
Modeling and Prediction of I/O Performance
in Virtualized Environments

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Omar-Qais Noorshams
aus Kabul, Afghanistan

Tag der mündlichen Prüfung: 12. Februar 2015

Erstgutachter: Prof. Dr. Ralf Reussner

Zweitgutachter: Prof. Dr. Samuel Kounev

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum der Helmholtz-Gemeinschaft www.kit.edu

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung

Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz.

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

Dieses Werk ist lizenziert unter einer Creative Commons Namensnennung -
Weitergabe unter gleichen Bedingungen 3.0 Deutschland Lizenz.
(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

http://creativecommons.org/licenses/by-sa/3.0/de/

Hiermit versichere ich wahrheitsgemäß, die Dissertation selbstständig angefertigt, alle benutzten
Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbei-
ten anderer und eigener Veröffentlichungen unverändert oder mit Änderungen entnommen wurde.

Karlsruhe, den 12.02.2015

Omar-Qais Noorshams

Für meine Mutter

Contents

Abstract . xiii

Kurzfassung . xv

Danksagung . xvii

1. Introduction . 1
1.1. Motivation . 1
1.2. Thesis Goal and Research Questions . 2
1.3. Existing Approaches . 3
1.4. Evaluation Criteria . 5
1.5. Approach and Contributions . 5
1.6. Application Scenarios . 9
1.7. Outline . 9

I. Foundations . 13

2. Virtualization Technology . 15
2.1. Server Virtualization . 15
2.2. Storage Virtualization . 17

2.2.1. SNIA Shared Storage Model . 17
2.2.2. Storage Paradigms in Virtualized Environments 18
2.2.3. Discussion . 20

3. Performance Engineering . 21
3.1. Performance Modeling . 21
3.2. Regression Analysis-based Modeling . 22

3.2.1. Regression Model Creation . 22
3.2.2. Regression Model Evaluation . 23

3.3. Queueing Theory-based Modeling . 25
3.4. Software Architecture Modeling with the Palladio Component Model (PCM) . . . 27

vii

II. Versatile I/O Performance Analysis in Virtualized Environments 31

4. Methodology . 33
4.1. Approach Overview . 33
4.2. Reference System Environment . 35
4.3. Outlook on Core Approach . 37

5. Systematic Analysis of I/O Performance-influencing Factors 39
5.1. Scientific Challenges . 39
5.2. Classification of I/O Performance-influencing Factors 41

5.2.1. Workload-relevant Factors . 41
5.2.2. System-relevant Factors . 42

5.3. I/O Workload Characterization for Performance Modeling 44
5.3.1. Workload Intensity . 44
5.3.2. Request Size . 45
5.3.3. Request Mix . 46
5.3.4. Request Access Pattern . 46
5.3.5. Workload Locality . 47

5.4. Automation of I/O Performance Evaluation and Workload Characterization 48
5.4.1. Architectural View . 48
5.4.2. Dynamic Sequence View . 49

5.5. Summary . 51

6. Creating Regression Analysis-based Models with Optimal Parameterization 53
6.1. Scientific Challenges . 54
6.2. Regression Parameterization as an Optimization Problem 55

6.2.1. Problem Formulation . 55
6.2.2. Stepwise Sampling Search (S3) . 56

6.3. Regression Model Selection . 61
6.3.1. Survey of Popular Regression Techniques 61
6.3.2. Evaluation of Overhead and Complexity 65
6.3.3. Process for Regression Model Selection 71

6.4. Process for Modeling of I/O Performance in Virtualized Environments 73
6.5. Summary . 75

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O
Hardware and Scheduling Aspects . 77
7.1. Scientific Challenges . 78
7.2. Methodology . 79
7.3. System Environment Analysis . 81

7.3.1. System Setup . 81

viii

7.3.2. Identification of Performance-Relevant System Aspects 82
7.3.3. Workload Characterization . 83

7.4. I/O Performance Models of Storage Hardware Aspects 83
7.4.1. Planning . 83
7.4.2. Cache Resource Model . 84
7.4.3. Cache and RAID Resource Model . 86
7.4.4. Prediction Process . 91

7.5. I/O Performance Models of Scheduling and Interference Aspects 91
7.5.1. Planning . 92
7.5.2. Heterogeneous Workload Model . 93
7.5.3. Multi-VM Model . 96
7.5.4. Variable Workload Model . 97
7.5.5. Prediction Process . 101

7.6. Evaluation . 103
7.6.1. Goals and Questions . 103
7.6.2. I/O Performance Models of Storage Hardware Aspects 104
7.6.3. I/O Performance Models of Scheduling and Interference Aspects 108

7.7. Summary . 111

8. Integrating Storage-level Models into Software Architecture-level
Modeling Approaches . 113
8.1. Scientific Challenges . 114
8.2. Methodology . 115

8.2.1. Extending the Model-based Performance Prediction Process 116
8.2.2. Refinement Transformation for Performance Predictions 117

8.3. Realization of I/O Performance Prediction in the PCM 118
8.3.1. Modeling Concept . 118
8.3.2. I/O Analysis Model . 120
8.3.3. Simulation for Solving the Analysis Model 122
8.3.4. Prediction Process . 125

8.4. Summary . 126

9. Validation . 129
9.1. Goals and Questions . 129
9.2. Experimental Setup . 131

9.2.1. Tools and Benchmarks . 131
9.2.2. System Environments . 134

9.3. Case Studies on Workload Characterization . 135
9.3.1. Overview . 135
9.3.2. Case Study I: Workload Characterization 136

ix

9.3.3. Case Study II: Workload Migration & Consolidation 138
9.3.4. Summary and Discussion . 141

9.4. Case Studies on Storage-level Modeling . 142
9.4.1. Overview . 142
9.4.2. Case Study I: Modeling Performance-influencing Factors 143
9.4.3. Case Study II: Modeling Application Workload 145
9.4.4. Case Study III: Modeling Performance Interference 146
9.4.5. Summary and Discussion . 151

9.5. Case Studies on Software Architecture-level Modeling 153
9.5.1. Overview . 153
9.5.2. Case Study I: File Server on Sun Fire . 154
9.5.3. Case Study II: Mail Server on Sun Fire 156
9.5.4. Case Study III: File Server on System z 156
9.5.5. Case Study IV: File and Mail Server on System z 157
9.5.6. Summary and Discussion . 158

9.6. Discussion of the Approach . 161
9.6.1. Automation . 161
9.6.2. Modeling Abstraction . 161
9.6.3. Complementary Formalisms . 162
9.6.4. Predicting the Performance without our Approach 163
9.6.5. Discussion of the Evaluation Criteria . 164
9.6.6. Assumptions and Limitations . 165

III. Related Work and Conclusion . 169

10. Related Work . 171
10.1. Overview . 171
10.2. I/O Performance Analysis and Modeling . 172
10.3. I/O Performance Interference Modeling . 173
10.4. Architecture-level I/O Performance Modeling 175
10.5. Disk-based I/O Performance Modeling . 176
10.6. Systems Performance Evaluation and Modeling 176
10.7. Summary . 177

11. Conclusion . 179
11.1. Summary . 179
11.2. Limitations and Outlook on Future Research . 181
11.3. Concluding Remarks . 183

A. Related Work at a Glance . 185

x

Bibliography . 189

List of Figures . 199

List of Tables . 203

Glossary . 205

Acronyms . 207

xi

Abstract

Modern, future-oriented data centers increasingly rely on virtualization technology to host their
services and applications efficiently and flexibly by sharing the resources and allocating them on-
demand. The dramatically increasing amount of data generated and stored by today’s applications,
however, poses significant challenges for the data center operators to respect Service-Level Agree-
ments (SLAs) and guarantee adequate performance for their users. To cope with such challenges,
storage resources in today’s data centers have evolved from simple disk-based arrays to sophisti-
cated tiered systems with complex caching and optimization strategies. Still, the storage resources
are usually highly underutilized and overprovisioned to avoid bottlenecks along the infrastructure’s
data I/O path, thus leaving highly expensive resources lie waste. Performance modeling techniques
in the area of performance engineering can usually support to anticipate I/O performance bottle-
necks and employ the storage resources more reasonably. For a practical applicability, however,
these techniques need to be refined and tailored to capture the I/O performance in modern virtu-
alized environments. The increasing complexity of the I/O infrastructure is a major challenge for
practical performance engineering approaches. Existing approaches usually address this issue at a
low modeling abstraction level and with specific focus on certain application scenarios such that
important capacity planning questions frequently remain unanswered.

In this thesis, we present a novel performance modeling approach tailored to I/O performance pre-
diction in virtualized environments. The main idea is to identify important performance-influencing
factors and model them at a practical abstraction level. Capturing these factors, we develop tai-
lored storage-level I/O performance models using complementary modeling formalisms based on
statistical regression analysis and queueing theory. To increase the practical applicability of these
models, we combine the low-level I/O performance models with high-level software architecture
models bridging the gap between the two abstraction levels. In summary, the contribution of this
thesis is a novel, systematic I/O performance modeling approach using multiple complementary
formalisms for practical performance predictions in virtualized environments. Our approach is vali-
dated in a variety of case studies in state-of-the-art, real-world environments based on IBM System z
and Sun Fire hardware. Throughout the case studies, we successfully predict the performance of
I/O-intensive applications within the required accuracy of less than 30 % mean prediction error. In
general, our approach is designed for different application scenarios, such as answering capacity
planning and system sizing questions, evaluating the effect of system configuration and hardware
design decisions, and analyzing the scalability and the impact of workload consolidation on shared
resources in virtualized environments. Hereby, our approach is targeted at an efficient resource
usage and the continuous SLA compliance with respect to I/O performance.

xiii

Kurzfassung

Moderne Rechenzentren setzen zunehmend Virtualisierungstechnologien ein, um die verfügbaren
Ressourcen zu teilen und sie gezielt bei Bedarf zuzuweisen. Die immens steigende Menge an
Daten, die von den heutigen Anwendungen erzeugt und gespeichert werden, stellen die Betrei-
ber der Rechenzentren jedoch vor große Herausforderungen, die Dienstgütevereinbarungen und
die Performanzanforderungen der Anwendungen zu gewährleisten. Um diesen hohen Anforderun-
gen gerecht zu werden, haben sich die heutigen Speicherressourcen von einfachen Festplatten-
sammlungen hin zu komplexen, vielschichtigen Systemen mit ausgeklügelten Zwischenspeicher-
und Optimierungsstrategien entwickelt. Dennoch verbleiben die Speicherressourcen für gewöhn-
lich hochgradig unausgelastet und überdimensioniert, um Performanz-Flaschenhälse entlang des
Daten-I/O-Pfades zu vermeiden, wodurch wertvolle Ressourcen verschwendet werden. Allgemein
helfen die Modellierungs- und Vorhersage-Techniken aus dem Bereich des Performance Enginee-
ring, Performanz-Probleme vorauszusehen bevor sie auftreten, um die Speicherressourcen effizient
einzusetzen. Für die praktische Anwendbarkeit müssen diese Techniken allerdings zur Bestimmung
der I/O-Performanz in modernen virtualisierten Umgebungen aufgrund der Komplexität der Syste-
mumgebung und der Virtualisierungsschichten erweitert und verfeinert werden. In der Forschung
gibt es lediglich vereinzelte Ansätze, die die I/O-Performanz in virtualisierten Umgebungen vorher-
sagen. Diese sind allerdings bei der Modellierung häufig auf einem niedrigen Abstraktionsniveau
und beschränken sich auf die Betrachtung ausgewählter Szenarien, so dass wichtige Fragen zur
Kapazitätsplanung unbeantwortet bleiben.

Diese Arbeit präsentiert einen neuen und speziell entwickelten Ansatz zur Modellierung von
I/O-Performanz in virtualisierten Umgebungen. The Kernidee ist hierbei, die wichtigsten Einfluss-
faktoren zu identifizieren und diese zur Performanzvorhersage auf einem angemessenen Abstrakti-
onsniveau zu modellieren. Zu diesem Zweck entwickelt diese Arbeit maßgeschneiderte, speicher-
orientierte I/O-Performanzmodelle mit Hilfe komplementärer Formalismen aus den Bereichen der
statistischen Regressionsanalyse sowie der Warteschlangentheorie. Um die Anwendbarkeit dieser
Modelle zu erhöhen, werden diese speichorientierten Modelle in anwendungsorientierte Modelle
von Software-Architekturen eingebettet, indem die Lücke der Abstraktionsniveaus dieser Modelle
überbrückt wird. Zusammengefasst ist der Beitrag dieser Arbeit ein neuer, systematischer Ansatz
zur Modellierung von I/O-Performanz mit Hilfe komplementärer Formalismen zur praktikablen
Performanzvorhersage in virtualisierten Umgebungen. Der Ansatz wird im Rahmen von mehreren
Fallstudien in repräsentativen, realen Systemumgebungen basierend auf IBM System z sowie Sun
Fire Servern validiert. Hierbei wird die Performanz von datenintensiven Anwendungen erfolgreich
innerhalb der erforderlichen Genauigkeit von bis zu 30 % durchschnittlicher Abweichung vorher-

xv

gesagt. Im Allgemeinen verspricht der Ansatz mehrere Einsatzmöglichkeiten, wie Fragen zur Ka-
pazitätsplanung und Systemdimensionierung zu beantworten, verschiedene Systemkonfigurationen
und Hardware-Entscheidungen zu bewerten, sowie die Skalierbarkeit und den Einfluss bei der Kon-
solidierung von Arbeitslasten in virtualisierten Umgebungen zu untersuchen. Das Ziel des Ansatzes
ist einen effizienten Ressourceneinsatz sowie die durchgängige Gewährleistung von Dienstgütever-
einbarungen hinsichtlich I/O-Performanz zu ermöglichen.

xvi

Danksagung

Diese Arbeit ist das Ergebnis, was erst durch die Unterstützung vieler Menschen möglich gemacht
wurde.

Ein großer Dank gilt meinen Betreuern Ralf Reussner und Samuel Kounev. Ralf hat mich bereits
in meiner Zeit als Student mit seiner einzigartigen Art fasziniert und war einer der Hauptgründe für
meinen Verbleib in Karlsruhe, als ich nach dem Studium schon fast auf dem Weg in die weite Welt
war. Für die einzigartige Unterstützung während der Promotion möchte ich mich sehr bedanken.
Samuel hat mich in den unzähligen Treffen und Diskussionen während den vergangenen Jahren
sehr inspiriert und bei jeglichen Fragen stets unterstützt. Für die intensive Zusammenarbeit und
Hilfe, wie ich es selbst nie erwartet hätte, bin ich sehr dankbar.

Weiterhin möchte ich mich bei allen Kollegen am SDQ und der Descartes-Gruppe bedanken,
mit denen ich zusammenarbeiten durfte. Einige möchte ich an dieser Stelle für die Zusammenar-
beiten, Diskussionen und die Unterstützung besonders erwähnen. Den ersten Schritt in die Gruppe
habe ich dank Anne Koziolek geschafft, die mich während der Diplomarbeit super betreut hat. Ich
möchte mich auch bei Andreas Rentschler bedanken, der es mit mir während der Promotion in ei-
nem Büro aushalten musste und mir bei Projekten und Zusammenarbeiten ein toller Kollege war.
Ebenso möchte ich mich bei Robert Vaupel für die Zusammenarbeit bei verschiedensten Projekten
und den Blick aus der Industrie bedanken. Dank Philipp Merkle habe ich es geschafft, verschiedene
„architekturelle“ Probleme zu lösen und auch so manch Diskussion am Abend in einer sportlichen
Atmosphäre fortzuführen. Vielen Dank insbesondere auch an Alexander Wert für das Gegenlesen
der Ausarbeitung.

Darüberhinaus möchte ich mich auch bei den von mir betreuten Abschlussarbeitern und Studen-
ten für die spannende Zusammenarbeit und Hilfe bei Publikationen bedanken: Axel Busch, Dominik
Bruhn, Kiana Rostami, Roland Reeb, Safa Omri. Es freut mich auch zu sehen, dass sich Axel und
Kiana auch für eine Promotion in unserer Gruppe entschieden haben.

Schließlich gilt ein ganz besonderer Dank meiner Mutter, ohne die diese Arbeit nicht entstanden
wäre und der ich diese Arbeit widme.

Karlsruhe, im Februar 2015 Qais Noorshams

xvii

1. Introduction

1.1. Motivation

Today’s data centers are at the core of any IT-related activities as they host a large number of both
public and private enterprise software applications. The data centers provide the four IT resource
types comprised of processing, memory, communication, and storage resources in form of CPU,
RAM, network, and disk hardware, respectively. As the application of IT in business processes
increases, for example because of higher process automation or more extensive data analysis, the
demand for data center capacity is expected to grow steadily. This growth consequently results in
higher IT operating costs that have been estimated in 2008 to already account for approximately
25 % of the total corporate IT budget (Kaplan et al., 2008). With all the demand in capacity,
analysts have estimated that the global Information and Communications Technology (ICT) systems
currently consume roughly as much electricity as was used for global illumination in 1985 (Mills,
2013).

In recent years, virtualization technology has emerged to face and mitigate the trend in increasing
IT costs and energy consumption in data centers. By enabling to pool physical resources and share
them among multiple, consolidated applications running in virtual machines (VMs), virtualization
technology is a key factor for decreasing management overhead as well as increasing resource ef-
ficiency. Virtualization technology has meanwhile become a central part of today’s data centers
and keeps gaining in importance as the server virtualization market is expected to grow annually by
more than 31 % in the next years (TechNavio, 2013). In parallel to these developments, latest trends,
such as Big Data and Cloud Computing, as well as the ever-increasing amount of data generated and
processed in today’s applications are contributing to the exponential growth of demand in modern
environments for storage resources (Oliveira et al., 2012). Overall from 2005 to 2020, the amount of
digital data is expected to grow by a factor of 300 (Gantz et al., 2012). Furthermore, virtualization
introduces I/O workload patterns for which traditional storage systems were not designed (Informa-
tionAge, 2011) and as a consequence, storage resources have evolved from simple disk collections
to sophisticated tiered systems with complex scheduling and optimization algorithms.

Overall, the escalating amount of data as well as the increasing complexity of modern IT in-
frastructures pose significant concerns for data center operators. A central challenge is to manage
the available resources efficiently while at the same time guaranteeing Service-Level Agreements
(SLAs) and performance requirements. This is especially due to the complex performance effects
between the multiple, consolidated application workloads along the infrastructure’s data I/O path.
The many performance-influencing factors as well as the shared storage resources struggling to pro-

1

1. Introduction

vide a robust performance isolation among different workloads lead to complex I/O performance
and interference effects for the applications disturbing the overall system performance in a non-
trivial manner. In general, performance evaluation and modeling techniques can help to cope with
such challenges to anticipate and mitigate the relevant performance effects before SLA violations
occur. For their applicability and practical parameterization in virtualized environments, however,
these techniques need to be refined and tailored to the I/O performance issue at hand. This is not
only due to the complexity in the virtualized system infrastructure, but also due to the many logi-
cal layers and physical tiers from the application to the physical storage resources that need to be
captured effectively.

Major obstacles of typical performance modeling approaches for software applications are that
they are either too fine-grained or too coarse-grained, thus struggling to provide a practical balance
between abstraction level and prediction accuracy. On the one hand, fine-grained performance mod-
eling approaches may require an in-depth instrumentation and analysis of the system environment to
create and calibrate the performance models, which is in general technically and practically infea-
sible. For example, low-level queueing theory-based models are well-established because of their
expressiveness and modeling power, however, classical I/O queueing model approaches require de-
tailed system information and monitoring data inside the physical tiers and logical layers along the
data I/O path. On the other hand, too coarse-grained performance modeling approaches may not
be able to capture the I/O performance of an application with sufficient accuracy. For instance,
predictive modeling approaches at the software architecture level are popular approaches allowing
to model applications at a high abstraction level. However, such approaches usually abstract from
many system details introducing performance-relevant gaps between the modeled system and its real
behavior. This results not only in lacking to reflect the influence of specific performance-relevant
factors, but also in causing potential for critical prediction inaccuracies. As a consequence of such
observations, developing practical performance modeling approaches is the main goal of this thesis
and addressed with multiple techniques throughout the main parts of this work.

1.2. Thesis Goal and Research Questions

The system infrastructures in virtualized environments are becoming increasingly complex in order
to cope with the high requirements to serve many applications simultaneously and efficiently. In our
work, we develop approaches for extracting performance models supporting to employ resources
in virtualized environment efficiently while respecting SLA requirements. In general, predictive
performance models are created with the goal to abstract from specific details and to be applicable
in realistic setups. To address the I/O performance issues in virtualized environments, we formulate
the goal of this thesis as follows:

The goal of this thesis is to develop practical performance engineering approaches tailored to
model and predict the I/O performance of software applications in virtualized environments.

2

1.3. Existing Approaches

We employ two steps in this thesis to realize this goal. We first develop reproducible I/O per-
formance modeling approaches at a reasonable abstraction level that balances practicability and
prediction accuracy. Second, we use the I/O performance models and develop techniques for per-
formance prediction at the software architecture level to increase the applicability of our approach.
To this end, we formulate the two high-level research questions addressed in this thesis as follows:

1. What is an appropriate approach to practically model and predict the I/O performance in

virtualized environments?

An important challenge is to first identify the required input parameters for a performance
modeling approach at an appropriate abstraction level such that the parameters can be rea-
sonably specified and included in I/O performance modeling approaches. Furthermore, an
appropriate formalism with reasonable abstraction level is then required for the performance
models to hide the complexity of the system environment while still predicting the I/O perfor-
mance with sufficient accuracy. For the practical applicability, a modeling approach should
be automated to a high extent and provide reproducible concepts and processes.

2. How can the I/O performance models be employed in software architecture-level modeling

approaches?

Performance prediction approaches at the software architecture level are a powerful and prac-
tical mechanism because of the high modeling abstraction level and largely intuitive mod-
eling constructs. To increase the applicability of the I/O performance models, they need to
be constructed ideally in a way that they can be used in software architecture-level modeling
approaches. A central challenge to achieve this is to bridge the gap between the abstrac-
tion levels of the two modeling approaches. While software architecture models describe the
high-level structure of a software application, I/O performance models typically provide a
low-level representation of the I/O performance along the infrastructure’s data I/O path from
the application through to the physical storage resources.

1.3. Existing Approaches

There are multiple existing approaches related to the approach presented in this thesis. In summary,
however, the major distinguishing factor is that we are, to the best of our knowledge, the first work
to model the performance of I/O-intensive applications in virtualized environments at the software
architecture level. Furthermore, we create practical performance modeling abstractions and provide
highly automated and reproducible processes to reasonably abstract real-world system environments
and capture their I/O performance, which is addressed rudimentarily by existing approaches.

The existing approaches closely related to the approach of this thesis can be grouped into five
general areas:

• The first area is focused on I/O performance analysis and modeling in virtualized environ-
ments. The existing approaches in this area (Kraft et al., 2012; Ahmad et al., 2003; Kundu

3

1. Introduction

et al., 2012; Gulati et al., 2009) model the I/O performance at a low abstraction level and
it is unclear if the models can be used in software architecture models, since the required
information and parameterization between the two modeling abstractions need to be synchro-
nized. This synchronization is required to allow for a combined modeling and model solving
approach. Furthermore, the approaches are usually focused on certain scenarios, for instance,
the consolidation of VMs (Kraft et al., 2012), leaving important capacity planning questions
unanswered as, for example, the impact of an increasing number of users on the application
performance remains unclear.

• Analyzing I/O performance interference, approaches in the second area model the effects of
multiple I/O-intensive applications competing for the shared resources in virtualized envi-
ronments and causing mutual performance deteriorations. Similar to the previous area, the
approaches in this area (Chiang et al., 2011; Koh et al., 2007; Groot et al., 2013; Yang et al.,
2012; Pu et al., 2010) are addressing the analysis at a low abstraction level without considering
the performance at the architecture level. Furthermore, some approaches use system-specific
monitoring tools to obtain a global view of the system environment (e.g., Chiang et al., 2011),
which is not necessarily always possible.

