent potential for
inaccuracies as they are created at a certain abstraction level
with the goal to predict mean response times. To capture
response time distributions, for example, the approach could
be extended by further statistical I/O models, which are used
during simulation, to capture important response time quan-
tiles. Finally, to obtain a statistical I/O model, a potentially
large number of measurements might be needed to cover all
configuration combinations. As indicated in Section 4.4, we
reduced the number of required measurements in the case
studies by first testing the parameter ranges produced by
the application and then explored the region around those
ranges with measurements for the statistical I/O model.

6. RELATED WORK
Our approach is based on performance prediction of compo-
nent-based software architectures [3, 4], modeling of layered
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component execution environments [11], and statistical I/O
performance modeling of storage systems [24].

In general, Balsamo et al. [2] and Koziolek [15] present
extensive surveys on approaches for performance modeling
and evaluation of software systems without explicit focus on
storage systems as in this paper.

More specifically, multiple performance modeling ap-
proaches of complex storage systems in native and virtu-
alized environments have been proposed, e.g., [10, 20, 21,
30, 31] and [1, 6, 14, 16, 18], however, none of these ap-
proaches considers the system performance at the software
architecture-level as presented in this paper. Closest to our
work among those approaches, Kundu et al. [18] use artificial
neural networks and support vector machines for dynamic
capacity planning to answer which CPU and memory limits
and I/O latency should be assigned to an application to
meet performance limits. In [31], Wang et al. use CART
models to predict disk device performance. They use an
interesting set of workload parameters, however, it is un-
clear if the parameters can be used for more complex storage
systems and whether the parameters can be used in soft-
ware architecture-level approaches. Furthermore, Chiang et
al. [6] use linear and second degree polynomials to model
I/O performance interference of data-intensive applications.
They use the models for scheduling algorithms to manage
task assignments in XEN-based virtualized environments. As
input to their model, they use read and write request arrival
rates as well as local and global CPU utilization within the
guest and the host VM, respectively. However, they do not
distinguish between request sizes or sequential and random
requests, for instance. Our measurements have shown that
these and more factors have a significant impact on I/O
performance.

The general approach closest to the work presented in this
paper, Wert et al. [32] outline a general concept to com-
bine software architecture models with domain-independent,
measurement-based statistical models. They focus on the
technical realization of the approach, but they show no evalua-

tion of the combination. Thus, it is unclear what information
needs to be exchanged when performing such a combina-
tion, whereas we propose a specific design of I/O-relevant
parameters in the storage interface and in the statistical I/O
models.

In [34], Woodside et al. present a workbench for statistical
resource demand models of software components and sub-
systems. They outline that the resource models could be
used in a performance model of the software environment
without going into specific details how the combination could
be realized.

Further, Shanthikumar et al. [29] present a classification
scheme for hybrid analytic/simulation models and present
several case studies including ones modeling simple disks
as queues. As this was possible with the PCM before, our
approach allows to model and predict the performance when
using more complex storage systems.

7. CONCLUSION
In summary, we presented a novel approach for performance
modeling and analysis of a) I/O-intensive applications in b)
modern storage environments at the c) software architecture-
level. To the best of our knowledge, there are no other
approaches that combine these three aspects to our extent.

To realize our approach, we applied the model-based perfor-
mance prediction process and extended the Palladio Compo-
nent Model, a model-based performance prediction approach
for component-based software architectures. We introduced
a storage system scheduler that uses a statistical I/O model
that was created in a fully automated manner to capture
the behavior of the storage system. We used the concept of
layered execution environments and encapsulated our stor-
age system scheduler in a resource component that can be
used over its resource interface. We described the required
parameters at the resource interface and for the statistical
I/O model. To solve the model and obtain performance
data, we use a simulation approach where we calculate state
information of the I/O workload (e.g., read/write mix) from
the I/O requests. The state and I/O request information
is then used to determine the delay at the storage resource
with the statistical I/O model for a given I/O request.

The evaluation of our approach showed very promising
results. We modeled a file server and a mail server applica-
tion and used two modern environments based on Sun Fire
and IBM System z server hardware. For the models, we
evaluated the mean I/O response time error and the end-
to-end response time error when predicting the application
performance if the number of users increases. Modeling the
file and mail server application in the Sun Fire environment,
we obtained a mean I/O response time error of 6.42 % and
17.81 %, respectively, and a mean end-to-end response time
error of 6.98 % and 20.34 %, respectively. Modeling the file
server application in the IBM System z environment, we
obtained a mean I/O response time error of 16.98 % and
a mean end-to-end response time error of 7.34 %. Thus,
the software architecture models were able to capture the
performance characteristics in the respective environments.

The main lessons learned can be summarized as follows. i)
We designed the component interface of a storage component
specifying the required information for I/O modeling of stor-
age systems with statistical regression techniques to use it in
software architecture modeling approaches. ii) We modeled
the I/O requests in a form that they can be easily expressed



by software architects, i.e., the I/O requests are specified
without requiring to estimate their resource demands, and
the required information for statistical I/O models can be
derived. iii) We could easily transfer the existing software
architecture model of an application from one environment
to another by recalibrating after replacing the statistical I/O
model. iv) Overall, we successfully predicted the performance
in sufficiently complex storage environments with reduced
manual effort due to the automated statistical I/O model
creation, which is integrated in our approach.

Our approach enables multiple application scenarios. Gen-
erally, our approach is targeted at reducing the effort for
the analysis and evaluation of data-intensive applications
running on modern storage systems by allowing to analyze
the application performance on a software architecture-level.
Our approach is especially beneficial in cases that prohibit ap-
plying explicit, fine-grained performance models due to, e.g.,
time constraints for the manual performance model creation,
calibration, and validation. Our automated performance
modeling approach can aid (e.g., the system developer) to
create a performance profile of the storage system once and
tailor the configuration and resource allocation as needed us-
ing the software architecture model. This model can be used
in different scenarios to assess the system capacity limits
when the number of users increases and evaluate deploy-
ment and trade-off decisions when using different system
environments.
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