• Approaches in the third area address I/O performance modeling at the architecture level
(Becker et al., 2009; Huber et al., 2010) and using low-level models in architecture-level
models (Wert et al., 2012; Woodside et al., 2001; Shanthikumar et al., 1983). Among these
works is a case study for modeling I/O performance in virtualized environments (Huber et al.,
2010), however, the goal of this case study is to evaluate the expressiveness of the modeling
approach to answer system design decisions. In general, modeling I/O performance in virtual-
ized environments for capacity planning, i.e., defining a representative workload for modeling
I/O-intensive applications and predicting their performance impacts, is not addressed by ex-
isting approaches.

• In the final two areas, approaches for I/O performance prediction in native, disk-based envi-
ronments (Bucy et al., 2008; Harrison et al., 2007; Lebrecht et al., 2011; Lee et al., 1993;
Varki et al., 2000) as well as general performance evaluation and modeling approaches not
specifically focusing on I/O performance (Balsamo et al., 2004; Koziolek, 2010; Huber et al.,
2012; Hauck et al., 2013; Barham et al., 2003; Iyer et al., 2009) are more distantly related
to our approach and not specific to the I/O performance modeling challenges in virtualized
environments addressed in this work.

At a later point in this thesis, the approaches highlighted in this section are presented and discussed
in Chapter 10 in more detail.

4

1.4. Evaluation Criteria

1.4. Evaluation Criteria

In this thesis, we present a novel approach to model I/O performance capturing its influencing fac-
tors in virtualized environments. The goal is to enable practical performance predictions as well
as to include the models into software architecture-level modeling approaches. The main technical
challenge is the increasing complexity of today’s system environments. Furthermore, the main con-
ceptual challenge is to find an appropriate abstraction level for the models that allows a reasonable
parameterization and provides accurate predictions. Despite these challenges, our approach aims to
fulfill the following evaluation criteria that are considered essential for the success of a modeling
and prediction approach (cf. Rathfelder, 2012; Brosig, 2014):

1. Abstraction: The modeling approach and I/O performance models should be able to hide the
complexity of the IT infrastructure and allow for a practical use and parameterization.

2. Accuracy: The I/O performance models should provide accurate predictions close to mea-
surements on the real system to allow for performance analysis and capacity planning. For
the models, we are primarily focused on response time as the performance metric, where a
prediction error of up to 30 % is generally acceptable (cf. Menascé et al., 2000).

3. Efficiency: The modeling approach should increase the overall model building efficiency
without introducing a higher modeling overhead compared to other approaches.

4. Scalability: It should be possible to model and predict the I/O performance of realistic and
non-trivial system environments.

5. Automation: To increase the applicability and reduce the risk of manual errors, the approach
should have a high degree of automation and be tool-supported whenever possible. This also
enables non-performance engineering experts to apply the approach.

1.5. Approach and Contributions

We will address the goal of this thesis and propose a novel, versatile performance modeling ap-
proach to capture the influencing factors of I/O performance in virtualized environments. To this
end, we develop tailored modeling approaches using complementary formalisms based on statisti-
cal regression analysis and queueing theory. To increase the applicability of the models, the I/O
performance models are created at an appropriate abstraction level to allow for their combination
with software architecture-level modeling approaches. The approach of this thesis is summarized
in Figure 1.1. To capture the I/O performance, we analyze I/O-intensive applications deployed in
virtualized environments and identify the performance-influencing factors. The factors are modeled
in I/O performance models, for which we employ both statistical regression analysis and queueing
theory, to predict the I/O performance of the application. Finally, the I/O performance models are
integrated into software architecture models that consider the performance-influencing factors and
that model the application at a higher level of abstraction to hide the complexity. This process is

5

1. Introduction

I/O-intensive
Application in

Virtualized
Environment

Software
Architecture

Model

I/O Performance
Model

Performance-
Influencing

Factors

Legend

Artifact Relation Activity

predicts

models

analyze

model

integrate

considers

Figure 1.1.: Thesis Approach at a Glance

realized by extending the model-based performance prediction process (Becker, 2008), a concept
employed to allow for performance evaluations of software architecture models, as detailed in the
main part of this thesis in Chapter 4. Overall, the process is supported by providing a high degree
of automation to increase the applicability and reproducibility of our work.

The main practical benefits of our approach can be summarized as follows. First, we enable
accurate I/O performance predictions in non-trivial, complex virtualized environments. Second, we
employ multiple, complementary formalisms beneficial in different situations and conditions, i.e.,
depending on the available expertise and time, to increase the applicability and efficiency of our
work. Finally, the high degree of automation throughout our approach as well as the abstraction
level hiding the complexity of the infrastructure reduce the effort and expertise required to analyze
and understand the system environment and modeling concepts, thereby allowing also non-experts
to effectively and productively apply our approach.

In brief, the scientific contribution of this thesis is a systematic approach for modeling and pre-
dicting the I/O performance in virtualized environments using multiple, complementary formalisms
at an appropriate abstraction level to allow for a practical parameterization and a combination with
software architecture-level modeling approaches. Moreover, our approach is validated in represen-
tative, state-of-the-art system environments in a variety of case studies demonstrating the effective-
ness of our approach. More specifically, the core contributions of this thesis are summarized in the
following four items:

1. Identification and Analysis of I/O Performance-influencing Factors in Virtualized Environ-

ments

We systematically identify and classify the major performance-influencing factors. The fac-
tors are determined at a reasonable abstraction level to derive an appropriate workload char-

6

1.5. Approach and Contributions

acterization that is the basis for the I/O performance modeling approaches. Furthermore, we
develop an automated approach for quantitative evaluation of the factors enabling an efficient
I/O performance analysis and modeling.

Scientifically, the main insight is that we identify major I/O performance-influencing factors
such that they can be specified and derived without requiring system-specific or possibly
invasive monitoring mechanisms. Furthermore, based on these factors we derive a workload
characterization that can be extracted from running applications in an automated process and
that captures the I/O behavior of I/O-intensive applications.

The respective parts of this contribution were highlighted and published in Noorshams et al.
(2013b), Noorshams et al. (2015), and Busch et al. (2015).

2. Efficient Optimal Parameterization of Statistical Regression Techniques for I/O Performance

Modeling

Statistical regression techniques are a practical formalism for performance modeling, since
they are able to statistically derive the relationship between the influencing factors and the
performance from observations. Since regression techniques often have tuning and configu-
ration parameters that affect the prediction accuracy for a given scenario, we develop a deter-
ministic search algorithm with bounded runtime complexity for the efficient parameterization
of statistical regression techniques. We tailor and fully automate the approach for creating
and selecting regression models for I/O performance prediction. Nonetheless, the approach is
general and not limited to the target domain per se.

Here, the scientific insights can be summarized as follows. We develop a novel, efficient
regression technique parameterization approach that significantly increases the prediction ac-
curacy of regression models. Furthermore, we create regression analysis-based models while
neither needing to assume specific relationships between the modeled factors and the I/O
performance nor requiring to manually analyze the regression techniques and their character-
istics.

The optimization approach and its automation were published in Noorshams et al. (2013a)
and Noorshams et al. (2014a).

3. Tailored Systematic Approach based on Queueing Theory for Modeling the I/O Performance

in Virtualized Environments

To gain a deeper knowledge and understanding of the modeled environment, we develop a sys-
tematic approach to create queueing theory-based models tailored to I/O performance predic-
tion in virtualized environments. The approach does not require possibly invasive monitoring
tools and is calibrated with end-to-end response time measurements only. In comparison to
the automated regression analysis-based modeling approach, the queueing theory-based mod-
els require a higher degree of expertise and manual effort for their creation initially. However,
the queueing theory-based models simplify reuse and adaptability, since only their calibration

7

1. Introduction

parameters need be adjusted if the system environment changes or a similar system is to be
modeled.

In short, the main scientific novelty is a tailored, iterative queueing theory-based modeling
approach for virtualized environments relying on end-to-end response time measurements
only.

The overall modeling approach was published in Noorshams et al. (2013d) and Noorshams
et al. (2014c)

4. Combination of Low-level I/O Performance Models with High-level Software Architecture

Models for Performance Prediction

To increase the applicability and usability of the I/O performance models, we extend the
model-based performance prediction process to combine low-level I/O performance models
with high-level software architecture-level modeling approaches. To bridge the gap between
the two abstraction levels, we analyze and identify the required parameters at the software
architecture level. The parameters are used during a simulation-based analysis and mapped
on the required parameters of the I/O performance models. The latter in turn are solved during
the simulation to estimate the contention at the storage resource and to obtain the delays of
the I/O requests.

The main scientific insight of this novel approach for software architecture-level I/O perfor-
mance prediction is twofold. First, we embed the storage-level I/O performance models into
a software architecture-level modeling approach using a well-defined encapsulation concept.
Second, we analyze the combined modeling approach in a simulation-based model solution,
thereby successfully coupling low-level I/O performance models and high-level software ar-
chitecture models to obtain performance predictions.

The general process and the concrete realization were the focus of our publications in Noor-
shams et al. (2013c) and Noorshams et al. (2014b).

The contributions of this thesis are validated in multiple case studies using real-world, represen-
tative system environments based on IBM System z and Sun Fire server hardware. We present a
variety of case studies to demonstrate the effectiveness of our approach, where we specifically an-
alyze our workload characterization, our storage-level models, and our software architecture-level
models. With the case studies, we address our evaluation criteria and demonstrate that i) we are able
to abstract sufficiently complex system infrastructures with reasonably parameterizable models, ii)
we are able to successfully predict the performance of I/O-intensive applications with an average
prediction error in response time of less than 30 %, iii) we provide efficient approaches for perfor-
mance modeling without increasing the model building effort, iv) we are able to model and predict
the performance of state-of-the-art system environments that are not straightforward to capture in
traditional modeling approaches, and v) we provide a high degree of automation throughout our
approach for an increased applicability and reproducibility of our work.

8

1.6. Application Scenarios

1.6. Application Scenarios

The modeling approach in this thesis has multiple practical application scenarios to enable I/O
performance predictions for different requirements. The application scenarios are grouped into the
following three areas:

1. Capacity Planning and System Sizing.

To run the IT infrastructure efficiently, the I/O performance models can be used for capacity
planning of the required storage resources and for sizing the storage systems accordingly.
Typical questions that can be answered are:

• Is the storage environment sufficient for the applications to meet the SLAs?

• Is it required to balance increasing load onto multiple storage systems?

• Should the storage systems be upgraded to a newer model?

2. System Configuration and Hardware Design Decisions.

Usually, there are many configuration possibilities that can be considered to optimize the
overall performance. However, disturbing the applications and evaluating the options in the
production system is not possible. On a model basis, it is usually much easier to answer
configuration questions, such as:

• What operating system and storage system configurations are best for the applications?
Does changing the setup improve or deteriorate the performance?

• Does upgrading the storage resources to faster disks provide a reasonable speed-up in
performance?

• Is it worth introducing an additional caching tier to speed-up performance? How much
cache is required?

3. Scalability and Impact Analysis of Workload Consolidation.

In virtualized environments, consolidating applications has non-trivial implications on all the
workloads that share the resources. Not only does this increase the workload intensity on the
storage resources, it also introduces performance interference effects among the co-located
applications. Multiple question arise when applications are consolidated, for example:

• Are the applications that are consolidated still able to conform to the SLAs?

• Does an application disturb the performance of co-located applications?

• On which system should an application be deployed to optimize overall performance?

1.7. Outline

To address the overall goal and application scenarios introduced in the previous sections, this thesis
is organized into three parts. The next two chapters in Part I present the foundations of this the-
sis. First, Chapter 2 introduces the technical foundations discussing both server virtualization and

9

1. Introduction

storage virtualization to define the context of this work. Then, Chapter 3 introduces the theoreti-
cal foundations of the thesis. The chapter presents the performance modeling formalisms used in
this thesis, in particular, statistical regression analysis and queueing theory. Furthermore, we intro-
duce our target software architecture-level modeling approach. To this end, the Palladio Component
Model (PCM) and its concepts are presented, which concludes the chapter.

As the largest part containing Chapters 4 – 9, Part II constitutes the core of this thesis. To in-
troduce the big picture of our work, Chapter 4 gives an overview of the approach and the general
methodology on which the main chapters are built. Furthermore, this chapter introduces our refer-
ence system environment to elaborate on the specific challenges when addressing I/O performance
modeling in virtualized environments. Chapter 5 is the initial part and the basis for I/O perfor-
mance evaluation and modeling. We analyze I/O performance-influencing factors and develop a
workload characterization as a basis for the I/O performance models. Furthermore, we introduce
our automation approach for measuring the I/O performance, monitoring the system environment,
and employing statistical analysis of the results. In Chapter 6, we introduce our modeling approach
based on statistical regression analysis. We address the problem how to create optimally param-
eterized regression models and we develop a search algorithm to find optimal parameterization
candidates efficiently. Furthermore, we analyze a representative set of statistical regression tech-
niques to select from multiple models created with the techniques. This selection approach is used
to identify our I/O performance modeling process. In Chapter 7, we identify our I/O performance
modeling process based on queueing theory and tailored to virtualized environments. We elabo-
rately demonstrate how to use this process and create queueing Petri net (QPN) models of the I/O
performance in our reference system environment. The QPN models capture both tiered hardware
aspects and scheduling aspects across heterogeneous virtual machines. Then, Chapter 8 shows how
to integrate the I/O performance models into software architecture-level modeling approaches. To
realize this, we extend the model-based performance prediction process and demonstrate our ap-
proach using the PCM as example. We will present the modeling concepts as well as the required
design of the I/O performance models such that they can be integrated into the PCM and solved
using a simulation-based approach. To conclude the main part, Chapter 9 validates our approach
along multiple dimensions in a variety of case studies. We present case studies on our workload
characterization as well as on the storage-level and software architecture-level performance models.
Furthermore, we discuss the scope and applicability of our approach including its assumptions and
limitations.

In the final part, we systematically highlight related work and conclude the thesis in Part III.
First, Chapter 10 surveys the approaches related to the concepts presented in this thesis. The ap-
proaches are grouped into five areas. We first highlight I/O performance analysis and modeling
approaches. Second, we specifically review approaches focusing on analyzing and modeling of
I/O performance interference effects observed in virtualized environments. Then, we discuss I/O
performance modeling approaches at the software architecture level. Furthermore, we highlight
approaches for modeling I/O performance for disk-based systems in native environments. Finally,

10

1.7. Outline

we present performance evaluation and modeling approaches not specifically focusing on I/O per-
formance. As the final chapter of this thesis, Chapter 11 summarizes the thesis by highlighting the
main aspects and results of our work. Furthermore, we address open issues and directions for future
research.

11

Part I.

Foundations

13

2. Virtualization Technology

The basic technology for many new concepts and emerging trends is virtualization. It is generally
a broad field and the terminology is at times ambiguously used. In this first foundations chapter,
we present the technical concepts and terminology in the area of virtualization technology on which
this work is based. The goal is to introduce the context of our work highlighting its links to related
fields. To keep this chapter compact, we refer to foundational work for more information where
appropriate. This chapter is divided into two parts. First in Section 2.1, we introduce general terms
and information on virtualization technology. Then, Section 2.2 focuses on storage virtualization
concepts highlighting the relevant aspects for analyzing storage I/O performance as presented in
this thesis.

2.1. Server Virtualization

The concepts for virtualization technology reach multiple decades back with the beginning of main-
frame computing systems in the 1960/70ies (cf. Vaupel, 2013) and has already then been academi-
cally relevant (cf. Goldberg, 1974). In general, virtualization abstracts physical resources by creat-
ing an additional abstraction layer and providing virtual (logical) resources to use by an application
(Wolf et al., 2005). This abstraction layer is called hypervisor or virtual machine monitor (VMM)

and is responsible for decoupling the physical and logical resources as well as for managing the
mapping between them. The server system running in such a virtualized environment is called
virtual machine (VM).

A hypervisor is typically classified as type-1 or a type-2 hypervisor (cf. Hauck, 2013; Baun et al.,
2011). In a native environment, a server is run directly on dedicated hardware, cf. Figure 2.1. In
a virtualized environment employing a type-1 hypervisor as illustrated in Figure 2.2a, the hyper-
visor is run on the hardware and manages one or more VMs. By contrast, the type-2 hypervisor
is hosted by an operating system running on the hardware, where the hypervisor can manage the
VMs, cf. Figure 2.2b. The virtualization type that is typically employed in server environments is
the type-1 hypervisor (such as the hypervisor in our reference environment, which is introduced
later in Section 4.2).

Virtualization is a key technology for service-oriented and modern Cloud-based IT environments
and provides multiple benefits for both the service provider and consumer (cf. Baun et al., 2011),
such as, for instance:

15

2. Virtualization Technology

Server

Operating System

System

Hardware

Figure 2.1.: Native System Environment

VM

Operating
System

Hypervisor

System

Hardware

VM

Operating
System

(a) Type-1

VM

Operating System

Hypervisor

System

Hardware

VM

Operating
System

Operating
System

(b) Type-2

Figure 2.2.: Types of Virtualization Hypervisors

• Management: The IT landscape can be managed more easily through a collective administra-
tion interface. For instance, VMs can be migrated, replicated, and saved on demand within a
short period of time, since such VM operations can be handled in software.

• Consolidation: Applications can be consolidated and share physical resources, thus reducing
the required number of physical systems and hardware. This in turn saves data center space
and hardware administration overhead.

• Resource efficiency: By sharing the physical resources, operating the IT landscape at a higher
utilization results in a more efficient resource usage leading to reduced energy and data center
cooling costs.

While these benefits provide the basis for a substantial amount of cost savings, virtualization usually
comes at the price of performance if the performance considerations in the system environments
affected by the increased complexity and workload intensity are not addressed and carefully studied.
This is because the applications are no longer run on dedicated hardware as they share the physical
resources and the resource consumptions need to be managed by the hypervisor in a non-trivial
manner. As the focus of our work is I/O performance, we will dedicate special attention to storage
virtualization concepts in the next section.

16

2.2. Storage Virtualization

2.2. Storage Virtualization

The term storage virtualization is usually loosely defined and generally denotes the abstraction from
physical storage systems and storage networks to logical storage resources (cf., e.g., Clark, 2005).
In this thesis, we refer to storage virtualization as the storage infrastructures employed in virtualized

environments. Still, there are different types of storage virtualization with different concepts for data
access. In the following of this section, we highlight storage paradigms and scalable, networked
storage infrastructures used in virtualized environments, specifically block-based, file-based, and
object-based storage, to discuss the focus of this thesis. To lay the foundation, we first introduce
the SNIA Shared Storage Model (n.d.), a standardized descriptive model developed by the Storage

Networking Industry Association (SNIA). For further information on storage virtualization, we refer
to the work of Troppens et al. (2009), Clark (2005), and Massiglia et al. (2003).

2.2.1. SNIA Shared Storage Model

The SNIA is a non-profit association for advancing IT technologies and standards in the storage
domain. The SNIA proposed the SNIA Shared Storage Model (n.d.), which can be compared to
the seven-tier Open System Interconnection (OSI) model for computer networks, in order to unify
the terminology used for storage environments. The second version of the model is illustrated in
Figure 2.3. The model has been published some years before the time of this writing and is briefly
summarized in the following. For more information, please refer to the web representation of the
SNIA Shared Storage Model (n.d.) and Troppens et al. (2009), on which this section is based.

The SNIA Shared Storage Model is in parts straightforward and basically consists of an applica-
tion layer and four layers in the storage domain, which can be grouped into a file layer and a block
layer comprised of two layers each (cf. Figure 2.3):

1. Block subsystem

The first layer consists of the physical, low-level storage devices.

2. Block virtualization

The physical storage is virtualized into logical block storage. This abstraction can be realized
in the device, the network, or the host, for example, using a RAID controller, specialized
servers in the network, or a logical volume manager (LVM), respectively.

3. File/record subsystem

The first file layer uses the block-level storage and contains a database, a file system, or a
database using a file system.

4. File/record/namespace virtualization

The second file layer may employ another virtualization in form of logical abstraction.

5. Application

Finally, the application layer uses the storage to save data.

17

2. Virtualization Technology

St
or

ag
e

do
m

ai
n

Application

Block subsystem

(optional)

Storage devices (disks, etc.)

VirtualizationDevice

Network

HostBlock

File/record/namespace
virtualization

File/record subsystem

(optional)

(optional)

Database File system

B
lo

ck
 la

ye
r

Fi
le

 la
ye

r

Figure 2.3.: SNIA Shared Storage Model (simplified)

2.2.2. Storage Paradigms in Virtualized Environments

The storage paradigms employed in virtualized environments can be classified into the categories
block-based, file-based, and object-based storage, which also have an implication on the storage in-
frastructure. In traditional environments, disks or disk arrays are used by one system exclusively. In
complex environments, the storage resources are pooled usually using a dedicated storage network
to process the increased storage requirements (cf. Troppens et al., 2009). Furthermore, the storage
systems themselves are increasingly complex, tiered systems. In the following, we introduce the
typical storage paradigms and the infrastructures associated with them.

Block-based Storage and Storage Area Networks (SAN) In traditional systems, an oper-
ating system addresses its storage in logical blocks instead of, for instance, the physical addressing
scheme of a disk device that is comprised of cylinder, head, and sector information (cf. Massiglia
et al., 2003). An operating system uses a logical block storage at the block layer (cf. first example in
Figure 2.4) and typically allows the applications to use the storage using a database or a file system.
The translation from the file layer to the block layer is then realized in the operating system.

Regarding the infrastructure, a logical block storage may be created from hard disks, whose
firmware is responsible for the translation of logical to physical addresses. Modern systems also
use RAID arrays (cf., e.g., Troppens et al., 2009), which group a number of storage devices to pool
the storage space and possibly implement redundancy mechanisms to increase the reliability of the
storage in case of disk failures. In a more sophisticated environment, the pooling of storage devices
can be realized in a typically dedicated storage area network (SAN). A SAN can be physically

18

2.2. Storage Virtualization

Server

Storage
devicesStorage

devicesStorage
devices

Direct RAID Storage

RAID controller

File System

Storage
devicesStorage

devicesStorage
devices

SAN Storage

Hypervisor

SAN

Storage
devicesStorage

devicesStorage
devices

NAS Storage

NAS client

SAN

NAS Gateway

OSD
device

Object Storage

Block-based Data Access

File/Object-based Data Access

File System

Application Application Application Application

Figure 2.4.: Example Realizations of the Storage Paradigms (derived from Troppens et al. (2009)
and the SNIA Shared Storage Model (n.d.))

based on Fibre Channel or Ethernet, for example, and employ the Fibre Channel Protocol (FCP) or
TCP/IP to issue SCSI commands for data access. For an operating system using a SAN, the storage
access is block-based and appears as a traditional logical block storage. While the overall physical
storage is shared for multiple applications, the logical block storage is exclusive for a system and the
data access is not shared. Example realizations of block-based storage are illustrated in Figure 2.4
(first and second example). The realization can also be stacked, e.g., a SAN environment may also
contain RAID arrays.

File-based Storage and Network Attached Storage (NAS) File-based storage runs on top
of block-based storage at the file layer and an operating system accesses the data with file system
operations. A traditional example for file-based access is using a file server with the File Trans-
fer Protocol (FTP). In virtualized environments, the typical file-based storage is network attached

storage (NAS) (cf., e.g., Troppens et al., 2009). A NAS server or NAS gateway runs a file system
on top of block-based storage and provides file-based data access over TCP/IP Ethernet using, for
example, the NFS (network file system) protocol. In general, there are dedicated NAS systems,
but also traditional servers can be configured as NAS gateways and expose the file-based storage
to other systems. In contrast to block-based storage, the access at the file layer can be shared, i.e.,

19

2. Virtualization Technology

multiple systems can access the same data. An example of a NAS-based storage structure is shown
in Figure 2.4 (third example).

Object-based Storage and Cloud Computing While there is also block-based storage con-
cepts in Cloud Computing, a paradigm frequently employed in Cloud environments is object stor-

age. In general as defined by Mesnier et al. (2003), storage objects are logical collections that have
attributes and are variable in size. They can be used to store entire data structures, such as files,
database tables, or multimedia. In contrast to files, storage objects are units of storage and a concept
on a lower level such as blocks. The SNIA Shared Storage Model also defines the Object-based
Storage Device (OSD), which is described as a storage device that incorporates the object concept
and whose access is on the file layer, cf. Figure 2.4 (fourth example).

The object storage concept is popular in Cloud environments and used to implement a scalable
and reliable storage infrastructure. Clouds are designed to run on traditional hardware and, e.g.,
the popular Open Stack Object Storage (Swift) (n.d.) is realized by an object server saving the
objects as binary files on the file system. The Cloud management replicates the data and stores
them redundantly in the background to account for hardware failures. The object storage is focused
on serving static data, such as backups and archives, and OpenStack uses block-based storage for
performance-sensitive applications (cf. Open Stack Object Storage (Swift) n.d.).

2.2.3. Discussion

Similar to Cloud storage, there are new technologies and trends emerging. Trends, such as Big
Data, for example, introduce new programming models and storage usage scenarios. The common
MapReduce programming model (Dean et al., 2008) for Big Data applications uses a cluster of
nodes and a distributed file system to analyze large amounts of data. It is not unusual that the nodes
are deployed in a virtualized environment. Another storage usage scenario is based on in-memory
databases that use the memory of a system as a storage resource to increase performance.

To put our work into context, the focus of this thesis is I/O performance of storage resources
in virtualized environments. More specifically regarding the storage paradigm, we analyze block-
based storage employed in virtualized environments, which is illustrated in the second example in
Figure 2.4. The main distinguishing factor to, e.g., the new paradigms mentioned above is that there
can be domain-specific application logic and further resources that affect the I/O performance. In
other words, our work can be used and extended to account for such scenarios at a higher level, but
we will not elaborate on these trends in the following.

20

3. Performance Engineering

In this chapter, we present the theoretical foundations of this thesis as well as the terminology and
concepts used in this context in the remainder of this work. The general foundations are in the area
of performance engineering and, in particular, concerned with performance modeling for predictive
analysis. For the sake of understandability, we refrain from presenting complete formal definitions
and refer to well-established work where applicable. Overall, this chapter is structured as follows.
We begin in Section 3.1 with a brief introduction to performance modeling. In Section 3.2, we
introduce the main concepts and terminology on regression analysis as well as on the evaluation of
regression models. Then, Section 3.3 presents the foundations on queueing theory-based modeling.
Finally, important concepts for software architecture-level modeling is explained in Section 3.4
taking the Palladio Component Model (PCM) as example.

3.1. Performance Modeling

The term Software Performance Engineering (SPE), also referred to as Performance Engineer-
ing (PE), has been coined by some frequently cited authors, such as Smith (1990) and Woodside
et al. (2007), for instance, and can be defined as follows:

Software Performance Engineering (SPE) represents the entire collection of software engineer-

ing activities and related analyses used throughout the software development cycle, which are

directed to meeting performance requirements. (Woodside et al., 2007)

In the SPE methodology (Smith, 1990), creating and evaluating performance models is a central
concept to quantitatively evaluate the performance of a system design and predict the performance
of design alternatives. A performance model captures the performance-relevant behavior of a system
to identify the effect of workload or configuration changes on the overall performance. It allows to
predict the effect of such changes without physically implementing and deploying the system stack,
which can be not only costly, but also wasteful if the acquired hardware environment proves to be
insufficient to support a required workload intensity.

The form of a performance model can be diverse comprising mathematical functions, structural
modeling formalisms, and simulation models, for example. These models vary in their key char-
acteristics, e.g., modeling assumptions of the formalisms, required modeling effort, and abstraction
level. In the following sections, we introduce the modeling formalisms employed in this thesis. At
this point, we merely present the main concepts of the formalisms and in the main part of this work,
we will show why and how the approaches are used for I/O performance modeling.

21

3. Performance Engineering

3.2. Regression Analysis-based Modeling

Regression analysis is a statistical approach to model the effect of one or more independent vari-

ables (as input) on a dependent variable (as output), e.g., the effect of an I/O request size and a
request type on the request response time at a storage system. In general, there are many regression

techniques to create a specific regression model for given training data. Creating a regression model
is a supervised learning problem, where the correct outcome of the training data is known in ad-
vance. By contrast, unsupervised learning techniques aim to find relationships without knowledge
of the correct outcome, e.g., clustering techniques for classification of data sets.

3.2.1. Regression Model Creation

Regression techniques aim to learn and model the underlying structure of the training data and the
more information and domain knowledge is employed to choose the appropriate regression tech-
nique, the closer can the model represent and generalize to predict the outcome of previously un-
seen data. For example, if a given variable is known to have a quadratic effect on another variable,
it is most reasonable to represent the effect with a quadratic model and not, for example, with a
logarithmic one. Usually, however, the actual relationship between given variables is not known in
advance. Consequently, there are many techniques to regression modeling that address the learn-
ing problem reaching up into the area of machine learning, such as artificial neural networks, for
example. Furthermore, the regression techniques usually have configuration parameters that effect
the resulting regression model that a given technique creates for a given set of training data. For
example, the number of hidden units in an artificial neural network can be a configurable parameter
(cf., e.g., Kuhn et al., 2013).

The concept of regression modeling is illustrated in Figure 3.1. Formally, a regression model is
a function f that maps values for the independent variables~x on a value for a dependent variable y

and is parameterized with a vector of configuration parameters ~p, i.e.,

y = f ~p(~x). (3.1)

The regression model f is created from training data {(~xi,yi)}i. This is usually realized in a form
that minimizes a metric of error, such as the squared difference between the model and the training
data, for example. Obviously, different configuration parameters ~p and ~q may lead to different
regression models, i.e.,

∃~p,~q : ~p 6=~q∧ f ~p 6= f~q (3.2)

In general, the best choice for a regression technique and its configuration parameters is not straight-
forward and the prediction accuracy differs for different domains and the training data at hand.

For formal definitions and more information on regression analysis, the reader can refer to the
works of Kuhn et al. (2013), Izenman (2009), Hastie et al. (2008), and Walpole et al. (2007).

22

3.2. Regression Analysis-based Modeling

Training Data

Configuration
Parameters

Regression Technique

Regression ModelIndependent
Variables

Dependent
Variable

e.g., Request Size,
Request Type

e.g., Response Time

Figure 3.1.: Illustration of Regression Modeling

3.2.2. Regression Model Evaluation

In general, regression models can be more or less complex depending on their configuration, i.e.,
the parameterization of a regression technique affects the resulting model. While this is not an issue
per se, an overly complex regression model may suffer from over-fitting. An over-fitted regression
model may be excessively fitted to the training data at hand, such that the model resembles the
training data perfectly, but does not represent the underlying structure of the data. Thereby, the
regression model is not able to generalize and accurately predict unseen data. By contrast, a regres-
sion model that is too simple may not be able to even represent the training data sufficiently, let
alone capture the underlying structure of the data.

Based on the established work of Hastie et al. (2008), Izenman (2009), and Kuhn et al. (2013),
this section compares and discusses main concepts for evaluating the prediction quality of regression
models by estimating their generalization error. Typical metrics for the generalization error of a
regression model are based on resampling techniques. Here, multiple subsets of the training data,
which are often overlapping, are used to create multiple regression models. Then, the remaining
data of the respective subset is used to predict the outcome using the respective regression model,
hereby estimating the prediction error for unseen data. The prediction errors of all subsets are finally
aggregated to obtain the quality estimation of the regression technique and its parameterization. The
metrics can be usually categorized into two groups, cross-validation and bootstrapping. The two
groups are introduced next and briefly discussed afterwards.

Cross-Validation The basic idea of cross-validation is to divide the available training data into
two disjoint sets, a learning set and an evaluation set. A regression model is created using the
learning set first, then the evaluation set is predicted, and finally the difference between the outcomes
of the evaluation set and the actual values is determined. The main question of cross-validation is
how to define the learning and the evaluation set?

23

3. Performance Engineering

Original Data a b c d e f g h i j

Group #1

Group #2

Group #3

Group #4

Group #5

Build Model with Predict on

a b c d e f g h

a b c d e f i j

a b c d g h i j

a b e f g h i j

c d e f g h i j

i j

g h

e f

c d

a b

Figure 3.2.: Illustration of 5-fold Cross-Validation (based on Kuhn et al., 2013)

There are generally different variants and special forms for certain regression techniques (e.g.,
for linear regression models, cf. Kuhn et al., 2013), however, they are not discussed at this point.
The most typical form of cross-validation is k-fold cross-validation. Here, the training data is split
randomly into k partitions of approximately equal size. Each of the partitions is used once as
evaluation set, while the rest of the data is used as learning set, cf. Figure 3.2. The prediction
errors of all partitions are aggregated to evaluate the regression model. A special case for k equal
to the size of the training data is called leave-one-out cross-validation. In the process of a k-fold
cross-validation evaluation, k regression models are created to obtain the evaluation of a certain
regression technique and its parameterization. Once the training data is partitioned into the folds,
the k regression model creations are independent, i.e., from a practical point of view, the models can
be created in parallel. In general, k is set to 5 or 10 (Hastie et al., 2008; Kuhn et al., 2013), which
appears to be a better choice than leave-one-out cross-validation (Izenman, 2009).

Bootstrap Bootstrapping employs a similar idea as cross-validation in a slightly different ap-
proach. A bootstrap sample is a random sample with replacement of the training data. The bootstrap
sample is of the same size as the training data, but may contain duplicates, whereas the training data
may contain elements that are not in the bootstrap sample. Hereby, the partition of the training data
into the learning set and the evaluation set is defined implicitly. The bootstrap sample is the learning
set, the remaining training data that is not contained in the bootstrap sample is the evaluation set, cf.
Figure 3.3. Overall, the process is repeated by creating b bootstrap samples, where it is not unusual
that b = 100 or b = 1000 (cf., e.g., Hastie et al., 2008; Izenman, 2009), and the prediction errors
of the samples are aggregated. Thus, in the bootstrap process, b regression models are created to
evaluate a certain regression technique and its parameterization. Again, the b model creations are
independent.

24

3.3. Queueing Theory-based Modeling

Original Data a b c d e f g h i j

Bootstrap #1

Bootstrap #2

Bootstrap #3

...

Bootstrap #b

Build Model with Predict on

a b b d e f g g

a b c d d f f h

a a a d e f g h

a b b d e f g h

...

h j

g j

i i

i j

c h

e g

b c

c i

...

i

j

Figure 3.3.: Illustration of Bootstrapping (based on Kuhn et al., 2013)

Discussion Based on Hastie et al. (2008), Izenman (2009), and Kuhn et al. (2013), important
aspects of a resampling technique are bias and variance. Here, bias refers to the difference between
the estimated and the true prediction error of a given regression technique and its parameterization,
whereas variance is the difference in estimated prediction error when the evaluation process is re-
peated. For k-fold cross-validation, for example, a larger value of k results in a smaller difference
in size between the training data and the learning set, thereby the bias of the technique becomes
smaller if k gets larger. In comparison, k-fold cross-validation tends to have a higher variance than
other methods (Kuhn et al., 2013). For a large set of training data, however, the considerations of
variance and bias become negligible (Kuhn et al., 2013).

It can be said that, in general, no resampling method is universally better than another (Kuhn
et al., 2013). Depending on the regression technique, creating a regression model for a given set of
data can be computationally expensive. Since the focus in our work is to create practical models
and, thus, to evaluate the regression models efficiently, our goal is to limit the number of regression
model creations. As noted by Kuhn et al. (2013), 10-fold cross-validation provides acceptable
variance, low bias, and is comparably efficient to compute. Therefore, later in our work we will
focus on using k-fold cross-validation as a quality criterion for regression models, where we keep
in mind that k is set to 10 in general.

3.3. Queueing Theory-based Modeling

Queueing theory is a broad field with different specializations and extensions, in all their core is the
concept of a queue (cf., e.g., Menascé et al., 2004; Bolch et al., 2006). As illustrated in Figure 3.4,
a queue consists of a waiting line, where arriving clients are held until they are handled by a server

according to its scheduling strategy, e.g., First-Come-First-Served (FCFS), where the clients are
served in arriving order, or Infinite Server (IS), where a client is served immediately after arriving

25

3. Performance Engineering

ServerWaiting
Line

Clients

Figure 3.4.: A Queue comprised of a Waiting Line and a Server

Place Transition

1

1

1

(a) Before

Transition

1

1

1

Place

(b) After

Figure 3.5.: A Petri Net before and after Transition Firing

at the queue. A queueing network (QN) is a graph, where different clients travel through a set of
interconnected queues. A queueing model can be open, where clients arrive at the model with a
given interarrival time and leave the model after they have been served, or closed, where there is a
fixed number of clients that need to be served by the model and, after a client has been processed,
the client waits for a given think time before it needs to be served again.

The main queueing theory-based modeling approach used in this work is an extension of basic
queueing networks and their combination with the Petri net formalism resulting in queueing Petri

nets (QPNs). Petri nets (PN) are bipartite directed graphs and are comprised of places containing
tokens (clients) that use transitions, whose behavior is defined in incidence functions, to travel
through the net, which describes a certain behavior. As illustrated in Figure 3.5, the places are
connected over the transitions that fire and execute their incident functions when they are enabled,
i.e., when the required tokens are available. In the example in Figure 3.5, the transition uses one
token from two places each to produce one new token when it fires. PNs have been extended with
concepts such as colored tokens in Colored PNs (CPNs) introduced by Jensen (1981), which also
play a role in QPNs. CPNs use typed tokens whose colors define different types or classes. In
addition to introducing token colors, CPNs can also contain transitions that fire in different modes

(transition colors). Further extensions to PNs introduce temporal (timing) aspects to the net model
in addition to the behavioral description. Here, Stochastic PNs (SPNs) (Bause et al., 2002) contain
transitions that have an exponentially distributed firing delay, which specifies the time the transition
is delayed after being enabled before it fires. Generalized Stochastic PNs (GSPNs) use both types
of transitions, i.e., immediate and timed transitions. Immediate transitions fire as soon as they are
enabled. The immediate transitions can have firing weights that decide which transition fires if
multiple immediate transitions are enabled at the same time in the GSPN. The timed transitions fire

26

3.4. Software Architecture Modeling with the Palladio Component Model (PCM)

Input
Transition

Output
Transition

Queueing
Place

Queue Depository

Figure 3.6.: A Queueing Place and its Notation (Source: Kounev et al., 2010b).

after an exponentially distributed delay and the firing of immediate transitions is prioritized over the
firing of timed transitions.

The Queueing PNs (QPNs) extend the Colored GSPNs (CGSPNs) by means to represent queue-
ing strategies and introduce queueing places. A queueing place represents an intuitive form of
contention for a server (or resource) and consists of two parts as illustrated in Figure 3.6, a queue

and a depository for tokens that were served by the queue. If a token is fired into a queueing place
by any of the queueing place’s input transitions, the token is inserted into the queue, where the token
is processed according to the queue’s scheduling strategy. After the token has been served, it is put
in the depository. In contrast to tokens in the queue, only the tokens in the depository can be used
by the output transitions. If the servers have a service time, the place is called a timed queueing
place. If the place only represents scheduling aspects it is called an immediate queueing place. To
obtain timing results, a QPN model is typically solved in a simulation-based approach (cf. Kounev
et al., 2010b).

Further information on queueing theory is given by Bolch et al. (2006) and Menascé et al. (2004).
The introduction of QPNs in this section is based on Kounev (2006), more information and formal
definitions of QPNs is provided by Bause (1993).

3.4. Software Architecture Modeling with the Palladio Component Model (PCM)

The Palladio Component Model (PCM) (Reussner et al., 2011; Becker et al., 2009) is a modeling
approach for component-based software architectures allowing a model-based performance predic-
tion. The PCM supports the component-based software engineering (CBSE) development process
and provides modeling concepts to describe the i) software components, ii) software architecture,
iii) component deployment, and iv) usage profile of a component-based software system in different
sub-models, cf. Figure 3.7:

27

3. Performance Engineering

Component Specifications

Allocation Model

Assembly Model

Usage Model

RDSEFF

PCM Instance

Figure 3.7.: PCM Model Instance (Source: Becker, 2008)

• Component specifications are an abstract, parametric description of software components at a
type level. In the component specifications, an abstract description of the internal behavior of
a component as well as its resource demands are provided in RDSEFFs (Resource Demanding

Service EFFect specifications) in a UML (Object Management Group (OMG), n.d.) activity
diagram-like syntax.

• An assembly model specifies which component types are used at an instance level in the
modeled application and if the component instances are replicated. Furthermore, it defines
how the component instances are connected representing the software architecture.

• The execution environment and resources as well as the deployment of component instances
to such resource containers are defined in an allocation model.

• The usage model specifies the interaction of users with the system also in a UML activity
diagram-like syntax providing an abstract description of the sequence and frequency of users
triggering the system operations that are available.

A PCM model abstracts a software system at the architecture level and it is annotated with mea-
sured or estimated resource consumptions. The model can then be used in model-to-model or
model-to-text transformations to a required analysis model (e.g., to queueing networks or to simula-
tion code) that can be analytically solved or simulated to obtain performance results and predictions
of the modeled system. The performance results and predictions can be used as feedback to evaluate

28

3.4. Software Architecture Modeling with the Palladio Component Model (PCM)

Architecture
Model

Annotated
Architecture

Model

Prediction
Results

Analysis
Model

feedback

transform

estimate/measure
resource consumption

analysis/
simulationmodels

UML, ADL, ...

Queueing Networks, Algebras,
Stochastic Petri Nets, ...

Response Time,
Throughput, ...

Software
System

UML Performance Profile,
PCM, QML, ...

Legend

Artifact ActivityRelation

Figure 3.8.: Model-based Performance Prediction (Source: Becker, 2008)

and improve the initial design, thus allowing a quality assessment of software systems on a model
basis. The general model-based performance prediction process employed in the PCM is shown in
Figure 3.8.

More analysis of the PCM in the context of our work is provided at a later point in Chapter 8
and is also available in our work (Noorshams et al., 2014b), on which this section is based. Further
information on the PCM in general is available by Reussner et al. (2011) and Becker et al. (2009).

29

Part II.

Versatile I/O Performance Analysis in
Virtualized Environments

31

4. Methodology

Typically, performance considerations concerning storage I/O in virtualized environments have a
multitude of implications on the overall applications’ performance, the hardware costs, and beyond.
These considerations usually require an in-depth analysis of the infrastructure environment as well
as the impact of software and hardware design decisions on the I/O performance of all the applica-
tions that share the storage resources.

The goal of this thesis is to develop practical performance modeling and prediction techniques
tailored to support I/O performance considerations in virtualized environments. By developing a
portfolio of approaches, we allow for a versatile I/O performance analysis using storage-level as
well as software architecture-level performance models tailored to the target domain, i.e., for virtu-
alized environments. This chapter provides an overview of this thesis’ I/O performance modeling
approaches. Aligned with the model-based performance prediction process, we develop implicit
and explicit I/O analysis models based on statistical regression analysis and queueing theory, re-
spectively. Furthermore, we show how these I/O analysis models can be integrated into software
architecture-level performance modeling approaches to increase the applicability of our approach.

Before going into details on the I/O performance modeling approaches, in the following in Sec-
tion 4.1 we present an overview of the approach we pursue in this thesis. Then, we introduce our
reference system environment in Section 4.2 to illustrate the storage infrastructure challenges aris-
ing in virtualized environments. Furthermore, we briefly introduce the infrastructure aspects that are
to be considered in performance modeling approaches. Finally in Section 4.3, we give an outlook
on the structure of the thesis and its main parts, where the I/O performance models are developed
and validated in multiple case studies.

4.1. Approach Overview

The high-level overview of this thesis for our I/O performance modeling approach is given in Fig-
ure 4.1 (cf. Noorshams et al., 2013c; Noorshams et al., 2014b), which is the realization of the
approach summary shown in Figure 1.1. The performance prediction target is an I/O-intensive ap-
plication deployed in a virtualized environment producing I/O workload on the storage resource.
The background of our approach is the model-based performance prediction process (cf. Becker,
2008 and Section 3.4), indicated by the dashed box in Figure 4.1. Starting point is an architec-

ture model of the performance prediction target comprised of a static and dynamic representation
of the application and a description of the target environment. For this architecture model, we em-
ploy the Palladio Component Model (PCM) designed for component-based software architectures

33

4. Methodology

Legend

Artifact ActivityRelation

I/O-intensive
Application in

Virtualized
Environment

Architecture
Model

Annotated
Architecture

Model

Prediction
Results

Analysis
Model

feedback

transform

estimate/measure
resource consumption

analysis/
simulation

PCM

PCM Simulation Model

Response Time,
Throughput, ...

models

I/O Analysis
Model

Explicit Analysis
Model

Statistical Regression
Models

Performance-
Influencing

Factors

analyze

model

Implicit Analysis
Model

Queueing Models

integrate

alternatives

(Chapter 5)

(Chapter 6) (Chapter 7)

(Chapter 8)

include

Model-based Performance Prediction Process

Performance Prediction
Target

Performance Prediction
Mechanism

Figure 4.1.: General Overview of the Thesis Approach and Structure

(cf. Section 3.4), since it is a mature approach with a large amount of validation case studies, e.g.,
Becker (2008), Becker et al. (2009), Hauck et al. (2009), Huber et al. (2010), Krogmann (2010),
and Kuperberg et al. (2008). The PCM incorporates the model-based performance prediction pro-
cess to obtain performance prediction results from application models at the software architecture
level. The architecture model is annotated with estimated or measured resource consumptions. The
annotated architecture model is transformed into an analysis model, for which we use a simulation

34

4.2. Reference System Environment

model. In general, the analysis model can be any formalism and it can be solved analytically or us-
ing simulation-based approaches to obtain performance prediction results, e.g., for response time,
throughput, and resource utilization. The prediction results serve as feedback for the architecture
model to evaluate design and deployment alternatives.

To refine this process focusing on the I/O performance, which constitutes the prediction target
of this thesis, we first identify the performance-influencing factors of I/O-intensive applications in
virtualized environments. We analyze the workload of the application as well as the system en-
vironment providing and managing the storage resources. To develop the performance prediction

mechanism, we model the performance-influencing factors in I/O analysis models with different
alternative formalisms. We use implicit analysis models based on statistical regression analysis that
are able to learn the behavior from measurements implicitly without correlating the observed perfor-
mance effects to a specific cause in the system environment. Furthermore, we use explicit analysis

models based on queueing theory that need to be created by an expert such that they explicitly cap-
ture the observed and expected system behavior. The two analysis model formalisms can be seen as
complementary approaches: On the one hand, regression analysis-based models can be created in
an automated process, however, the required amount of measurements grows exponentially with the
number of factors that should be included in the model. On the other hand, queueing theory-based
models need to be created manually and require knowledge of the environment and performance
modeling expertise, but once created, they can be applied and reused with a small number of cali-
bration measurements.

Since the I/O analysis models created with the two formalisms capture the I/O performance at a
low abstraction level, we integrate the I/O analysis models into the higher-level architecture models
aiming to increase the applicability of our modeling and prediction approach. To this end, we
include the performance-influencing factors into the architecture model, in particular the PCM,
such that the required information can be specified during architecture model building. Then, we
combine the analysis model of the architecture model, in particular the simulation model, with the
I/O analysis model. After a PCM model is transformed to the simulation model, the I/O analysis
model is used during simulation to evaluate and predict the I/O performance, whereas the simulation
model captures the general behavior of the application and the contention of other resources such
as CPUs, for example. The combined analysis model is used to obtain performance predictions that
can be used to evaluate the application and system design.

4.2. Reference System Environment

To describe a typical virtualized environment including the inherently emerging complexity and
challenges, in this section we present our reference system environment as a representative basis
for our analysis, cf. Noorshams et al. (2013b). However, while we demonstrate our approach in
a representative, sufficiently complex environment, the approach and concepts of this thesis are of
general nature and not dependent on a specific environment.

35

4. Methodology

LPAR 1 (VM)

z/Linux

PR/SM (Hypervisor)

IBM System z

CPU, RAM

Processors,
Memory

NVC
VC

SSD/
HDD

RAID Arrays

Storage Server

IBM DS8700

Fibre
Channel

Switched
Fibre Channel

LPAR 2 (VM)

z/Linux

Figure 4.2.: Reference System Environment comprised of IBM System z and IBM DS8700

In today’s modern data centers, a typical virtualized environment is comprised of servers provid-
ing computational resources connected to a set of storage systems. Such storage systems typically
differ significantly from traditional hard disks and RAID-based arrays to address the challenges
virtualization technology entails, for instance, the increased workload intensity due to workload
consolidation, which aims for a high resource utilization to run the infrastructure more efficiently.
Purely disk-based storage is rapidly overburdened with the competing requests because of its me-
chanical nature constantly seeking to the required disk sectors such that the requests magnify the
storage latency.

In this thesis, we analyze a representative virtualized environment based on the IBM System z

server and the DS8700 storage system. These are state-of-the-art high-performance virtualized sys-
tems with redundant and hot swappable resources for high availability. The System z combined
with the DS8700 represent a typical virtualized environment that is used as a building block of a
data center in large companies. The environment supports on-demand scale-up and scale-out of
pooled resources. The structure of this environment is illustrated in Figure 4.2.

The System z provides processors and memory and is connected via fibre channel to the DS8700
providing storage space. The environment is virtualized by the Processor Resource and System

Manager (PR/SM) hypervisor, which manages the logical partitions (LPARs), i.e., virtual machines
(VMs), of the system. The System z supports the classical mainframe operating system z/OS and
special Linux ports for System z commonly denoted as z/Linux.

In the DS8700, storage requests are handled by a storage server having a volatile cache (VC)
and a non-volatile cache (NVC). The storage server is connected via switched fibre channel with
SSD-based or HDD-based RAID arrays. As explained by Dufrasne et al. (2010), the storage server
combines several pre-fetching and destaging algorithms for optimal performance, such as Sequential
Adaptive Replacement Cache (SARC), Adaptive Multi-stream Prefetching (AMP), and Intelligent
Write Caching (IWC). Summarizing these algorithms, read-requests are served from the volatile
cache if possible, otherwise they are served from the RAID arrays and stored in the volatile cache
for future requests. Write-requests are written to the volatile as well as the non-volatile cache, but
they are destaged to the RAID arrays asynchronously.

36

4.3. Outlook on Core Approach

In conclusion, modeling the I/O performance in such an environment is not straightforward. The
I/O workloads may be merged and are subject to scheduling and optimization policies on multiple
tiers and layers starting from the operating system through to the physical storage. At the same
time, it is not practically and technically feasible to observe and monitor the complete environment
to capture all aspects throughout all physical tiers and logical layers in the I/O performance models.
A central challenge of this thesis is to be able to model the I/O performance in such complex
environments at a reasonable abstraction level that allows a practical model creation and at the same
time provides a sufficient prediction accuracy.

4.3. Outlook on Core Approach

The main part of this thesis is aligned with the extending steps of the model-based performance
prediction process as shown in the overview in Figure 4.1. Next in Chapter 5, we analyze the
performance-influencing factors of I/O-intensive applications. At this point, we keep in mind that
the performance factors are eventually integrated into a software architecture-level modeling ap-
proach. Thus, the factors need to be identified at a level of abstraction such that they can be rea-
sonably specified and determined, still allowing for accurate performance predictions. We use the
factors as a basis to derive a workload characterization to be included and used as input for the I/O
analysis models. In Chapter 6, we present an automated I/O performance modeling approach with
statistical regression techniques. The chapter addresses the regression modeling question more gen-
erally by presenting a regression optimization approach for regression technique parameterization.
We survey a representative set of techniques ranging from linear regression to machine learning and
show how to select and parameterize a regression model. To create I/O queueing models, Chapter 7
describes a general process for queueing theory-based modeling of I/O performance. The process is
tailored to virtualized environments by two main ideas, i) we use end-to-end measurements instead
of monitoring and instrumentation data for model parameterization to avoid possibly unreliable or
system-specific monitoring tools and ii) we start from a simple model that is extended step-by-step
to cope with the complexity of the system environment. Using the I/O analysis models within the
model-based performance prediction process is detailed in Chapter 8. We combine the I/O analysis
models with the software architecture-level modeling approach realized in the PCM and show how
the transformation process is extended to integrate the I/O analysis model into the analysis model
transformed from the software architecture model. Finally, Chapter 9 presents a variety of validation
case studies along multiple aspects. We first evaluate the workload characterization used for our ap-
proach to show that it can reasonably capture the workload of an I/O-intensive application. We then
evaluate the prediction accuracy of the I/O performance modeling approach in different scenarios
considering the I/O analysis model in isolation as well as combined with the software architecture-
level modeling approach. To conclude the validation, we discuss the applicability of our work. The
overall, high-level evaluation goal is to show that we can obtain practical performance models with
sufficient prediction accuracy.

37

5. Systematic Analysis of I/O Performance-influencing

Factors

After introducing the big picture of our approach in the previous chapter, this chapter is the first part
of our approach for I/O performance modeling in virtualized environments. We lay the foundation
for I/O performance evaluation by identifying the major factors that need to be considered when
creating I/O performance models. More specifically, in this chapter we identify the important influ-
encing factors of I/O performance in virtualized environments. Here, we consider both workload-
relevant and system-relevant factors. The main challenge is to identify the factors at an appropriate
abstraction level, such that they can be reasonably determined and included in I/O performance
modeling approaches and yet allow the models to capture the I/O performance at a sufficient level
of accuracy. We use the workload-relevant factors as a basis to establish a workload characteriza-
tion for the I/O performance models, i.e., the workload information that describes an I/O-intensive
application and is used as input for the models to obtain a prediction for the given requests. Since
obtaining such workload information of an existing application may require detailed knowledge
of the application, we develop an automated characterization approach for running applications by
monitoring the workload of the application and calculating the required information.

This chapter is structured along these steps indicated above: Next in Section 5.1, we first empha-
size the scientific challenges of this chapter. As a basis of our work, in Section 5.2 we identify and
classify important influencing factors of I/O performance in virtualized environments. Using the
workload-relevant performance-influencing factors, we derive a unified workload characterization
in Section 5.3, which is later used for our I/O performance models as workload information. Sec-
tion 5.4 shows how to obtain the workload characterization automatically to map a given application
to the required modeling parameters. Finally, Section 5.5 summarizes the chapter.

5.1. Scientific Challenges

This chapter deals with the following challenges, where the results of this chapter have appeared
in our publications (Noorshams et al., 2013b; Noorshams et al., 2015; Busch et al., 2015) and the
thesis we supervised (Busch, 2013):

Challenge 1 — What are major influencing factors of I/O performance in virtualized environments?

An important prerequisite for performance evaluation is the identification of per-
formance influences. The systematic identification of I/O performance influences

39

5. Systematic Analysis of I/O Performance-influencing Factors

in virtualized environments lays the foundation for both performance analysis and
performance modeling.

Challenge 2 — What is an appropriate abstraction level for the influencing factors?

Generally, many factors may affect the performance of an I/O intensive application
to a certain extent. Identifying an appropriate abstraction level for the factors is key
to develop performance analysis approaches that allow both a practical characteri-
zation of the factors and accurate performance evaluations.

Challenge 3 — What is an appropriate workload characterization to adequately capture I/O-

intensive applications in virtualized environments?

Derivable from the performance-influencing factors, the workload characterization
of I/O-intensive applications describes the application’s I/O behavior. Further-
more, the workload characterization is the direct input for performance analysis
approaches defining the required information for performance modeling. An ade-
quate workload characterization with respect to the considered characteristics and
their abstraction level is needed. This is to be able to obtain the characterization
with appropriate effort as well as to avoid introducing to much overhead in form of
both amount of manual work and technical monitoring overhead during the charac-
terization process.

Challenge 4 — How can the workload of a running application be characterized automatically?

In general, a manual workload characterization of an existing application is cum-
bersome and error-prone. Thus to increase applicability and reproducibility, an
automated and system-independent characterization approach is desirable. This fa-
cilitates to apply the performance evaluation approaches to existing I/O-intensive
applications.

Based on these challenges, we derive the following four hypotheses that are demonstrated in the
course of this chapter:

H1: We can categorize the performance-influencing factors hierarchically and group them along
workload-relevant and system-relevant factors.

H2: We can identify the performance-influencing factors in a way that allows to specify and derive
the factors with standard monitoring mechanisms.

H3: Similar to the performance-influencing factors, we can define the workload characterization in
a way that allows to derive it with standard monitoring mechanisms.

H4: We can extract the workload characterization for running applications in an automated process.

40

5.2. Classification of I/O Performance-influencing Factors

optional
mandatory

alternative
(xor)

or

Legend Workload Factors

Think Time Read
Proportion

Write
Proportion

Strictly
Sequential

Interleaved
Sequential

Size Mix

Workload
Intensity

Request
Information

Workload
Locality

Request Access
Pattern

No of
Clients

Client Interarrival
Time Distribution

Random

File Set Size Access
Distribution

(a) Workload Factors

File System I/O
Scheduler

Ext4 XFS CFQ Deadline

System Factors

Operating
System

(...) NOOP

Disk Type

Hardware

SSD HDD

RAID

RAID 5 RAID 10 (...)

Caching/
Scheduling

Virtualization
Architecture

Storage
Network

(b) System Factors

Figure 5.1.: Performance Influences (derived from Noorshams et al., 2013b)

5.2. Classification of I/O Performance-influencing Factors

In a virtualized environment, there are a wide variety of heterogeneous performance-influencing
factors. By systematically and hierarchically analyzing our reference system as a representative
virtualized environment, we identify and classify significant performance-influencing factors (cf.
Noorshams et al., 2013b). In multiple cases, the factors have a different effect in virtualized environ-
ments than in traditional, disk-based storage devices because of the many complex abstraction layers
and optimization algorithms employed in multi-tiered storage systems typically used in virtualized
environments. Figure 5.1 illustrates our hierarchical classification of the major I/O performance-
influencing factors in form of feature trees, which are a graphical representation of hierarchical
configurations or properties and their relationships (cf. Czarnecki, 1998). The factors we present
are of general nature and not limited to a specific system. Overall, we distinguish workload-relevant

and system-relevant factors, which are explained in more detail in the following.

5.2.1. Workload-relevant Factors

Workload factors are classified into three groups, i) workload intensity, ii) request information, and
iii) workload locality, cf. Figure 5.1a. The former two are generally affecting I/O performance. The

41

5. Systematic Analysis of I/O Performance-influencing Factors

latter affects the storage cache effectiveness and caching optimization algorithms. The factors are
elaborated in the following:

• Workload Intensity: The intensity can be represented in form of closed or open workload.
In a closed workload, the requests are created by a certain number of clients (physical or
logical users, e.g., threads or processes). After the completion of a request, a client may have
a certain think time (e.g., to process the requested data) before issuing another request. Open
workload is characterized by the interarrival time between consecutive users arriving at the
system and issuing a request. The workload intensity affects the performance by the number
of concurrent requests that require scheduling and introduce resource contention.

• Request Size: Most I/O optimization strategies in the various layers of the infrastructure’s
I/O path aim at maximizing throughput by merging subsequent requests if possible. Serving
many small requests results in a lower throughput than serving fewer large requests. Thus,
small requests may be held back at times by the scheduling policies hoping for a mergeable
request to follow.

• Request Mix: While read requests are usually synchronous, write requests may be served
asynchronously without blocking the application. This leads to complex optimization strate-
gies, such as request reordering, when having mixed requests. Still, the optimizations must
preserve the integrity of an application and prevent, e.g., read accesses to already overwritten
data.

• Request Access Pattern: The access pattern affects performance because of the physical ac-
cess of the data as well as the optimization strategies in the various layers from the application
to the physical storage. Typical request access patterns are random or sequential requests.
Because of the mechanical nature of traditional storage devices, requests can only speed up
performance of such devices if the requests are strictly sequential, i.e., all requests are im-
mediately subsequent. By contrast, many sophisticated storage systems are able to recognize
interleaved sequential requests, e.g., caused by multiple users each with strictly sequential
requests, thereby anticipating and prefetching data to caches in order to increase the I/O per-
formance.

• Workload Locality: The locality of the workload and of the requests has an impact on the
effectiveness of caching algorithms and data placement strategies. The locality can be esti-
mated using the file set size, i.e., the size of the files from which the applications read and into
which the applications write, as well as the access distribution, e.g., uniform (if all files are
accessed equally of randomly) or Gaussian or similar distributions (if there are hot spots).

5.2.2. System-relevant Factors

System factors are also classified into three groups comprising i) operating system (OS), ii) virtual-

ization architecture, and iii) hardware configurations, cf. Figure 5.1b. Among the factors, especially

42

5.2. Classification of I/O Performance-influencing Factors

the virtualization architecture and hardware caching factors are distinctive for virtualized environ-
ments. In the following, the factors are explained in more detail:

• Operating System: The major I/O configuration factors of a host OS are the file system and
the I/O scheduler. The factors are discussed for Linux distributions here, but other operating
systems have comparable factors.

– File System: Modern file systems, e.g., EXT4 as the de facto standard for Linux or XFS,
exhibit performance differences under the same workload as they are implemented and
optimized differently. Furthermore, the recordings of journaling file systems usually
introduce additional overhead compared to non-journaling file systems.

– I/O Scheduler1: Aiming to optimize throughput, the current Linux standard CFQ (Com-

pletely Fair Queueing) scheduler performs several optimizations (e.g., splitting/merging
and request reordering) to minimize disk seek times, which account for a major part
of I/O service times in disk-based storage systems. The Deadline scheduler imposes a
deadline on requests to prevent request starvation with read requests having a signifi-
cantly shorter deadline than write requests. The NOOP (NO OPeration) scheduler only
merges and splits I/O requests and has been increasingly used as the standard sched-
uler in virtualized environments to defer I/O scheduling to the hypervisor and storage
systems (cf. Ling et al., 2013).

• Virtualization Architecture: There are different hypervisors with individual virtualization con-
cepts and architectures. For instance, Xen-based hypervisors translate disk devices to the
VMs (cf. Barham et al., 2003), whereas DS8700 volumes undergo multiple layers of logi-
cal abstraction (cf. Dufrasne et al., 2010). Understanding the architecture is important for
performance evaluation and modeling to identify the involved I/O scheduling aspects in the
hypervisor and the storage systems for the environment.

• Hardware: Considerations on a hardware level are generally not only focused on maximizing
performance, but are rather a trade-off between multiple dimensions, e.g., performance and
costs, and the detailed setup is usually specific to the implemented environment. The most
typical hardware factors include the disk type, RAID configuration, caching and scheduling,
and storage connection and network.

– Disk Type: A volume used in a VM can be created with disks of a specific type ad-
vantageous for different usages: Fast, but more expensive SSDs for higher performance
requirements or regular HDDs (usually between 7.2k r/min and 15k r/min) for lower cost
per storage space. In contrast to HDDs, SSDs have no mechanical arms, thus reducing
the seek time to a negligible minimum. Tape storage is intentionally left out of scope
at this point as it is usually used for, e.g., data archiving and backups rather than active
application data.

1Note: The Anticipatory scheduler was removed from recent Linux distributions and is highly discouraged in virtual-
ized environments.

43

5. Systematic Analysis of I/O Performance-influencing Factors

– RAID: The different RAID types offer a trade-off between performance, reliability and
resource efficiency. Typical RAID configurations are RAID 5 (or RAID 6) and RAID 10
(a combination of RAID 1 and RAID 0), either using parity information or mirroring for
data redundancy.

– Caching/Scheduling: Modern storage systems that are designed for virtualized envi-
ronments include a tiered caching architecture as well as sophisticated, adaptive man-
agement and request scheduling to handle intensive, parallel workloads. Usually, read
caches are used to buffer frequently requested and anticipated data, write caches are used
to buffer write requests with asynchronous destaging to physical storage.

– Storage Network: The connection between servers and storage systems as well as the
storage network topology is an important factor and is usually dedicated and designed
to not become the bottleneck. Still, there can be significant differences in performance,
e.g., between iSCSI over Ethernet and Fibre Channel-based connections.

5.3. I/O Workload Characterization for Performance Modeling

In this section, we derive an I/O workload characterization from the workload-relevant performance-
influencing factors presented in Section 5.2. Furthermore, we formalize workload characteristics
and derive representations that can be used in automation using monitoring mechanisms to obtain
the workload characterization from existing applications. The following workload characteristics
will be extracted from the applications, cf. Figure 5.1a:

• Workload intensity: Number of clients issuing requests or requests arriving per unit of time.

• Request size: Average size of issued requests.

• Request mix: Proportion of read and write requests.

• Request access pattern: Proportion of (interleaved) sequential requests.

• Workload locality: The file set size comprised of the average file size and number of files.

While we explicitly account for fluctuations of the workload along these dimensions, we assume
the workload to be steady without, e.g., variable or bursty elements, and calculate mean values for
each workload characteristic.

5.3.1. Workload Intensity

In a typical workload, the workload intensity may vary over time. For closed workload, we capture
the number of clients accessing the system over time and average the value over the observation
period. For open workload, we estimate the mean interarrival time of the clients using the mean
number of requests per time averaged over the observation period.

44

5.3. I/O Workload Characterization for Performance Modeling

Formally, let [0,T], where T ∈R>0, be the observation period. The workload intensity for closed
workload is estimated by

workloadIntensityavg
closed :=

∫ T

0

χ(t)
T

dt (5.1)

= lim
τ→∞

τ

∑
k=1

χ(xk)

T
·∆tk (5.2)

= lim
φ→∞

T−1

∑
t=0

φ

∑
ρ=1

χ(t + ρ

φ
)

T φ
(5.3)

≈ 1
T φ

T−1

∑
t=0

φ

∑
ρ=1

χ(t +
ρ

φ
), (5.4)

where χ(t) is the number of active clients at time t, Ṗ := {([tk−1, tk],xk),1 ≤ k ≤ τ} is a tagged
partition of the interval [0,T], i.e., 0 =: t0 ≤ x1 ≤ t1 ≤ x2 ≤ . . .≤ xτ ≤ tτ := T , and ∆tk := tk− tk−1.
In Equation (5.1) to Equation (5.4), the integral is transformed to the Riemann sum using Ṗ and
approximated using equidistant points in time with sampling frequency φ . This transformation
is required, since practical monitoring mechanisms merely provide discrete observation points in
general. Consequently, T φ is the number of actual observation points in the observation period.

The workload intensity for open workload is characterized by the average arrival rate of requests
using the average number of requests per time. Assuming a sampling frequency φ , we obtain

workloadIntensityavg
open :=

∫ T

0

χ∗(t)
T

dt (5.5)

≈ 1
T

T−1

∑
t=0

φ

∑
ρ=1

η
φ (t +

ρ

φ
), (5.6)

where χ∗(t) is the interarrival rate of clients at time t that is approximated using the number of
requests arriving ηφ (t) in the last 1

φ
time units at time t.

5.3.2. Request Size

To calculate the average request size, we calculate the average size per request type over the ob-
servation period. Let Γr and Γw be the non-empty sets of observed read and write request sizes,
respectively. The average request size for read and write requests is determined as follows:

requestSizeavg
read :=

∑
|Γr|
j=1 Γr, j

|Γr|
(5.7)

requestSizeavg
write :=

∑
|Γw|
j=1 Γw, j

|Γw|
(5.8)

45

5. Systematic Analysis of I/O Performance-influencing Factors

5.3.3. Request Mix

The request mix is determined as the read and write proportion

propread :=
|Γr|

|Γr|+ |Γw|
and propwrite :=

|Γw|
|Γr|+ |Γw|

. (5.9)

By definition, propread + propwrite = 1.

5.3.4. Request Access Pattern

Classical algorithms for the recognition of request access patterns classify every disk seek, i.e.,
any address difference in subsequent requests, as a random access event (cf., e.g., Gregg, 2005).
To account for the ability of modern storage systems to anticipate parallel, strictly sequential re-
quests by multiple users, we propose a heuristic algorithm for request pattern recognition shown
in Algorithm 1 to identify interleaved sequential workload (cf. Busch et al., 2015). Our algorithm
determines the percentage of requests that are accessed sequentially regardless of interrupting re-
quests or time delays. The result is used to estimate the ratio of sequential requests, which can be
used to classify the access pattern of the workload as (interleaved) sequential or random. To do
so, we compare the requested block addresses and search for requests with matching start and end
addresses representing subsequent requests. To distinguish between the access pattern of read and
write requests, the request space can be divided into separate read and write request lists.

More formally, the algorithm’s input parameter is a list S of n block address pairs, i.e., S :=
{Ri}i=0,...,n−1, each pair Ri representing a request. The pairs are defined as

Ri := (block_starti,block_endi), (5.10)

where ∀i : 0 ≤ block_starti ≤ block_endi, and block_starti and block_endi represent the start and
end block number of the i-th request, respectively. The algorithm compares the end block num-
bers of one request with the start block numbers of the following requests to search for sequential
accesses and returns the proportion of sequential requests in the list S.

To avoid overestimation of sequential requests that are too far apart, we enhance the algorithm to
analyze specific windows by dividing the observation space into ω subsets Sι , i.e.,

Sι :=

{Rι ·d n
ω
e, . . . ,R(ι+1)·d n

ω
e−1}, (ι +1)d n

ω
e ≤ n

{Rι ·d n
ω
e, . . . ,Rn−1}, else

, where ι ∈ {0, . . . ,ω−1}. (5.11)

Finally, we use the average of the request pattern recognition algorithm for each subset to ob-
tain the proportion of (interleaved) sequential requests, which we can use as a metric to classify a

46

5.3. I/O Workload Characterization for Performance Modeling

Algorithm 1 Access Pattern Recognition getAccPat(S) (Busch et al., 2015)
Configuration:
S← Sequence of request pairs

Init:
req← |S| // Number of requests

5: req_seq← 0

Algorithm:
for (i← 0, i < req, i++) do

block_end = Si,2 // End block of request Si
for (j← i+1, j ∈ (i,req), j ++) do

10: block_start = S j,1 // Start block of request S j
if block_end = block_start then

req_seq← req_seq+2 // Count both Si and S j
S← S \ {Si,S j}

// Correct outer loop counters:
15: req← req−2

i --
break;

end if
end for

20: end for
Return:
req_seq

req

workload as (interleaved) sequential or random:

accPatternRatio(S) :=
∑ι getAccPat(Sι)

ω
(5.12)

accPattern(S) :=

sequential, accPatternRatio(S)≥ 0.5

random, accPatternRatio(S)< 0.5
(5.13)

As we iterate through the subsequences in two nested loops to find matching pairs, the complexity
of the request pattern recognition approach in Algorithm 1 w.r.t. the length n of the sequence S is
Ω(n) and O(ωd n

ω
e2), which is the best and worst case complexity, respectively.

5.3.5. Workload Locality

For the workload locality, we usually assume to have a uniform distribution over all files repre-
senting random file accesses, since we do not expect specific access patterns among the files. In
case there are certain hot spots expected in the file set, a certain distribution may be assumed, e.g.,
a Gaussian distribution. The distribution can then be compared with or estimated from monitored
data of the requested I/O block addresses for evaluation. Then, the significant subset of the files
can be used to adjust the workload locality estimation. Since we estimate the locality of requests
using the file set size comprised of the number of files and their respective file size, we formalize the

47

5. Systematic Analysis of I/O Performance-influencing Factors

average key estimates over the observation period taking into account typical file system operations,
such as file creation and deletion, which modify the file set during application run. Thus, we have

f ileSizeavg :=
∫ T

0

∑
n(t)
ι=1 ψ ι(t)
T ·n(t)

dt (5.14)

= lim
τ→∞

τ

∑
k=1

∑
n(xk)
ι=1 ψ ι(xk)

T ·n(xk)
·∆tk (5.15)

= lim
φ→∞

T−1

∑
t=0

φ

∑
ρ=1

∑
n(t+ ρ

φ
)

ι=1 ψ ι(t + ρ

φ
)

T φ ·n(t + ρ

φ
)

(5.16)

≈ 1
T φ

T−1

∑
t=0

φ

∑
ρ=1

n(t+ ρ

φ
)

∑
ι=1

ψ ι(t + ρ

φ
)

n(t + ρ

φ
)
, (5.17)

and

f ileSetSizeavg :=
∫ T

0

∑
n(t)
ι=1 ψ ι(t)

T
dt (5.18)

= lim
τ→∞

τ

∑
k=1

∑
n(xk)
ι=1 ψ ι(xk)

T
·∆tk (5.19)

= lim
φ→∞

T−1

∑
t=0

φ

∑
ρ=1

∑
n(t+ ρ

φ
)

ι=1 ψ ι(t + ρ

φ
)

T φ
(5.20)

≈ 1
T φ

T−1

∑
t=0

φ

∑
ρ=1

n(t+ ρ

φ
)

∑
ι=1

ψ
ι(t +

ρ

φ
), (5.21)

where ψ ι(t) is the size of the ι-th file at time t and n(t) is the number of files at time t. The integral
in the equations is transformed similar to the Equations (5.1) – (5.4) above.

5.4. Automation of I/O Performance Evaluation and Workload Characterization

To increase the applicability and reproducibility of our approach, we automated our I/O perfor-
mance evaluation and workload characterization as part of our Storage Performance Analyzer (SPA)

framework (cf. Noorshams et al., 2015). In this section, we first introduce the static view and the
architecture of SPA, then we present the process of the experiments for performance evaluation and
workload characterization.

5.4.1. Architectural View

As illustrated in Figure 5.2, our framework basically consists of a benchmark harness that coor-
dinates and controls the execution of I/O benchmarks for performance measurements as well as
monitors and a tailored analysis library used to process and evaluate the collected data.

48

5.4. Automation of I/O Performance Evaluation and Workload Characterization

Benchmark
Controller

Benchmark
Driver

Persistence
Component

Analysis Library

Benchmark
Harness

Component

Database

Monitoring
Driver

Running on Target(s)

Optional

Benchmark
Benchmark

Monitor

Remote
Execution

User

Figure 5.2.: Automation Components

The benchmark harness component, which is realized in Java, contains a benchmark controller

that automatically explores the configuration space and coordinates the benchmark runs accord-
ingly. The benchmark controller is connected to the benchmark driver, which is used to configure
and execute the integrated and attached benchmarks. The experimental evaluations in this thesis are
based on benchmarks integrated in SPA. In addition to the benchmarks, the measurement process
can be monitored using a given monitor driver to analyze the system environment during measure-
ments and extract the workload characterization presented in Section 5.3. A dummy benchmark
can be used, for example, if a running application should be monitored without producing addi-
tional load. The actual monitors are provided by the operating system as well as tailored scripts
that have a maximum sampling frequency of 1 Hz. The benchmark controller and the drivers are
deployed on a controller machine managing the measurement process. The drivers use a remote ex-

ecution mechanism to communicate with the actual benchmarks and monitors, which are deployed
on the targets, for example multiple VMs on a physical host. In our realization, the remote execu-
tion is achieved using SSH connections, but it could be easily modified to use another connection
type. The benchmark controller saves the results using the persistence component, which is realized
with a lightweight database. The analysis library can then load and prepare the measurement data,
e.g., by filtering and aggregating the data, to evaluate the results. Thereby, the measurements can
be post-processed for further evaluation and statistical analysis as employed in this thesis for our
performance modeling approaches.

5.4.2. Dynamic Sequence View

The measurement and workload characterization process is illustrated in Figure 5.3. The starting
point is the benchmark controller, which is configured with the experiment setup and the config-

49

5. Systematic Analysis of I/O Performance-influencing Factors

parallel

parallel

parallel

:Benchmark
Controller

«physical»
:Benchmark

:Benchmark
Driver

:Persistent
DataStore

startSetup()

finishSetup()

prepare
Experiment()

start
Experiment()

finish
Experiment()

storeResults()

«physical»
:Monitor

:Monitor
Driver

execute()

execute()

parallel start
Monitoring() execute()

parallel stop
Monitoring() terminate()

parallel finish
Monitoring()

results

results

results

results

Figure 5.3.: Experiment and Workload Characterization Sequence

urations that should be executed. The process is repeated for every configuration. The persistent
data store, i.e., the database in our realization, is prepared by initializing the setup. Then, the ex-
periment is prepared using the benchmark driver by configuring the target and starting a warm-up
phase of the actual, physically deployed benchmark. Since there can be multiple targets, the calls to

50

5.5. Summary

a specific driver at any given phase are in parallel for all enabled drivers, which is indicated by the
covered drivers and the parallel blocks in Figure 5.3. Before the measurements begin, the monitors
are started on all targets to collect data. After the monitors are active, the experiments are started
on all targets and return a set of measurement results after they are finished. The monitors can then
be stopped and the required metrics and results are calculated from the monitoring data. The results
are stored and, finally, all experiments and monitors are concluded, e.g., by cleaning up temporary
data, and the data store can be closed. After the process has been completed, the results in the data
store can be evaluated to analyze the system environment.

5.5. Summary

In this chapter, we have established the basis for creating I/O performance models in virtualized
environments. We first identified and classified the major performance-influencing factors of I/O
performance in virtualized environments in a systematic analysis and grouped them hierarchically
into workload-relevant and system-relevant factors. Based on the workload-relevant factors, we de-
fined a workload characterization along five dimensions: workload intensity, request size, request
mix, request access pattern, and workload locality. We defined average estimates for these dimen-
sions and showed how the estimates can be calculated from observations obtained with standard
monitoring mechanisms. Finally, to increase the applicability of our approach we presented an au-
tomated process for I/O performance evaluation and extraction of the workload characterization for
running applications. The main part of our automation is a benchmark harness coordinating the
experiment executions and the monitoring mechanisms automatically. The benchmark harness is
enhanced with a tailored analysis library to evaluate the collected data.

Building upon this chapter in the following chapters of this thesis, we use the performance-
influencing factors and the workload characterization for I/O performance modeling. In the next
two chapters, we will use separate formalisms to capture the I/O performance. We first show how
we can learn and derive regression analysis-based performance models from measurement data. Us-
ing our automation presented in this chapter, we have automated the process of regression analysis-
based performance modeling. This process, however, may require a potentially large amount of
training data. We therefore afterwards show how we can systematically create queueing theory-
based performance models. Once created, such models can be reused in similar environments by
recalibrating with a much smaller number of calibration measurements in contrast to the regression
analysis-based models. After the creation of these two types of I/O performance models, we will
show how to integrate the performance-influencing factors into software architecture-level perfor-
mance modeling approaches and demonstrate the combination with the I/O performance models
to obtain performance results. The key question along these chapters is how to effectively capture
the I/O performance in virtualized environments while respecting the performance factors presented
here.

51

6. Creating Regression Analysis-based Models with

Optimal Parameterization

I/O performance prediction requires models that are able to capture the relationship between the I/O
performance-influencing factors, as input variables, and the I/O performance, as output variable.
One approach is to employ statistical regression analysis-based models (or short, regression models)
that can be created from a wide range of regression techniques. In general, most techniques have
a variety of parameters with tuning opportunities that significantly affect the models’ ability to
predict unseen data. Finding an appropriate regression technique and parameterization, however, is
not straightforward and is dependent on the actual data that should be modeled. When certain
regression techniques are chosen, common practice is to leave their parameters at the standard
values (e.g., Elish et al., 2009), which however might result in underperforming models. Some
approaches may use an educated guess (e.g., Guo et al., 2013), which requires expert knowledge,
or apply an exhaustive search to find good parameters (e.g., Yigitbasi et al., 2013), which is usually
computationally expensive. The question is whether regression techniques can be parameterized
and selected efficiently to increase the prediction quality with decreased computational overhead?

To address this question, in this chapter we develop a regression technique parameterization and
model selection approach that is generally not limited to a certain domain and has been used and
fully automated for I/O performance modeling in virtualized environments. The specific goal we
pursue is to efficiently create high quality models, i.e., to create regression models with high predic-
tive power within a limited amount of time. To achieve this goal, we formulate it as an optimization
problem and develop a search algorithm that is able to find a good parameterization for regression
techniques. Furthermore, we survey and evaluate a representative set of regression techniques for
their computational overhead and complexity. Based on these results we develop a general regres-
sion model selection process. Finally, the model selection approach is then embedded into the I/O
performance modeling process to obtain performance models in the target domain.

This chapter is aligned with the steps presented above and structured as follows: We next in
Section 6.1 elaborate on the scientific challenges of this chapter. In Section 6.2, we formulate the
parameterization of regression techniques as an optimization problem and introduce our Stepwise
Sampling Search (S3) algorithm to efficiently solve the problem. Section 6.3 surveys and evaluates
a selected set of regression techniques to identify a regression model selection process. The model
selection approach of that section is embedded in Section 6.4 in an I/O performance modeling
process. Finally, this chapter is concluded in Section 6.5 with a summary.

53

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.1. Scientific Challenges

This chapter is based on our publications (Noorshams et al., 2013a; Noorshams et al., 2014a) and
the thesis we supervised (Bruhn, 2012) and addresses the following challenges:

Challenge 1 — How can regression techniques be parameterized to obtain I/O performance models

with high prediction accuracy?

Regression techniques typically have multiple configuration parameters for various
purposes and goals. Choosing the appropriate parameters is not straightforward,
since the best choice is usually both problem-specific and data-specific. The pa-
rameters are usually just left to their standard values or either chosen based on an
educated guess or an exhaustive search. We aim to find appropriate parameters
automatically and efficiently to increase the prediction accuracy of the regression
models without requiring expertise and knowledge of a given regression technique
and the parameters’ effects in the algorithm of the technique.

Challenge 2 — What is the process to create a regression analysis-based I/O performance model

in a virtualized environment?

In general, regression analysis-based models are applied in various domains, how-
ever, what performs well in one domain does not necessarily suit other domains.
For example, linear regression models are popular because of their simplicity and
efficient calculation, yet it is unclear if linear regression models are able to cap-
ture both workload-relevant and system-relevant factors influencing the I/O perfor-
mance in virtualized environments. Therefore, we define a process creating perfor-
mance models with different regression techniques and parameterization options,
which consequently leads to the next challenge.

Challenge 3 — How can an appropriate I/O performance model be selected from a range of models

and their parameterization?

From a set of regression techniques and their parameterization options, choosing
the appropriate regression model depends on multiple objectives and constraints.
The traditional model selection problem addresses linear regression models and
the choice of their coefficients. In contrast to the typical problem formulation, we
address the problem to select a model across multiple regression techniques and to
find their parameterization.

This chapter addresses these challenges and demonstrates the following three hypotheses:

H1: We can efficiently optimize the parameterization of regression techniques, hereby significantly
increasing the prediction accuracy of the resulting models.

54

6.2. Regression Parameterization as an Optimization Problem

H2: We can create regression models of I/O performance without assuming any specific relation-
ships between the modeled factors and the I/O performance.

H3: We can choose from a set of regression techniques and their parameterization without requiring
to manually analyze the resulting regression models.

6.2. Regression Parameterization as an Optimization Problem

The configuration parameters of a regression technique have an important impact on the eventually
created regression model. Most notably, an appropriate parameterization varies for different data. In
this section, we will treat this regression technique parameterization as an optimization problem and
first state the problem formulation based on an appropriate quality criterion for regression models.
We will then show how to solve the problem using an efficient search algorithm.

6.2.1. Problem Formulation

As our goal is to build a model with high prediction accuracy for unseen configurations, we define
the regression optimization problem as a single-objective optimization problem to minimize the
generalization error of the regression model. More specifically, as a metric for the generalization
error, we average the root mean squared error of a model with its parameterization over a k-fold
cross-validation, where k is set to 10 (cf. Section 3.2.2). The k-fold cross-validation has the practical
benefit that the calculation can be parallelized (at least) k-times. Formally, the problem is defined
as follows (cf. Izenman, 2009):

Definition 1
Let P be a random partition of the training data D, D := {(~x j,y j)}k≤ j<∞,

with k disjoint elements of approximately equal size, i.e., P := {Si}1≤i≤k and
Si ⊂ D,

⋃
i Si = D, ∀i, j : i 6= j ⇒ Si ∩ S j = /0, and ∀i, j : |Si| ≤ |S j|+ 1. Let

f ~p−ξ
: S →T be the regression model parameterized with the vector of l parame-

ters ~p := (p1, p2, . . . , pl) and created with the learning data
⋃

i 6=ξ Si. The regression
optimization problem is

min
~p

1
k

k

∑
ξ=1

√√√√ ∑
(~x j,y j)∈Sξ

(
y j− f ~p−ξ

(~x j)
)2

(6.1)

subject to

pi ∈ Pi,∀i (6.2)

where Pi is the domain of the i-th parameter pi, S is the source space of the
training data, i.e., ~x j ∈ S , and T is the target space of the training data, i.e.,
y j ∈T , with T ⊆ R.

55

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.2.2. Stepwise Sampling Search (S3)

As there is no closed form for the optimization problem, it is therefore not differentiable and typ-
ical solution approaches, such as classical steepest descent (cf. Snyman, 2005), cannot be applied.
Other approaches, such as genetic algorithms or tailored searches (cf. Kuhn et al., 2013) are either
too computationally expensive or problem-specific. Therefore, we have designed a general meta-
heuristic search algorithm called Stepwise Sampling Search (S3). The S3 algorithm was designed
with the following four objectives:

• Deterministic search

If the search is deterministic, it does not have to be repeated to obtain stable results, which
reduces the runtime and computational cost of the search. As long as the evaluation of the
regression optimization problem is deterministic, which is the case for a deterministic regres-
sion technique and fixed training data partition P , the search is not supposed to exhibit a
stochastic behavior.

• Assessable runtime complexity

If the complexity of the algorithm is known, an upper bound for the search time can be
estimated before actually running the algorithm.

• Global search

A global search reduces the risk that the search is trapped in a locally optimal region. Conse-
quently, it does not require actions to mitigate such a risk, e.g., using random restarts, which
would again increase the computational cost of the search.

• Guaranteed local optimum

As the properties of the objective function are unknown, globally optimal solutions cannot
be easily discovered. Still, a locally optimal solution is desirable from a theoretical point of
view.

The former two objectives allow to estimate the computational cost of the search in order to find a
solution efficiently. This makes the search also interesting for runtime sensitive scenarios, such as
online approaches, for instance, where a solution needs to be found in a given period of time. The
algorithm does not have to be repeated as it provides the same solution for a given data. The latter
two objectives allow to evaluate the quality of a solution, such that the search is global and given a
long enough search, at least a locally optimal solution is found. Although the search time is limited
in practice, the property is interesting theoretically.

The design of the S3 algorithm is shown in Algorithm 2 and illustrated in Figure 6.1. The core
idea is to split the search space into multiple subspaces and then stepwise refine the search in the
most promising regions. The algorithm has two configuration parameters to regulate the search
and its computational complexity, the number of splits (i.e., splitting points) ζ and the number of

subspace explorations η in each iteration. The number of splits configures the sampling frequency

56

6.2. Regression Parameterization as an Optimization Problem

Algorithm 2 Stepwise Sampling Search (S3)
Configuration:
ζ ← Number of splits
η ← Number of explorations
C // Stopping criterion

5: Definitions:
~p := (p1, . . . , pl), L := {1, . . . , l} // l parameters
pi ∈ [ai,bi], ai,bi ∈ Pi, ∀i ∈ L // Ranges of parameters
φ(~p) := Objective function, cf. Equation (6.3)
Init:

10: E←{(~a := (a1, . . . ,al),φ(~a))} // Evaluate first border parameters
M← E // M: Set of best parameters
Algorithm:
for j← 1, ¬C , j++ do

for all (~ν j
(h), ·) ∈M do // h-th pivot

15: for all i ∈ L do
Ai←{pi | (pi, ·) ∈ E ∧ pi < ν

j
(h)i}

if Ai 6= /0 then a∗i ←maxAi
else a∗i ← ai

Bi←{pi | (pi, ·) ∈ E ∧ pi > ν
j
(h)i}

20: if Bi 6= /0 then b∗i ←minBi
else b∗i ← bi

s∗i ←
b∗i−a∗i
ζ+1 ,∀i ∈ L // Step width

S∗i ←{a∗i ,a∗i + s∗i , . . . ,a
∗
i +ζ s∗i ,b

∗
i }

for all s ∈ S∗i do
25: if s invalid then round s to next valid value

end for
end for
E j
(h)←{(~x,φ(~x)) |~x ∈ S∗1× . . .×S∗l } // Evaluate parameters if not evaluated yet

end for
30: E← E ∪

⋃
hE j

(h) // Set of all evaluated parameters
M← η best tuples in E (w.r.t. φ)

end for

of the search space and the subspaces. It can be set to a high value if multiple narrow optima can
be assumed, such that the potential optima can be detected early to explore the subspaces around
the optima. The number of explorations determines how many potential solutions are analyzed in
their adjacent area. It can be set to a high value if many local optima can be assumed, such that not
only the best, but also suboptimal solutions are explored. The algorithm can be configured with any
stopping criterion, e.g., when the improvement between iterations falls below a certain threshold
or when a certain maximum number of iterations is reached. The algorithm operates on a bounded
search space, such that for each of the given parameters pi, a reasonable range pi ∈ [ai,bi] needs to
be defined to limit the search space. The lower bound usually exists for most parameters and the
upper bound can be derived based on the used training data. The objective function φ : iPi→ R is

57

6. Creating Regression Analysis-based Models with Optimal Parameterization

the regression optimization problem defined in Equation (6.1), i.e.,

φ(~p) :=
1
k

k

∑
ξ=1

√√√√ ∑
(~x j,y j)∈Sξ

(
y j− f ~p−ξ

(~x j)
)2

. (6.3)

The search first evaluates one initial point in the search space. As this is the only evaluated point
in the initial step, it is the only candidate in the set M of intended exploration points in the next
iteration. During the exploration phase in each iteration, every point ~x in the set M containing the
η best candidates is explored by splitting the unevaluated space around ~x bounded by the search
space i[ai,bi] into (ζ +1)l subspaces. Initially, the whole search space is explored. The objective
function is then evaluated for each corner point of the subspaces and the best η candidates found
so far are held in M to be explored in the next iteration. During the search, a set E of all evaluated
candidates is maintained. The algorithm repeats the exploration and evaluation until the stopping
criterion applies.

Figure 6.1 illustrates the first iterations of the search configured with ζ = 3 and η = 2 in a 2-
dimensional search space, i.e., l = 2. The search starts evaluating one corner point. This pivot~ν1

(1),
marked with a dark gray circle, is explored in the first iteration. Since the initial pivot is not bounded
by other evaluated points, the whole parameter space is subdivided with ζ = 3 splits for each pa-
rameter as indicated by the grid lines. Each of the grid intersection points is evaluated indicated
as small light gray points at the Iteration 2 level. Then the best η = 2 evaluated points are held in
M and become the pivots ~ν 2

(1) and ~ν 2
(2) being explored successively in the second iteration. First,

when ~ν 2
(1) is explored, the unevaluated space around the pivot limited by the neighboring points

evaluated in the previous iterations is explored, cf. dashed lines between Iteration 2 and Iteration 3.
Then, the same is done for the second pivot ~ν 2

(2) unaffected by the newly evaluated points in the
current iteration. This exploration and evaluation process is repeated in the next iterations and the
best parameters found during the search are used for model building. In the iterations, the algorithm
is designed to split the unevaluated subspaces as determined by the configuration parameter ζ , such
that the space does not necessarily have to be split equidistantly across all parameters, cf. ~ν 3

(1) in
Figure 6.1.

Evaluating a point in the search space requires to build k regression models, which is the most
computationally expensive part of the algorithm. The complexity of the S3 algorithm is therefore
specified in the required number of evaluated points.

Theorem 1
Let θ be the maximum number of iterations of the S3 algorithm, i.e., θ :=max j. The complexity
of the S3 algorithm is

O(θ η ζ
l). (6.4)

58

6.2. Regression Parameterization as an Optimization Problem

~ν1
(1)

~ν2
(1) ~ν2

(2)

~ν3
(1)

~ν3
(2)

Iteration 1

Iteration 2

Iteration 3

ζ = 3,η = 2

Figure 6.1.: Illustration of the S3 Algorithm

Proof : In every iteration, the S3 algorithm evaluates for every pivot at most every set of pa-
rameter values except the initial corner one in the first iteration and the 2l corner ones in
every other iteration. This leads to at most (ζ + 2)l − c j evaluated points for every pivot
in every iteration j in the worst case, where c1 = 1 and c j = 2l for j > 1. Thus, for the
complexity of the algorithm in terms of the total number of evaluated points χ , it holds that
χ ≤ 1+

(
(ζ +2)l−1

)
+(θ −1) ·η

(
(ζ +2)l−2l), which establishes the theorem.

Consequently, by configuring ζ , η , and θ , the overhead of the algorithm can be controlled and
kept within required bounds. In terms of model creations, from Theorem 1 follows:

Corollary 1
Let θ be the maximum number of iterations of the S3 algorithm, i.e., θ := max j. The overall
number of regression model creations is in

O(k θ η ζ
l). (6.5)

59

6. Creating Regression Analysis-based Models with Optimal Parameterization

The search is generally designed to find reasonable solutions in a limited amount of time. Theo-
retically, if the algorithm is allowed to search long enough, the search converges to a locally optimal
solution. To show this, we first require the following lemma:

Lemma 1
Let ζ > 1 and η > 0. It holds that

lim
j→∞

s∗i = 0, ∀i ∈ {1, . . . , l}. (6.6)

Proof : The proof is straightforward for l = 1. Without loss of generality, let [a1,b1] = [0,1]⊂R.
Furthermore, we require a consistent ranking of evaluated points in case of equal quality, i.e.,
a point cannot become a pivot if it did not become one before because of a point with equal
quality. At iteration j it holds for the first pivot h = 1 as well as for all pivots h ≥ 1 if the
number of pivots does not increase that

s∗1 ≤
1
2

(
2

ζ +1

) j

. (6.7)

We will proof the worst case s∗1 =
1
2

(
2

ζ+1

) j
by induction.

Initial step: For j = 1, s∗1 =
1

ζ+1 by definition.
Induction step: For j = n+1, b∗1−a∗1 is at most twice the step width of the previous iteration,
i.e.,

b∗1−a∗1 = 2 · 1
2

(
2

ζ +1

)n

. (6.8)

By definition,

s∗1 = 2 · 1
2

(
2

ζ +1

)n

· 1
ζ +1

=
1
2

(
2

ζ +1

)n+1

. (6.9)

Having established the worst case for s∗1, it holds that

lim
j→∞

1
2

(
2

ζ +1

) j

= 0. (6.10)

For l > 1, the pivots can, theoretically, travel through the search space if they are a newly
evaluated point at the borders of the subspaces. For l = 1, this cannot occur as otherwise the
border point would have been a pivot in the previous iteration. Still, the Lemma also holds for
l > 1 and for all the pivots as the search space is bounded and there is a finite number of times
the step width can increase.

60

6.3. Regression Model Selection

Theorem 2
Let ζ > 1 and η > 0. The S3 algorithm finds at least one locally optimal solution.

Proof : Without loss of generality, let l = 1. The proof follows a similar pattern for l > 1. Using
Lemma 1, we distinguish two cases:

1. Let P1 be discrete. Without loss of generality, let P1 = [n1,n2]∩N,ni ∈ N,n1 < n2.
lim j→∞ s∗1 < 1 =⇒ ∃h′∃ j′ : φ(v j′

h′)≤ φ(v j′
h′)∧φ(v j′

h′)≤ φ(v j′

h′)∧(v
j′

h′, ·),(v
j′
h′, ·),(v

j′

h′, ·)∈ E,

where v j′
h′ := min{v j′

h′+1,b1} and v j′

h′ := max{v j′

h′−1,a1}.

2. Let P1 be continuous. Assume ∀ j∀(e1, ·) ∈ E\{(b1, ·)}∀(e2, ·) ∈ E\{(a1, ·)}∃ε ′ > 0∀ε ∈
(0,ε ′] : φ(e1)> φ(e1 + ε)∨φ(e2)> φ(e2− ε).
lim j→∞ s∗1 = 0 =⇒ ∃ j∗∃h′∀h′′ : s∗1 ∈ (0,ε ′]∧ φ(v j∗

(h′)) ≤ φ(v j∗

(h′′))∧ (v
j∗

(h′), ·),(v
j∗ (+)
(h′) , ·),

(v j∗ (−)
(h′) , ·) ∈ E j∗−1

(h′) , where v j∗ (+)
(h′) := min{v j∗

h′ + s∗1,b1} and v j∗ (+)
(h′) := max{v j∗

h′ − s∗1,a1}, in
contradiction to the assumption.

Consequently, since for convex problems a locally optimal solution is also globally optimal, our
approach guarantees globally optimal solutions if the search space is convex.

6.3. Regression Model Selection

To select from a set of regression models, it is important to understand the regression techniques
used to create the models. In this section, we establish a regression selection process by first ana-
lyzing and surveying a representative set of regression techniques. Afterwards, the techniques are
evaluated with regard to their computational overhead and complexity. Finally, we use the compu-
tational overhead, the complexity, and the model quality as criteria to define the selection process.

6.3.1. Survey of Popular Regression Techniques

In this section, we analyze and survey a selected set of regression techniques that can be used in the
model selection process. We selected regression techniques that are popular and frequently used,
however, this section is neither intended as a comprehensive knowledge base nor is our approach
limited to the given set of techniques. The intention of this section is to present a methodology how
to evaluate the different techniques and the resulting models that is a basis for our regression model
selection process.

6.3.1.1. Linear Regression Model (LRM)

A simple and popular approach is creating a linear regression model (LRM) (Hastie et al., 2008).
LRM assumes a linear relationship between the independent variables and the dependent variable,
i.e., the dependent variable is modeled as a linear combination of the independent variables with an

61

6. Creating Regression Analysis-based Models with Optimal Parameterization

additive constant. Formally, for a vector of independent variables ~x := (x1, . . . ,xn) a model f with
coefficients β0, . . . ,βn is created of the form

f (~x) = β0 +
n

∑
i=1

βixi. (6.11)

The model f is linear in the independent variables, however, it does not necessarily have to be a
first degree function. The representation of the independent variables can be derived, e.g., x2 = x2

1

or x3 = x1x2. For the sake of clarity, we explicitly consider two forms: The linear regression models

are first degree functions. The linear regression models with interactions (IA) can include terms
expressing the interaction between independent variables, e.g., x1x2. Such models have a maximum
degree n, but the effects of the independent variables xi remain linear in the model. In general,
higher degree polynomials and other terms, such as exi and ln(xi), are possible, however, denoting
the resulting models as linear regression models might be confusing and they are disregarded at this
point.

To create a model based on given training data, the coefficients of the model are determined to
minimize the difference between the model and the training data. A typical approach is to mini-
mize the squared difference creating a model using the method of least squares. Formally, for a
set of training data {(~x1,y1), . . . ,(~xN ,yN)}, where ∀ j: ~x j := (x j,1, . . . ,x j,n), this method finds the
coefficients ~β := (β0, . . . ,βn) such that the residual sum of squares (RSS) defined as

RSS(~β) :=
N

∑
j=1

(y j− f (~x j))
2 (6.12)

is minimized. To find the minimum, the derivative of RSS is set to zero and solved for ~β . Since the
RSS is a quadratic function, the minimum is guaranteed to always exist.

6.3.1.2. Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) (Friedman, 1991) consist of piecewise linear
functions comprised of hinge functions. Formally, the hinge functions with knot t are defined as
(x− t)+ := max{0,x− t} and (t − x)+ := max{0, t − x}. For model creation, let ~x = (x1, . . . ,xn)

be the vector of independent variables as above, Hi := {(xi− t j)+,(t j− xi)+} j and t j ∈ Ti, where
Ti is the set of values of the i-th independent variable in the training data, i.e., Ti := {x j,i} j for the
training data defined as above, and H :=

⋃
i Hi. Then, MARS constructs a model f of the form

f (~x) = β0 +
m

∑
k=1

βk hk(~x) (6.13)

with hk ∈ H and coefficients β0, . . . ,βm. Similar to the linear regression models, we explicitly
distinguish between MARS and MARS with interactions (IA). The latter also includes terms that are
a product of one or more hinge functions in H.

62

6.3. Regression Model Selection

The parameters βi are determined based on the method of least squares, similar to the linear
regression models. The model first grows greedily in a forward step. Starting from a constant
function, the MARS algorithm iteratively adds the hinge functions in H that result in the highest
reduction of the residual squared error. If interactions are allowed, the algorithm can also choose a
hinge function as a factor, however, each variable can only appear once in a term, i.e., higher-degree
powers of a variable are excluded. This process stops if a predefined number of maximum terms
is reached or if the residual error falls below a predefined threshold. Then, the model is pruned in
a second step to avoid overfitting. The terms that produce the smallest increase in residual squared
error are removed iteratively until the model contains a predefined maximum number of terms after
pruning. The pruning process may also consider the model complexity in combination with the
residual squared error. This allows for a trade-off between accuracy and complexity of the model.

6.3.1.3. Classification and Regression Trees (CART)

Classification and Regression Trees (CART) (Breiman et al., 1984) create a model of the training
data in form of a tree-based representation. CART models are binary trees with conditions in their
inner, non-leaf nodes and constant values in their leaf nodes. For a given set of values of the
independent variables, the evaluation starts at the root to determine the value of the dependent
variable. The condition in the respective node is checked and one of the child nodes is followed
depending on the evaluation of the node condition. This process is repeated until a leaf is reached.

The CART algorithm comprises a forward and a pruning step to create a model. In the forward
step, an initial tree with a single node is created. The leaves in the tree are split iteratively at a certain
splitting variable and a splitting condition. The splitting condition is determined greedily such that
the residual squared error is minimized. The algorithm splits a leaf until it contains less samples of
the training data than a predefined value. The forward step ends if no leaf can be split any further. In
the pruning step, the tree is reduced using cost-complexity pruning (cf. Hastie et al., 2008). Let m be
the m-th leaf, Rm be the region specified by the conditions to the m-th leaf, and l(T) be the number
of leaves in the tree T . Furthermore, for the training data {(~x j,y j)} j, let the number of observations
in a region nm = |{~x j |~x j ∈ Rm}|, the mean of the observations values ĉm = n−1

m ∑~x j∈Rm y j, and the
mean squared difference between each observed value and the mean of the observations values
qm(T) = n−1

m ∑x j∈Rm(y j− ĉm)
2. The cost-complexity criterion with parameter α is defined as

cα(T) :=
l(T)

∑
m=1

nmqm(T)+α l(T) (6.14)

that is to be minimized. The parameter α is a trade-off between complexity and goodness-of-fit to
the training data. It is determined by the algorithm according to the residual sum of squares with
cross-validation, which splits the training data into two partitions consisting of a learning and an
evaluation set. For a given α , the tree is greedily pruned using weakest link pruning, where the
nodes with the smallest per-node increase in ∑

l(T)
m=1 nmqm(T) are collapsed iteratively.

63

6. Creating Regression Analysis-based Models with Optimal Parameterization

6.3.1.4. M5 Trees

Figuratively speaking, M5 trees (Quinlan, 1992) combine CART trees with linear regression models.
M5 models are also binary decision trees with conditions in their inner, non-leaf nodes. In contrast
to CART trees containing constant values in the leaf nodes, the leaf nodes of M5 trees contain linear
regression models. To evaluate a value, the conditions are evaluated starting in the root node until a
linear regression model in a leaf is reached. This model is then used and evaluated.

Similar to the previous techniques, the M5 tree is first built in a forward step and then pruned
afterwards. To build an M5 tree, the initial model consists of a tree T with a single node. The tree is
split iteratively into subtrees Ti until a predefined maximum number of splits is reached. M5 splits
the tree greedily at the condition that maximizes the expected reduction in error ∆e with

∆e := σ(T)−∑
i

|Ti|
|T |

σ(Ti), (6.15)

where σ is the standard deviation of the observations values {y j} j that are contained in the respec-
tive tree. After the creation of the tree, a linear regression model is created for each leaf. In the
pruning step, the M5 model f is greedily simplified to decrease the complexity c with

c(T) := n−1
∑

j
|y j− f (~x j)| ·

n+ p
n− p

, (6.16)

where {(~x j,y j)} j is the training data (i.e., the observations), n is the number of samples in the
training data and p is the number of parameters in the model. The term n+p

n−p allows an increase in
error if the complexity is decreased. For each leaf node, parameters of the linear model are removed,
whereas for every non-leaf node, the node is collapsed if this reduces c(T).

6.3.1.5. Cubist Forests

Cubist forests (RuleQuest Research Pty Ltd, 2012; Kuhn et al., 2012) are an extension of M5 trees.
Cubist forests are based on rule-based model trees with linear regression models in the leaves. Cu-
bist extends M5 by two aspects. First, it introduces a boosting-like approach, i.e., it creates multiple
trees instead of a single tree. To obtain a single value, the tree predictions are aggregated using
their arithmetic mean. Second, it combines model-based and instance-based learning (cf. Quinlan,
1993), i.e., it can adjust the prediction of unseen configurations by the values of the neighboring
training data.

Before the algorithm begins, the maximum number of trees in the model is defined to construct
a forest. The initial tree is created using the M5 algorithm. The following trees are created to
correct the predictions of the training data by the previous tree ft(~x). Each value of a training point
yi is adjusted by ȳi := 2yi− ft(~x) to compensate for over- and under-estimations. Then, the tree
building is repeated and another tree is created using the M5 algorithm. For prediction, Cubist
aggregates the values predicted by each tree using their mean value. Finally, the prediction of

64

6.3. Regression Model Selection

unseen configurations can be adjusted by the values of a possibly dynamically determined number
of samples in the training data using instance-based correction, cf. Quinlan (1993). The prediction
of a configuration~x is adjusted by the weighted mean of its neighbors, i.e., the nearest samples, in
the training data, with weight w~n := 1/(m(~x,~n)+ 0.5) for every neighbor ~n, where m(~x,~n) is the
Manhattan distance of~x and~n. M5 is a special case of Cubist with one tree and no instance-based
correction.

6.3.2. Evaluation of Overhead and Complexity

As part of our selection process, we evaluate the computational overhead and the complexity of the
considered regression techniques. For the evaluation, we analyze the following four dimensions:

1. Model Creation and Evaluation Time

We measure the time required to create and evaluate a model with standard parameters.

2. Prediction Time

We evaluate the time required to predict a set of data with the standard model.

3. Optimization Overhead

We evaluate the optimization overhead for the techniques across their parameterization.

4. Model Complexity

Finally, we discuss the algorithms w.r.t. their complexity and interpretability.

6.3.2.1. Setup

To measure the execution times for the dimensions, we run our evaluation process using a hyper-
threaded Intel core i7 clocked at 2.66 GHz. The process is automated with the statistics framework
R (R Core Team, 2013) and parallelized using the doMC library. Measuring the execution times is
realized using the rbenchmark library, where the evaluations can be automatically replicated and
the respective code is executed once before the time measurement begins. For all the techniques, we
use the method train in the caret library, which serves as a façade to the actual implementations.
During the model creation, the method train also evaluates the model using a 10-fold cross valida-
tion, such that 11 models are created in total for each method invocation. Thus, the model creation
time also includes the model evaluation time, which helps to assess the quality of the model before
actually employing it.

For the evaluation, we use two data sets from real measurements1:

1. Data Set I: The first data set consists of 576 measurement configurations and three indepen-
dent variables for each model.

1The measurements from Data Set I and Data Set II are given in Table 9.4 and 9.5 in Chapter 9. The respective models
and predictions are discussed in Section 9.4.

65

6. Creating Regression Analysis-based Models with Optimal Parameterization

Data Set I Data Set II

0.0

0.5

1.0

1.5

2.0

LRM LRM
w/ IA

MARS MARS
w/ IA

CART M5/
Cubist

LRM LRM
w/ IA

MARS MARS
w/ IA

CART M5/
Cubist

Regression Technique

M
ea

n
E

xe
cu

tio
n

Ti
m

e
(s

)

Figure 6.2.: Time Evaluation for Regression Model Creation and Evaluation

2. Data Set II: The second data set consists of 960 measurement configurations and five inde-
pendent variables for each model.

Furthermore, four dependent variables are used for the evaluations for each data set, i.e., every
model evaluation is inherently repeated 4 times – once for each dependent variable.

6.3.2.2. Model Creation and Evaluation Time

In this section, we measure the model creation and evaluation time with the considered regression
techniques using their standard parameters and use 30 replications to obtain stable results, since
the execution times are small. We use the two data sets and average the results for each technique
across the repetitions and the four dependent variables. Furthermore, we distinguish for LRM and
MARS between the models with and without interactions (IA). Finally, as Cubist equals M5 for the
standard parameters, the two techniques are not distinguished.

The mean execution times for each model creation and evaluation are given in Figure 6.2, where
the error bars (intervals) illustrate the standard error across the four models for each dependent
variable, i.e., the distance from the lower end to the upper end is two times the standard error.
Interestingly, while there are some trends, the regression techniques have similar runtimes for Data
Set I. In general, the CART models are created fastest with 0.58 s, whereas the M5/Cubist models
are created slowest with 0.88 s. For the more complex Data Set II, the trends indicated in the first
data set become more apparent. While most techniques require around 0.75 s, the CART models are
created again fastest with 0.64 s, whereas the MARS models with interactions and the M5/Cubist
models with 1.76 s and 1.48 s, respectively, run more than twice as long as CART.

66

6.3. Regression Model Selection

Data Set I Data Set II

0.00

0.01

0.02

0.03

LRM LRM
w/ IA

MARS MARS
w/ IA

CART M5/
Cubist

LRM LRM
w/ IA

MARS MARS
w/ IA

CART M5/
Cubist

Regression Technique

M
ea

n
E

xe
cu

tio
n

Ti
m

e
(s

)

Figure 6.3.: Time Evaluation for Regression Model Prediction

6.3.2.3. Prediction Time

In general, the required time to create a regression model outweighs the time for a model to predict
data by several orders of magnitude. In this section, we evaluate for each model the time required
to predict 100 random samples. We replicate the executions 30 times to obtain stable results for the
short measurements and average the execution times for both data sets. The results are presented
similar to the previous section and shown in Figure 6.3.

For Data Set I, there is a similar trend as in the previous evaluation. The predictions are generally
fast, especially for LRM and CART models with 4.4 ms and 5 ms, respectively, for 100 samples. The
slowest predictions originate from MARS with interactions and M5/Cubist models with 8.9 ms and
7.1 ms, respectively. Regarding Data Set II, the general trend is similar, where fastest predictions can
be made with LRM and CART models having a prediction time of 5.9 ms and 6.6 ms, respectively.
For this data set, the MARS models with interactions are slowest with 25.3 ms and require over 2.5
times more time than the second slowest models, which are the M5/Cubist models.

6.3.2.4. Optimization Overhead

The two key factors for the optimization overhead are i) the model creation and evaluation time and
ii) the number of model creations and evaluations. Regarding the former, the model creation time
also depends on the parameterization itself, e.g., the number of trees created in a Cubist forest is
a direct multiplier of the model creation time. For the latter, while the number of model creations
and evaluations can be adjusted by the search configuration, cf. Theorem 1, an important factor is
the overall number of parameters that are to be explored. As the parameters span the search space,

67

6. Creating Regression Analysis-based Models with Optimal Parameterization

the number of parameters affects the number of model creations and evaluations exponentially.
Moreover, the actual parameters may vary depending on the implementation.

Keeping in mind that the optimization overhead can be adjusted through careful configuration
based on the techniques’ algorithms presented in Section 6.3.1, we will in this section measure the
time required to optimize the regression techniques with a representative set of parameters chosen
based on the recommendations in the caret library and the implementations of the techniques in R.
We measure one optimization step as well as the average model creation and evaluation time using
the S3 algorithm configured with ζ = 3, η = 1, and θ = 1. We will optimize the techniques using
our two data sets with the following parameters:

1. LRM with/without interactions: The techniques have no apparent parameters, thus, they are
not optimized.

2. MARS with/without interactions: The parameters are i) the maximum number of terms in the
forward step, ii) the maximum number of terms after pruning, and iii) the minimum improve-
ment in the goodness-of-fit (estimated by the coefficient of determination R2) for a term to be
added in the forward step.

3. CART: The two parameters are i) the minimum number of observations in a node for the
respective node to be considered as a splitting candidate and ii) the minimum amount in
lack of fit (estimated by the coefficient of determination R2) a split must reduce for it to be
considered.

4. M5: The only parameter is the maximum number of conditions, i.e., inner nodes.

5. Cubist: The parameters are i) the parameter of the M5 algorithm as well as ii) the number of
trees in the forest and iii) the number of neighbors considered in the instance-based correction
during prediction.

For the techniques that can be optimized, the measurement results are summarized in Figure 6.4.
As the search has a different number of evaluation points depending on the number of parameters
(cf. Theorem 1), Figure 6.4a illustrates the average execution time per evaluation point in the opti-
mization, whereas Figure 6.4b shows the total execution time for the optimization. Overall, CART
and M5 show very fast execution times, since CART evaluations are very fast in general and we only
optimized one parameter of the M5 algorithm. We can observe higher execution times for MARS,
especially in Data Set II when the interaction terms are considered. The by far most computationally
expensive algorithm appears to be Cubist. This is especially due to the fact that Cubist repeats the
M5 algorithm for every tree in the forest.

6.3.2.5. Model Complexity

To evaluate the complexity of the regression techniques, more specifically, how simple the regres-
sion models can be interpreted by, e.g., an analyst, we discuss the considered regression techniques

68

6.3. Regression Model Selection

Data Set I Data Set II

0

25

50

75

MARS MARS
w/ IA

CART M5 Cubist MARS MARS
w/ IA

CART M5 Cubist

Regression Technique

M
ea

n
E

xe
cu

tio
n

Ti
m

e
(s

)

(a) Single Evaluation Time

Data Set I Data Set II

100

101

102

103

104

MARS MARS
w/ IA

CART M5 Cubist MARS MARS
w/ IA

CART M5 Cubist

Regression Technique

M
ea

n
E

xe
cu

tio
n

Ti
m

e
(s

)

(b) Total Optimization Time (logarithmic y-axis)

Figure 6.4.: Time Evaluation for Regression Model Optimization

highlighting the relationships among them as illustrated in Figure 6.5 based on our analysis in Sec-
tion 6.3.1.

The basic models are LRM as well as LRM with interaction terms. The models have an inher-
ently limited number of terms, i.e., n+ 1 and 2n for the models without and including interaction
terms, respectively, where n is the number of independent variables. Using these models, the effect
and influence of a certain term on the overall modeled performance can be analyzed. The MARS
algorithm can be seen as an extension of LRM by allowing piecewise linear terms. Unlike LRM,

69

6. Creating Regression Analysis-based Models with Optimal Parameterization

LRM

MARS

CART

M5

Cubist

Piecewise
linearity

Tree structure
Step function

Combination

Boosting
Inst.-based

Figure 6.5.: Relation between the Regression Techniques

however, MARS models can grow arbitrarily large. If its parameterization permits, MARS mod-
els can contain up to one term for every measurement point. While this may be relatively easy to
understand for an analyst if the dimensions are independent as the dimension can be analyzed in iso-
lation, allowing interaction terms increases the number of terms exponentially as every combination
of the terms may be included. In comparison, the algorithms of MARS and CART may seem very
different, however, the forward step of MARS can be transformed into the one of CART by using
a tree-based structure with step functions, cf. Hastie et al. (2008). By using a tree-based structure
that group constant values, CART models are very popular because of their simplicity allowing to
understand and visualize the information relatively easily. One of their weak points, however, is that
CART models do not easily represent linear relationships among data as the predictions are merely
constant values. To be able to capture a linear relationship for such data, a CART model would
be overly branched. This issue may be overcome with the M5 algorithm, whose models can be
seen as a combination of LRM and CART models. Algorithmically, M5 differs from CART in the
error metric, the complexity criterion, and the pruning procedure. If the M5 models are not overly
branched, they are easy to understand similar to the LRM and the CART models, otherwise it might
become more difficult to understand the many separate subspaces and the effects of the independent
variables. Finally, Cubist extends M5 by introducing a boosting-like approach and creating multiple
trees whose predictions are aggregated. Furthermore, Cubist introduces an instance-based correc-
tion to take the training data into consideration for the prediction of unseen data. These extensions
enable very powerful and complex models, however, this hinders the interpretability of the models
significantly.

6.3.2.6. Overview

To summarize the evaluation results of the previous sections, Table 6.1 shows a compact overview
of the regression techniques and their evaluation across the different aspects. Since the absolute
evaluation also depends on the training data, the overview is to be understood as a ranking with

70

6.3. Regression Model Selection

Table 6.1.: Evaluation Overview of Regression Techniques on a Relative 5-Point Scale

Model Creation / Prediction Time Optimization Model
Technique Evaluation Time Overhead Complexity

LRM 88888 88888 — 88888

LRM w/ IA 88889 88889 — 88888

MARS 88888 88889 88889 88889

MARS w/ IA 88899 88999 88899 88999

CART 88888 88888 88888 88888

M5 88899 88889 88889 88889

Cubist 88899 88889 89999 89999

relative scores on a 5-point scale, where more points indicate a better score. This evaluation can
be used as a quick and an initial assessment of the regression techniques and, if required, can be
refined with available training data to obtain absolute results using our evaluation process shown in
the previous sections.

In general, LRM can be considered a simple and fast technique that does not require parameter
optimization. Another simple and fast technique is CART, which can be quickly optimized. A
more computationally expensive technique is MARS, especially MARS models with interaction
terms can grow large. Similar, M5 models can be relatively simple and fast to create. Its extension,
however, Cubist can grow significantly complex and is the most computationally expensive of the
considered techniques to optimize.

Aside from the considerations that the regression techniques have an overhead to create an op-
timized model with a certain complexity, the key factor is the prediction error and the ability to
generalize from observations, which is, however, dependent on the training data at hand and cannot
be evaluated independently. For example, more complex relationships are more likely to be ade-
quately captured by more complex regression techniques. Still, the overview in Table 6.1 is used as
a basis guiding the regression model selection process presented in the next section.

6.3.3. Process for Regression Model Selection

Guided by the analysis in the previous sections, we define a process for regression model parame-
terization and selection. The process is illustrated in Figure 6.6 and is comprised of the following
steps:

1a. Relative Ranking with Prepared Data

For a quick or an initial assessment, the relative ranking shown in the previous section with
the prepared data can be used as a criterion to evaluate the regression techniques. The ranking
is created with representative and real measurement data and sufficient to characterize the
computational cost and complexity of the regression techniques.

71

6. Creating Regression Analysis-based Models with Optimal Parameterization

Model Selection

A priori Regression
Technique Filtering

A posteriori Regression
Technique Filtering

Regression Technique
Optimization

Regression Technique
Ranking by

Generalization Error

Qualitative
Constraints

Trade-off
Constraints

Search
Configuration

Training Data

Optimization
Overhead

min:
Cubist

Example:

Model Complexity
vs.

Generalization Error
MARS

Example:

Foreach
Regression
Technique

[OR]

Relative Ranking with
Prepared Data

Absolute Ranking for
Available Data

Figure 6.6.: Model Selection Process (dashed: data flow)

1b. Absolute Ranking for Available Data

Since the absolute evaluation, such as model creation and evaluation time, depends on the
training data, the ranking approach of this chapter can be applied to available data to tailor
the selection process to a given scenario. This allows to incorporate absolute constraints in
the selection process.

2. A priori Regression Technique Filtering

From the set of candidate regression techniques, we use the evaluation and filter the techniques
that are not applicable or that do not meet a qualitative requirement. For example, if a simple
model is needed, the more complex techniques can be discarded. Furthermore, techniques
with a higher optimization overhead may be discarded to save resources required for finding
their appropriate parameterization.

3. Regression Technique Optimization

For each of the candidate regression techniques, the parameters are optimized for the training
data at hand to minimize the generalization error of the models. Since this results in usually
hundreds of regression model creations, the search configuration of the optimization algo-
rithm is used to regulate the overall number of model creations. For the evaluation, the same

72

6.4. Process for Modeling of I/O Performance in Virtualized Environments

fold (data partition) of the training data is used throughout the search as well as across the
techniques to ensure a fair comparison.

4. A posteriori Regression Technique Filtering

After the techniques are optimized and their generalization error for the given data is evalu-
ated, they can be analyzed and the quality can be compared to their characteristics to possibly
identify trade-offs. As also advised by Kuhn et al. (2013), for example, a more complex tech-
nique may be disregarded if it only provides a smaller decrease in generalization error than a
simpler technique.

5. Regression Technique Ranking by Generalization Error

The remaining techniques are ranked according to their quality, i.e., the generalization error
for the data at hand. The techniques may be post-processed, e.g., to evaluate the goodness-of-
fit of the models. Finally, the technique and its parameterization with the highest quality can
be selected.

6.4. Process for Modeling of I/O Performance in Virtualized Environments

After the more general presentation in the previous sections, in the following we elaborate on how
the regression model selection approach fits in the I/O performance modeling process. We have
automated the process to a large extent using our performance evaluation approach introduced in
Section 5.4. Shown in Figure 6.7, the process is comprised of five steps, where steps 3 – 5 are fully
automated:

1. Modeling Target Specification

First, the system environment and configuration as well as the main modeling goals are speci-
fied. In general, we consider three scenarios: A first scenario is interested in a detailed analy-
sis and evaluation of I/O performance-influencing factors, cf. Section 5.2. A second scenario
focuses on a general view of an application workload having application-specific factors. A
third scenario analyzes I/O performance interference among multiple virtual machines with
a possibly mixed setup of the previous scenarios. For the first scenario when evaluating and
modeling the I/O performance-influencing factors, we will show in Chapter 8 how such a
model is integrated into software architecture-level performance modeling approaches as part
of our big picture presented in Chapter 4. Furthermore, we demonstrate the three scenarios in
separate case studies in Section 9.

2. Measurement Space Configuration

Depending on the modeling goals and the system environment configuration, the measure-

ment space or configuration is defined. This is used to perform the measurements in the next
step, and based on it, the independent variables used in the following steps are determined as
the configuration parameters that are explored in the measurement process.

73

6. Creating Regression Analysis-based Models with Optimal Parameterization

Modeling Target
Specification

Systematic
Measurements

Measurement Space
Configuration

Regression-based
Performance Modeling

Model Selection

Independent
Variables

(Configuration)

Optimized
Regression
Technique

Automated

Generalization
error

acceptable?

NO

YESDependent
Variables

(Measurements)

Figure 6.7.: Performance Modeling Process (dashed: data flow)

3. Systematic Measurements

After the measurement space and the scenario are identified, the measurement space is ex-
plored using systematic measurements. For the exploration, we use a full factorial design. At
this point, heuristics to reduce the number of measurements, e.g., presented by Westermann
(2014), could be integrated if required. The performance metrics, e.g., response time and
throughput, are used as dependent variables in the following steps.

4. Regression Model Selection

The measurements as well as the identification of independent and dependent variables are
used as the training data for the regression model selection process, cf. Section 6.6. The se-
lection process will provide a set of optimally parameterized regression techniques with their
generalization error for the training data for each dependent variable. If the generalization
error is acceptable, the process can continue, otherwise the source of the error needs to be
identified and the process is repeated by either refining the measurement space configuration
or, if applicable, allowing more complex regression techniques.

5. Regression-based Performance Modeling

Finally, the performance models are created with the whole training data using the best re-
gression technique, where a model is created for each dependent variable.

74

6.5. Summary

6.5. Summary

In this chapter, we developed an approach to model the I/O performance in virtualized environments
with regression models in an automated process. The main idea is to choose a set of regression
techniques, optimally parameterize the techniques for the available training data, and select the
best resulting model. To this end, we first formulated the regression technique parameterization as
an optimization problem based on k-fold cross-validation. We then developed Stepwise Sampling
Search (S3), a deterministic and global search algorithm, to find an optimal parameterization. The
benefit of the S3 algorithm is that the number of evaluations and computational complexity can be
estimated in advance and adjusted using its configuration if required. Using k-fold cross-validation
as a basis, which was our evaluation criterion for the quality of regression models, we analyzed a
set of popular regression techniques for their computational overhead and complexity. The model
selection process is developed with respect to the evaluated dimensions and chooses from a set
of regression models the one with the highest quality. Finally for our I/O performance modeling
approach, we constructed the process around the model selection approach automating the steps
from i) measuring the system, to ii) optimally parameterizing and selecting a regression technique,
through to iii) modeling the system from the measurements.

One notable aspect is the number of measurements required to create a regression model. Since
the regression techniques learn the underlying structure of the measurements and create a statistical
model, many measurements are needed to cover the measurement space and the possible configura-
tions. In an ideal scenario, the measurements might be provided by the system manufacturer when
the hardware infrastructure is developed. An alternative approach to creating the regression models
is explicitly modeling the I/O performance of the considered environment, which is the goal of the
next chapter. We will show in the following chapter how a complex environment can be analyzed
and captured in queueing theory-based models that require more manual effort at first, but allow for
reuse of the models with fewer measurements required for model calibration.

75

7. Using a Tailored Process for Queueing Theory-based

Modeling of I/O Hardware and Scheduling Aspects

The previous chapter demonstrated how we optimally learn the I/O performance in virtualized envi-
ronments from training data using statistical regression analysis. While this approach benefits from
its high degree of automation, the caveat of such statistical modeling approaches is that they require
a potentially large number of measurements as training data – for every modeled system. To not
solely rely on the regression analysis-based models, we also use a queueing theory-based model-
ing approach to capture the I/O performance in virtualized environments. Such models require a
higher amount of manual effort and expertise for their creation, but provide a deeper understand-
ing of the modeled environment and higher reusability by recalibrating the model parameters if the
performance in a similar system environment should be captured.

In this chapter, we present a general process tailored to virtualized environments for creating I/O
performance models using queueing theory. The specific challenge is to cope with the increasing
complexity of the system environment and, despite limited monitoring possibilities, yet to create
practical and sufficiently accurate I/O performance models such that the models are able to abstract
from the system details. We apply our process and show step-by-step how we use it to model
our reference system environment and capture the I/O performance-relevant aspects using only few
queueing stations in a queueing Petri net (QPN) model. The key idea is to create I/O performance
models using the QPN formalism by observing the I/O performance with measurements and match-
ing the observations to the performance-relevant factors of the system environment to capture them
in the model. Overall, the process is demonstrated in a representative environment, but not limited
to specific hardware or software.

Before we introduce our approach, in Section 7.1 we first highlight the scientific challenges of the
chapter as well as the specific challenges when creating a queueing model of the I/O performance
in virtualized environments. We then propose a general, three-phase methodology in Section 7.2
that we use for performance modeling. As part of our methodology, we revisit our reference sys-
tem environment in Section 7.3 with a focused analysis highlighting the model-relevant aspects
of the environment. Section 7.4 and Section 7.5 constitute the main part of this chapter apply-
ing our methodology to the system under study to create queueing models capturing the hardware
and scheduling aspects, respectively, using the QPN formalism. The prediction accuracy achieved
with our modeling approach is evaluated in Section 7.6. The chapter concludes with a summary in
Section 7.7.

77

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

7.1. Scientific Challenges

The scientific relevance of this chapter is reflected by the publications (Noorshams et al., 2013d;
Noorshams et al., 2014c) and the theses we supervised (Rostami, 2012; Rostami, 2014), on which
this chapter is based. More specifically, we address the following scientific challenges in this chap-
ter:

Challenge 1 — What is an appropriate abstraction level for the I/O performance model?

Finding a good trade-off between complexity and model accuracy is important. On
the one hand, too fine-grained models might be difficult to create and calibrate in
different environments. On the other hand, too coarse-grained models might be
insufficient to predict the performance accurately. As indicated, the abstraction
level is also reflected by the required calibration parameters of the model. If there
are detailed system parameters and monitoring mechanisms required, for example,
the model becomes more complex and this suggests that the model does not abstract
enough from specific details.

Challenge 2 — What is the process to create a queueing theory-based model of I/O performance in

virtualized environments?

In the literature, there are many high-level guidelines how to create a queueing
model in general (e.g., Menascé et al., 1994). However, such guidelines are usually
relatively abstract to be domain-independent and provide limited insight how to
address the specific problem of creating an I/O performance model in virtualized
environments, where there is a gap between the increasing complexity of the system
environment and the limited monitoring possibilities that are both practically and
technically feasible. Here, the challenge is to provide a reproducible, step-by-step
process how to tackle this problem and create the I/O performance models.

Challenge 3 — How can the I/O performance model be created independent from specific hardware

environments or monitoring tools?

Different vendors employ different virtualization architectures as well as monitor-
ing tools with different granularity, details, and observed metrics. To maximize the
applicability of our work, it is important not to depend on certain vendors and be
independent from specific hardware and software as otherwise the approach might
be limited to a specific type of environment.

Using these challenges as a basis, we investigate and demonstrate the following three hypotheses
along this chapter:

78

7.2. Methodology

H1: We can create queueing models that require a small amount of calibration parameters and we
can calibrate the models using end-to-end response time measurements only.

H2: We can create queueing theory-based models of I/O performance in virtualized environments
in an iterative process.

H3: We can realize the model building process without requiring in-depth or system-specific mon-
itoring tools.

7.2. Methodology

Creating explicit, queueing theory-based I/O performance models in virtualized environments is a
non-trivial task. The systems employed in such an environment are typically comprised of multiple
physical tiers and even more logical abstraction layers. At the same time, it is often impractical and
usually impossible to monitor the entire system environment and the activities inside the layers in
full detail.

In this section, we present a step-by-step methodology tailored to the specific problem of I/O
performance modeling in virtualized environments. The goal is to provide a reproducible approach
for creating the I/O performance models. The main concept is a systematic, iterative process that
starts from a simple model and extends it stepwise to capture more and more application scenarios.
We will later employ our methodology and demonstrate how it can be used by creating QPN models
of our reference system environment. We use the QPN formalism because of its expressive power
combining queueing models with Petri net models (cf. Section 3.3). Our three-phased methodology
is illustrated in Figure 7.1, where the phases are depicted as gray areas, and is based on established
approaches from Menascé et al. (2004) and Bolch et al. (2006). After a system environment analy-
sis and a planning phase, we create an initial model that we iteratively extend to account for more
complex scenarios. Each iteration follows the common generic steps in classical performance engi-
neering comprised of performance model creation, calibration, and validation (cf. Kounev, 2006;
Menascé et al., 2000; Menascé et al., 2004).

The first phase of our methodology comprises a system environment analysis. We analyze the
system setup and identify the performance-relevant system aspects that need to be captured in the
model. Typically, these comprise hardware resources, e.g., storage tiers, as well as logical resources,
e.g., I/O schedulers within the layers along the path from the application to the physical storage. The
phase concludes with deriving an appropriate workload characterization.

In the next phase, we plan the creation of the queueing models and define the iterations in the
process describing the workload scenarios that should be captured in the models. For the initial
iteration, we identify the minimal workload scenarios that should be included in the model as a
start. Based on the identified workload scenarios described in the iterations, we define the request
classes of the model. Typically, different request types (e.g., read or write requests) as well as
further workload properties (e.g., sequential and random requests or requests from different virtual
machines) are mapped to different classes.

79

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Identification of
Performance-Relevant

System Aspects

Analysis of
Goodness-of-Fit

Model
acceptable?

NO

Identification of Request
Classes

Validation of Model

Model valid?

YES

Refinement of Topology
and/or Request

Classes

Determination of Service
Times

Determination of Service Times
Foreach
Queue

Determination of
Service Time
Distribution

Determination of
Server Characteristics

Phase 1:

Extension of Workload
Scenarios

Model
finished?

YES
NO

YES

Identification of Minimal
Topology

Refinement of Topology
and/or Request
Classes (revise)

NO

Identification of Minimal Topology

Identification of
Number of Queues

Identification of
Network Structure

Identification of Queue
Characteristics

Identification of
Topology Type

System Setup

Phase 3:

Workload Characterization

Model Creation Plan Identification of Minimal
Workload Scenarios

Phase 2:

Refinement of Topology and/or Request Classes

Analysis of Scenario

Propagation of
Changes

Refinement of
Topology

Refinement of Request
Classes

«describes»

«describes»

«describes»

System Environment
Analysis

Planning

Iterative Model
Creation

Figure 7.1.: Performance Model Building Methodology in Three Phases

80

7.3. System Environment Analysis

Finally in the third and main phase, we iteratively create and calibrate the performance model.
Based on the minimal workload scenarios and the resulting performance-relevant resources that are
involved in their processing, we create an initial QPN model topology. This requires to identify
the topology type (i.e., open or closed model), the required queues and their characteristics (e.g.,
the capacity and scheduling strategy), and the connection and routing between the queues (i.e.,
the transitions and incidence functions in the model). For each queue, the scheduling strategy is
determined either empirically or based on heuristics.

After the structure of the QPN model is created, the model is calibrated by quantifying the ser-
vice times of each request type at the queueing places. This requires to estimate the service time
distribution as well as the server characteristics of the queues, e.g., number of load-independent
or load-dependent service stations. To conclude the iteration, the goodness-of-fit of the resulting
QPN model is analyzed by comparing the model results with the measurements used to calibrate
the model. If the model fits sufficiently well to the measurements, it can be extended to cover
further workload scenarios and respective resources involved in their processing. Such extensions
might require to refine the model topology and the request classes, which in turn might require to
re-calibrate the model.

Finally, we validate the performance model by evaluating the prediction accuracy of the model
for workload scenarios that have not been used during the calibration of the model. The workload
scenarios typically include both interpolation and extrapolation scenarios using workload configu-
rations within and beyond the calibrated ranges, respectively. We stop if the model is valid, i.e.,
if the performance predictions by the model reflect the measurements on the real system within a
certain acceptable margin of error (Kounev, 2006; Menascé et al., 2004). We consider the model
valid if the relative prediction error is below 30 % (cf. Menascé et al., 2000). Otherwise, the model
needs to be analyzed and refined to better match the system behavior. If the QPN model is changed,
it needs to be re-calibrated and re-validated.

7.3. System Environment Analysis

We next apply our methodology introduced in the previous section to create I/O performance models
of our reference system environment introduced in Section 4.2 considering the generic performance-
influencing factors identified in Section 5.2. To recall, our reference environment consists of the
mainframe IBM System z and the storage server IBM DS8700, cf. Figure 4.2. In this section,
we highlight the system setup and the aspects relevant for our I/O performance building process.
Furthermore, we derive the workload characterization to consider in the next sections during model
building.

7.3.1. System Setup

In our system environment, the storage system DS8700 contains 2 GB non-volatile cache (NVC) and
50 GB volatile cache (VC) and the data is stored in a RAID-5 array comprised of seven disks. Cal-

81

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

ibration and validation measurements are obtained in z/Linux VMs equipped with multiple shared
cores and 4 GB of memory. In order to measure and model the I/O performance and not, e.g., the
operating system cache and memory performance, we use direct I/O (using the O_DIRECT flag, cf.
open – Linux man page n.d.) to focus our measurements on the storage performance.

For our calibration and validation measurements, we use the Flexible File System Benchmark
(FFSB) (n.d.) because of its fine-grained configuration possibilities allowing the evaluation of spe-
cific workload effects on the I/O performance. FFSB runs at the application layer and measures the
end-to-end response time covering all logical layers and physical tiers beginning from the applica-
tion and operating system layers to the physical storage at the storage system. For any configuration,
the measurements of FFSB run in two phases. First, a set of 16 MB files is created until the target
file set size is reached. Then, the required workload threads are started and they begin to repeat-
edly issue the specified read or write requests to the previously created file set. The requests of
each workload thread are comprised of 256 subsequent read or write requests of a specified size to
a randomly chosen file within the file set. If the access pattern of a request type is configured to
be sequential, the subsequent requests of each workload thread are directed to consecutive block
addresses within the file. Each workload thread issues a request after the previous one has been
completed. For any configuration of the measurements with FFSB, we use a measurement time of
five minutes. During this time, the benchmark collects multiple millions of measurement samples,
typically more than two million.

7.3.2. Identification of Performance-Relevant System Aspects

The performance-relevant aspects that need to be captured in the QPN model can be classified into
two groups, physical hardware aspects, which process the requests and cause request queueing,
and logical scheduling aspects, which affect the sequence in which the requests are processed. The
hardware aspects of our system environment that should be represented in the model are the physical
tiers schematically illustrated in Figure 4.2. We consider the two tiers comprised of the caches of
the storage server and the RAID array.

The logical aspects can be identified on multiple layers. More specifically, I/O request scheduling
typically occurs in the operating system I/O scheduler, the hypervisor, and the storage system. The
I/O scheduler needs to be chosen carefully as the default schedulers are not necessarily best suited
to virtualized environments (cf. Boutcher et al., 2010). Current understanding is to minimize the
scheduling overhead at the operating system-level (cf. Ling et al., 2013). Instead, it is more efficient
to use the hypervisor and storage system scheduling algorithms as they are more aware of both the
sources of the overall I/O requests as well as the physical layout and topology of the storage tiers.
Often, even the hypervisor leaves the scheduling of requests to the storage system because of the
aforementioned reasons, which is also the case in our system environment.

Therefore, we split the QPN model building into two parts in the next sections, we model the
physical hardware tiers in a homogeneous model first, and then extend it to the logical scheduling
aspects of different request types and applications in a heterogeneous model.

82

7.4. I/O Performance Models of Storage Hardware Aspects

Workload Characterization

Intensity Requests

Type Pattern Size

Locality

Figure 7.2.: Workload Characterization (simplified from Figure 5.1)

7.3.3. Workload Characterization

From the analysis of the performance-influencing factors in Section 5.2, we can derive the general
workload characterization as detailed in Section 5.3, which is summarized in Figure 7.2. In general,
we characterize the workload along three general dimensions: the intensity of the workload, the
requests the workload issues, and the locality of the workload. The workload intensity is account-
able for the contention at the storage system, i.e., how many requests are competing for the storage
resources. A given request is further characterized by the type of the request (i.e., read or write
requests), the access pattern (i.e., sequential or random requests), and the request size. The locality
of requests affects the storage caching effectiveness and can be estimated by the overall amount of
data that is accessed in the workloads in combination with the access pattern of the requests. As-
suming an approximately uniform distribution of requests among the files (or a dominant subset of
the files), more specifically, that the requests address the data randomly, the amount of data affects
the requests that can be served from cache and from the RAID array. A sequential access pattern of
requests can negate this effect by allowing the storage system to anticipate the requested data and
staging the data to cache before they are requested.

7.4. I/O Performance Models of Storage Hardware Aspects

After analyzing the system environment, in this section we apply our performance model building
methodology to our system environment following the steps shown in Figure 7.1. In this section,
we are first focused on modeling the physical hardware aspects of the system environment in ho-
mogeneous, i.e., single class, models. We will in the next section extend our model considering
the scheduling aspects and create a heterogeneous model capturing the scheduling effects between
different types of requests and VMs. For model solving, we use a simulation-based approach.

7.4.1. Planning

Before creating the performance models, we start planning the model building process. We develop
a model creation plan to describe the iterations where we begin with a simple QPN model that is
stepwise extended. Based on the results from the previous phase in Section 7.3, we follow the two-
step model creation plan shown in Figure 7.3 to create the I/O performance models that capture
the performance-relevant system behavior. We analyze the storage system tiers by evaluating the
effect of the overall size of data accessed in our workloads on the observed performance. Initially,
we only model the cache resource. We consider read and write as well as random and sequential

83

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Iteration 1
 Modeled Resources:
 - Cache Resource
 Workload Scenarios:
 - Read, Write
 - Random, Sequential
 - Variable Size

Iteration 2
 Modeled Resources:
 - Cache Resource
 - RAID Resource
 Workload Scenarios:
 - Read, Write
 - Random, Sequential
 - Variable Size

Figure 7.3.: Model Creation Plan for I/O Performance Models of Hardware Aspects

requests. We then add the RAID resource to the models and extend the workload scenarios of the
previous step by increasing the overall size of data accessed in the workloads, hereby decreasing
the locality of the workload. In every step, we create the QPN topology and stepwise scale the
workload intensity, i.e., the number of clients (threads) configured repeatedly issuing the requests,
for calibration.

To create the initial model, we first consider the minimal workload scenarios. We begin with a
fixed request size, which we vary in the next step, and only distinguish the request type and the
access pattern. To analyze the behavior of the cache resource, we configure the set of files accessed
by the workload (i.e., the file set) to 1.25 GB so that it fits in the caches completely. Thus, for the
models in this section, we use the following four classes to encode the requests of a given size:

• Random read requests, rr

• Sequential read requests, rs

• Random write requests, wr

• Sequential write requests, ws

7.4.2. Cache Resource Model

We begin creating the queueing model of the storage system by capturing the performance of the
cache resource. More specifically, in this section we describe the first iteration of our model creation
plan.

As network topology type, we use a closed model as indicated in Figure 7.4. In general, closed
models are the most popular for software systems, since the interactions between application layers
are subject to admission control or finite threading limits (W. Wang et al., 2013). The Clients

queueing place with infinite server queue and service time equal to the client think time represents
the arriving requests at the system. The Storage System subnet place captures the I/O performance
in a separate queueing Petri net. Initially, this subnet consists of one queueing place with unlimited

capacity and First-Come-First-Served (FCFS) scheduling strategy representing the cache resource,
cf. Figure 7.5. The places are connected using immediate transitions that fire as soon as they are
enabled.

84

7.4. I/O Performance Models of Storage Hardware Aspects

Clients Storage System

Figure 7.4.: General QPN Model

Storage System

Cache

Figure 7.5.: Cache Resource Model

We model the read request and write request service times using gamma distributions whose
parameters (kξ ,θξ) are estimated from the measurements for each request class ξ . To estimate
the standard deviations σξ , we measure the system under low workload intensity with one thread.
Then, we scale the load up to 100 threads in steps of 10 for both read and write requests and
vary the request size using 4 KB, 8 KB, 16 KB, 32 KB, and 64 KB requests, i.e., we use the set
{(tξ ,sξ) | ξ ∈ {rr,rs,wr,ws}; tξ = 10,20, . . . ,100; sξ = 4 KB,8 KB,16 KB, . . . ,64 KB}, where tξ
and sξ are the number of requests and the request size, respectively, as configuration. Since the
requests are served from the random access cache resource, we observe that the mean response
times of random and sequential workload are approximately equal. Furthermore, we observe a
strong correlation between the number of workload threads tξ , the request size sξ , and the mean
read and write response time measurements ρm

ξ
, respectively, with coefficient of determination R2

of 0.9958 and 0.9966 for random and sequential read requests, respectively, and 0.9999 for random
and sequential write requests in the form

ρ
m
ξ
≈ ∑

i∈{0,1}
∑

j∈{0,1}
ci j t i

ξ
s j

ξ
(7.1)

= ∑
i∈{0,1}

ai t i
ξ
· ∑

j∈{0,1}
bi s j

ξ
, (7.2)

ai,bi,ci j ∈ R,

i.e., the measurements are linear in the request size sξ . Using mean value analysis (MVA), we can
estimate the mean read and write request service time µξ (sξ), respectively, for a given request size
sξ using the arrival theorem

ρ
m
ξ
(tξ) = µξ [1+ t̄(tξ −1)], (7.3)

85

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

where t̄(tξ −1) is the average number of threads found in the queue by an arriving thread. Applying
MVA to our topology and solving for µξ , it holds that

µξ =
ρm

ξ
(tξ)

tξ
. (7.4)

We measure the read and write response times, respectively, for request sizes sξ of 4 KB, 8 KB,
16 KB, 32 KB, and 64 KB with a given value of tξ and fit the mean service times depending on the
request size:

µξ (sξ) := ∑
i∈{0,1}

ci si
ξ
, ci ∈ R. (7.5)

Then, the parameters of the respective gamma distribution of read and write requests, respectively,
are simply

kξ :=

(
µξ

σξ

)2

and θξ :=
σ2

ξ

µξ

. (7.6)

To evaluate the goodness-of-fit, Figure 7.6 shows the relative calibration error between the queue-
ing model and the measurements on the system when the number of threads varies between 10 and
100 by increments of 10. For larger read requests (16 KB, 32 KB, 64 KB), the mean error (indi-
cated by small crosses) is less than 7.5 %. For smaller read requests (4 KB, 8 KB), the error is up to
approximately 18 %. This is because we use the method of least squares (cf. Section 6.3.1), which
minimizes the absolute squared error, to fit the measurements to Equation (7.5), thereby reducing
the relative error in these scenarios for larger request sizes at the cost of increased relative errors
for smaller request sizes. However, since the measurements are in the range of a few milliseconds,
the absolute calibration error for these request sizes is very small. For write requests, fitting the
measurements results in very small deviations and the calibration error is always less than 2.5 %.

7.4.3. Cache and RAID Resource Model

We next extend the cache resource model and describe the second iteration of our model creation
plan in which the RAID system is integrated into the queueing model. The goal is to account for
scenarios in which the requested data cannot be fully held in the cache. To analyze the behavior
of the RAID resource, we configure the file set to be significantly larger (up to 180 GB) than the
cache size so that the RAID system needs to be accessed frequently. Since the type of a request has
an impact on the QPN topology and the service times, we show the extension stepwise for every
request class.

86

7.4. I/O Performance Models of Storage Hardware Aspects

Random Sequential

0

5

10

15

20

25

0.0

2.5

5.0

7.5

10.0

R
ead

W
rite

4 8 16 32 64 4 8 16 32 64

Request Size (KB)

E
rr

or
(%

)

Figure 7.6.: Calibration Error for the Initial Model

7.4.3.1. Random Read Requests (rr)

Random read requests are served from the cache if the requested data is available, otherwise they are
served from the RAID system and the data is stored in the cache for future accesses. We thus extend
the topology by a second queueing place with unlimited capacity and FCFS scheduling strategy
representing the RAID resource. Initially, the requests arrive at the cache queue. After being served
by the cache, two alternatives are possible for each request: Either the request arrives at the RAID
queue with probability p1 or the request is completed and leaves with probability p2 = 1− p1. The
topology is illustrated in Figure 7.7.

Recall that read requests are served by the 50 GB VC if possible. The exact cache hit rate of
the workload, however, cannot be easily estimated because of the complex pre-fetching algorithm.
Therefore, to estimate p1 and p2, we scale the workload up to 100 threads in steps of 10 and the
file set size between 80 GB and 180 GB in steps of 20 GB. We observe two different situations,
one for a number of threads between 1 and 30, and one for a number of threads between 40 and
100. If the number of threads is between 1 and 30, we observe that the response times follow two
clearly separate distributions, one for requests served by the cache and one for requests served by
the RAID array. The requests served by the cache can be identified by response times close to the
response times when having a fully cached file set. Separating the distributions and calculating the
relative number of requests for the two distributions leads to (p1, p2) of (48.32 %,51.68 %) on
average with a standard deviation of 9.64 %. If the threads are between 40 and 100, however, we
observe a significant change in the two distributions. If we apply the separation strategy as above,
we obtain for p1 a value of 99.91 % on average with a standard deviation of 0.03 %. We explain this

87

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Cache RAIDClients

p1

p2

p1 + p2 = 1

Figure 7.7.: Cache and RAID Resource Model for rr

behavior with the increased contention and the cache pre-fetching algorithm as the storage system
tries to anticipate future requests and pre-fetches data from the RAID array to the cache. If the load
is higher, which is the case for more than 30 threads, the requests served by the cache and RAID
resources are no longer clearly distinguishable solely by the distribution of the response times, thus
resulting in such a dominant value for p1.

Before estimating the service times, we analyze the impact of the request locality in a preparation
step. Therefore, we scale the file set size between 60 GB and 180 GB in steps of 20 GB such that
it exceeds the volatile cache size. We then evaluate the mean response times for 50 and 100 threads
with request sizes of 4 KB and 8 KB. For each number of threads and request size combination,
interestingly, we observe a strongly natural logarithmic correlation between the file set size and the
mean response time. For 50 threads, we observe an R2 of 0.9902 and 0.9932 for 4 KB and 8 KB
requests, respectively. For 100 threads, we observe an R2 of 0.9803 and 0.9957 for 4 KB and 8 KB
requests, respectively. To reflect this in the model, we include the file set size in the service times
logarithmically as part of the next step.

To estimate the service times of the second queue, we measure the response times under low
workload intensity and scale the intensity stepwise. We again model the second server with gamma-
distributed service times. For the calibration, we distinguish between the two situations explained
above when discussing the topology. More specifically, we distinguish between case S1, where
the number of threads is less than or equal to 30, and case S2, where the number of threads is
greater than 30. We analyze the response time distributions for number of threads trr , request sizes
srr , and file set sizes frr represented by the tuple set {(trr ,srr , frr) | trr = 10,30,50,80,100; srr =

4 KB,8 KB,16 KB, . . . ,64 KB; frr = 80 GB,100 GB, . . . ,160 GB}. Note that the file set cannot be
fully cached leading to regular cache misses. We separate the response time distributions in cache
and RAID array response times. For each case S1,S2 and each queue, we parameterize the mean
service times µc

rr
, µR

rr
at the cache and RAID queue, respectively, with the file set size frr and fit the

mean service times to the cache and RAID response time measurements ρ
m,c
rr ,ρm,R

rr such that

ρ
m,∗
rr
≈ ∑

i∈{0,1}
∑

j∈{0,1}
∑

k∈{0,1}
ci jk t i

rr
s j

rr
· ln(frr)

k; ci jk ∈ R. (7.7)

To simplify the service time parameterization, we prune insignificant terms, i.e., if the p-value of a
term in the parameterization is greater than 0.05. We obtain R2 values of 0.9327, 0.9937, 0.9951,
and 0.9917 for the cache(S1), cache(S2), RAID(S1), and RAID(S2) queues and case Si, respectively.

88

7.4. I/O Performance Models of Storage Hardware Aspects

Random Sequential

0

20

40

60

0

5

10

15

20

R
ead

W
rite

4 8 16 32 64 4 8 16 32 64

Request Size (KB)

E
rr

or
(%

)

Figure 7.8.: Calibration Error for the Refined Model

Evaluating the goodness-of-fit, Figure 7.8 shows the calibration error for 10, 30, 50, 80, and 100
threads and file set sizes between 80 GB and 160 GB in steps of 20 GB. The mean calibration error
is between 8.01 % and 10.21 % depending on the request size, thus, indicating a good fit.

7.4.3.2. Sequential Read Requests (rs)

To determine the topology for sequential read requests, we analyze the effect of the file set size
similar to the previous section and scale the file set size between 1.25 GB and until 160 GB by
doubling the size. We observe that the requests appear to be almost entirely served by the storage
server cache because of the effective pre-fetching algorithm. For large file set sizes significantly
exceeding the storage cache, we observe only a slight decrease in performance due to some cache
misses. Therefore, we model the system using two cases S1 and S2 representing the cache without
pre-fetching (i.e., when the file set is fully cached) and the cache with pre-fetching and frequent
RAID array accesses (i.e., when the file set size exceeds the cache size significantly), respectively.
We use two separate queueing places to represent the cases each. The QPN topology is illustrated
in Figure 7.9.

To parameterize the model, we analyze the mean response times similar to the previous analysis
and use the tuple set {(trs,srs, frs) | trs = 10,30,50,80,100; srs = 4 KB,8 KB,16 KB, . . . ,64 KB; frs =

80 GB,100 GB,. . . ,160 GB}, where trs is the number of threads, srs is the request size, and frs is the
file set size.

The cases S1 and S2 apply for cached data and data exceeding the cache size significantly, re-
spectively. For the queueing place in case S1, we fit the mean service time of the server µ

S1
rs to

89

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Cache

Cache with
RAID access

Clients

S1

S2

xor

Figure 7.9.: Cache and RAID Resource Model for rs, wr

the measurements ρm
rs

in the form shown in Equation (7.1). For the queueing place in case S2, we
account for the cache misses due to the file set size frs and fit the mean service time of the server
µ

S2
rs to the measurements ρm

rs
such that:

ρ
m
rs
≈ ∑

i∈{0,1}
∑

j∈{0,1}
ci j t i

rs
s j

rs
+ c · ln(frs); c,ci j ∈ R. (7.8)

Again, we prune insignificant terms and obtain R2 values for the queues in cases S1 and S2 of 0.9962
and 0.9954, respectively.

For the measurement set used during calibration, we obtain an error as shown in Figure 7.8.
While for 4 KB requests, the mean calibration error is 17.56 %, for larger requests, the error is less
than 10.84 %. Since the absolute calibration error constitutes only a fraction of a millisecond, we
can conclude that the model exhibits a reasonable fit.

7.4.3.3. Random Write Requests (wr)

Unlike read requests, write requests are always served by the cache and stored asynchronously on
the RAID array. We analyze this effect similar to the previous sections and measure the response
times of random write requests while scaling the file set size between 1.25 GB and 160 GB by
doubling the file set size stepwise. We observe that the cache is able to buffer the requests for a
file set size of up to 5 GB without affecting the performance. If the file set size is exceeds the
cache size further, the mean response time increases logarithmically. This effect is similar to the
observed effect for sequential read requests. Therefore, we use the same QPN topology as depicted
in Figure 7.9. For random write requests, the cases S1 and S2 define cached data (i.e., the file set
size is up to 5 GB) and uncached data with frequent destaging (i.e., the file set size is greater than
5 GB), respectively.

For the service time estimation, we use the tuple set {(twr ,swr , fwr) | twr = 10,20,. . . ,100; swr =

4 KB,8 KB,16 KB, . . . ,64 KB; fwr = 1.25 GB,2.5 GB, . . . ,160 GB}. We parameterize the mean
service times of the queue in case S1 as shown in Equation (7.1). For the queue in case S2, we use
Equation (7.7). For both, we again prune insignificant terms. For the queues in cases S1 and S2, we
obtain R2 values of 1 and 0.993, respectively.

90

7.5. I/O Performance Models of Scheduling and Interference Aspects

Figure 7.8 shows a very good fit of the model to the calibrated measurements with an average
error of 5.89 % for 4 KB requests and less for larger requests.

7.4.3.4. Sequential Write Requests (ws)

Repeating the analysis of the previous section for sequential write requests, we observe that the
requests are almost completely buffered by the cache even when we scale the file set size up to
160 GB. Therefore, we keep the QPN topology for sequential write requests as shown in Figure 7.5.

We calibrate the system using a number of threads tws , request sizes sws , and file set sizes fws

represented by the tuple set {(tws,sws, fws) | tws = 10,30,50,80,100; sws = 4 KB,8 KB,16 KB, . . . ,
64 KB; fws = 1.25 GB,2.5 GB, . . . ,160 GB} and fit the service times to the measurements of the
similar form shown in Equation (7.8). We obtain an R2 of 1.0000.

Overall, we obtain an almost perfect fit with a mean calibration error for each request size of up
to 2.55 %, cf. Figure 7.8.

7.4.4. Prediction Process

After the models are created, Figure 7.10 illustrates the process when using the homogeneous QPN
models for prediction. First the workload scenarios as well as the caching behavior needs to be
determined to use the relevant model. Then, the prediction scenario has to be specified, which is
comprised of the parameters used as input for the model.

The workload scenario can be read or write and sequential or random workload. The caching be-
havior is derived by the file set size. The empirically determined thresholds are 60 GB and 5 GB for
read and write workloads, respectively. If the workload scenario comprises random write requests,
for example, the relevant model is the wr model as illustrated in Figure 7.9 with the respective ser-
vice time parameterization for write requests. Furthermore, case S1 applies for the QPN if the file
set size is less than or equal to 5 GB; case S2 applies otherwise.

The parameters used as input for the model are the number of clients, the request size, and the
overall size of the file set accessed by the clients. The model then predicts the mean response time
for the specified prediction scenario.

7.5. I/O Performance Models of Scheduling and Interference Aspects

In this section, we use the homogeneous QPN model as a starting point and iteratively extend
it by applying our performance model building methodology shown in Figure 7.1 to account for
scheduling effects among mixed workloads and multiple VMs with differing workload intensities.
The goal is to predict the performance of mixed applications as well as to estimate how co-located
workloads affect the performance of one another causing I/O performance interference. Before
creating the model, we begin with a preparation step.

91

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Determination of Workload Scenario

Read- or Write-
Dominant Workload?

Random or Sequential
Workload?

Determination of Caching Behavior

Read:
File Set > 60 GB?

Write:
File Set > 5 GB?

Specification of Prediction Scenario

Specify
Number of Clients

Specify
Request Size

[OR]

Specify
File Set Size

Determination of Relevant Model

Specification of Model Input Parameters

Figure 7.10.: Prediction Process for I/O Performance Models of Hardware Aspects

7.5.1. Planning

We again plan creating the performance models in multiple iterations as preparation for the mod-
eling process. Building upon the model of the previous section, we stepwise extend the model to
integrate the scheduling aspects of the environment across different request types as well as dif-
ferent VMs. The steps of the iterations are illustrated in Figure 7.11. Since our goal is to model
the scheduling aspects between different types of requests, we can focus the model on capturing
the cache resource of the storage system. Consequently, we do not need to distinguish between
random and sequential workload as revealed during the model creation of the cache resource in the
previous section. We first model mixed read/write requests of a fixed size from one VM. Then, we
extend the model to account for workloads on two VMs. In the final step, we relax the request size
restriction and account for different read and write request sizes. For each iteration, we create the
QPN topology and scale the workload intensity stepwise to estimate the required parameters for
calibration.

For the minimal workload scenario in the initial iteration, we consider read and write clients
issuing random requests of a fixed size. We configure the set of files so that it fits into the caches.

92

7.5. I/O Performance Models of Scheduling and Interference Aspects

Iteration 1
 Modeled Resources:
 - Cache Resource
 Workload Scenarios:
 - One VM
 - Read & Write
 - Random
 - Fixed Size

Iteration 2
 Modeled Resources:
 - Cache Resource
 Workload Scenarios:
 - Two VMs
 - Read & Write
 - Random
 - Fixed Size

Iteration 3
 Modeled Resources:
 - Cache Resource
 Workload Scenarios:
 - Two VMs
 - Read & Write
 - Random
 - Variable Size

Figure 7.11.: Model Creation Plan for I/O Performance Models of Scheduling Aspects

Overall, we distinguish the following aspects in different request classes having all combinations as
a given request class:

• VM of the request

• Type of the request (read or write)

• Read and write request size

7.5.2. Heterogeneous Workload Model

The starting point for our heterogeneous I/O performance model is the homogeneous, single-class
queueing model as extracted in Section 7.4 and shown in Figure 7.4 and Figure 7.5. In this section,
we extend the QPN model to account for performance and interference effects of mixed read/write
requests, where we consolidate read and write workloads with different workload intensities, i.e.,
number of threads. We use the service times estimated as described in Section 7.4.2 and extend the
network topology of our initial QPN model.

The workload that is used to create the model consists of different numbers of read and write
threads tr and tw within one VM. Both are varied between 10 and 50, i.e., we use the set {(tr, tw) | tξ =

10,20, . . . ,50} as configuration. At this point, we use a read and write request size sr, sw of 4 KB.
The request size restriction is relaxed at a later stage of the model building process.

As previously mentioned, the request types are distinguished using different token classes. For
the two request types, we first introduce separate client places for the tokens. When mixing the
requests, we observe that the mean response time predictions of the read and write requests are
systematically over- and underestimated, respectively, by the previous model (shown in Figure 7.5).
We account for this observation in our QPN model by assigning relative priorities α and β to the
read and write requests, respectively, during the processing of the respective request type. More
specifically, if requests of both types are waiting to be served at the storage system, a read request
is served with probability α

α+β
and similarly, a write request is served with probability β

α+β
. We

realize this priority scheduling in the model by separating the queueing place of the storage system
into a Waiting place and a Storage queueing place with a connecting transition whose modes of the
incidence function are weighted. The complete topology is illustrated in Figure 7.12. The incidence
functions of the two transitions at the storage queueing place are shown explicitly, where α and β

93

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Delay

Read Clients

Write Clients

StorageWaiting

Scheduler
+

+

α:
β: * *+

in out
in out

Figure 7.12.: QPN Model for Heterogeneous Workload

are the firing weight that the respective mode of the incidence function fires if both are enabled, and
∗ denotes a wildcard token.

To determine α and β , we search for appropriate values using our iterative parameterization algo-
rithm shown in Algorithm 3 for each configuration in our workload scenario. We iteratively search
for values for α , β to account for systematic over- and underestimations of the respective mean read
and write response times and adjust the priorities accordingly. As input to the algorithm, we use fi-
nite ranges [αmin,αmax] and [βmin,βmax] for α and β , respectively, which constitute the search space.
While the ranges may be arbitrarily large, they help to focus the search. Furthermore, the search can
be parameterized with a precision for the weights δ and a value for the acceptable error errormax.
Similarly, both values can be used to reduce the time required for the parameterization. The search
then finds values for α and β that minimize the average prediction error of the QPN model for
the given measurement data by systematically correcting the weights, more specifically, the relative
weight φ := α

β
.

To predict the performance of configurations that were not used for calibration, we need a gen-
eralization for the weights, i.e., a function for α and β depending on the workload threads tξ of
request type ξ . To build this function, we use a statistical modeling approach using Multivariate

Adaptive Regression Splines (MARS), cf. Section 3.2 and Section 6.3.1. As independent variable,
we use the quotient tr

tw
and as dependent variable, we use the relative weight φ . Lines 21 and 22

in Algorithm 3 show how α and β are obtained from φ . We use MARS models and optimize the
parameterization of the model creation using our S3 algorithm as explained in Section 6.2. For the
MARS model, we obtain the function φ(tr, tw) with

φ(tr, tw) := λ0 +
n

∑
i=1

λi hi

(
tr
tw

)
, λi ∈ R, (7.9)

where the hi are the hinge functions.
For the evaluation of the goodness-of-fit of the resulting QPN model, Figure 7.13 shows a very

good fit of the model to the calibrated measurements with an average error of the mean response
times of 3.36 % for read requests and 4.80 % for write requests.

94

7.5. I/O Performance Models of Scheduling and Interference Aspects

Algorithm 3 Parameterization of Request Weights (based on Rostami, 2014)
Configuration:
errormax← Acceptable error
[αmin,αmax] (⊆ A)← Range for the read weight
[βmin,βmax] (⊆ B)← Range for the write weight

5: δ ←Weights precision
// Measurement data:

tr, tw (∈ T)← Read and write clients
sr,sw (∈ S)← Read and write request sizes
ρm

r ,ρ
m
w (∈ P)←Mean read and write response time measurements

10: // A,B,P,S,T ⊆ R>0

Definition:
Ψ : T 2×S2×A×B→ P2

// Prediction function to predict mean read and write response times for a given
// configuration with the QPN model

15: Algorithm:
φmin← αmin

βmax

φmax← αmax
βmin

φ ← 1
2(φmin +φmax) // Pivot

errorcur← errornew← ∞

20: do
α ← bφ ·10δ +0.5c
β ← 10δ

(ρs
r ,ρ

s
w)←Ψ(tr, tw,sr,sw,α,β)

errorcur← errornew

25: errornew = 1
2

(∣∣∣ρm
r −ρs

r
ρm

r

∣∣∣+ ∣∣∣ρm
w−ρs

w
ρm

w

∣∣∣)
if errornew < errorcur then

if (ρm
r > ρs

r) and (ρm
w < ρs

w) then
φmax← φ

φ ← 1
2(φmin +φmax)

30: else if (ρm
r < ρs

r) and (ρm
w > ρs

w) then
φmin← φ

φ ← 1
2(φmin +φmax)

else
break // Exit do-while loop

35: end if
end if

while errornew < errorcur and errornew > errormax
return (α,β)

95

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Read Write

0

5

10

E
rr

or
(%

)

Figure 7.13.: Calibration Error for Heterogeneous Workload Model

Read Clients VM1

Write Clients VM1

...

Read Clients VMn

Write Clients VMn

Figure 7.14.: Client Places in Multi-VM Model

7.5.3. Multi-VM Model

We will next extend our model to reflect workloads from multiple VMs and predict their per-
formance behavior. We evaluate the interference how the consolidation of multiple workloads
affects the performance of the different requests. To calibrate the model at this point, we use
measurements from two virtual machines. We vary the number of threads of each request type
and each VM between 10 and 30 in steps of 10. More formally, we use the configuration set{(

~tr := (t j
r) j,~tw := (t j

w) j

)
| t j

ξ
= 10,20,30

}
, where j ∈ {1, . . . ,ν} and ν is the number of VMs.

The request sizes sr, sw of 4 KB are used for the request types.
We extend our topology that is illustrated in Figure 7.12 to integrate the multiple request types

of each VM into our model, each modeled as a separate tokens class. Therefore, we will replace
the read and write client places with multiple client places for each request type and each VM as
shown in Figure 7.14. As a consequence, we have multiple scheduling priorities, i.e., firing weights
~α := (α j) j and ~β := (β j) j, that define the priority of a read and write request, respectively, of VM j

to be served at the storage system.

96

7.5. I/O Performance Models of Scheduling and Interference Aspects

Read Write

0

20

40

60

E
rr

or
(%

)

Figure 7.15.: Calibration Error for Multi-VM Model

To obtain an initial estimation of the firing weights, we use the statistical model shown in Equa-
tion (7.9), where we use the aggregated number of threads tξ := ∑ j t

j
ξ

as configuration parameters

such that (α,β) = φ(∑ j t
j
r ,∑ j t

j
w) and obtain~α := (α, . . . ,α) and ~β := (β , . . . ,β). We observe in the

measurements that the mean response time of requests within a request class with more clients are
overestimated and vice versa. To account for this observation, we adjust the weights individually
for each request class using Algorithm 4 such that requests from request classes with more clients
have a higher weight. We use sorting permutation to order the weights according to the number
of the corresponding clients. Then, we reduce the weights proportionally depending on the initial
weight estimations to have a descent between the request priorities.

The resulting calibration error is summarized in Figure 7.15. For read requests, the average error
is 18.05 %. For write requests, the average error is 17.08 %. Generally, the model exhibits a good
fit to the measurements obtained using two VMs. In the evaluation, we will extrapolate the number
of VMs to evaluate the prediction accuracy of the model.

7.5.4. Variable Workload Model

Finally in the last iteration of our model building process, we will extend our model in this section
and integrate variable request sizes. We start with increasing the read and write request sizes simul-
taneously using measurements in one VM. We then relax the restriction in the next step to allow for
differing read and write request sizes. Finally, we extend the model to account for both differing
request sizes and multiple VMs.

For the calibration measurements, we use up to two virtual machines and vary the number of
threads of each request type and each VM between 10 and 50 in steps of 10 represented by the set{(

~tr := (t j
r) j,~tw := (t j

w) j

)
| t j

ξ
= 10,20, . . . ,50

}
, where j ∈ {1, . . . ,ν} and ν is the number of VMs.

The read and write request sizes sr, sw are both varied from 4 KB to 64 KB by doubling the request
sizes, i.e., we use the tuple set

{
(sr,sw) | sξ = 4 KB, 8 KB, 16 KB, 32 KB, 64 KB

}
. Since the total

configuration set is very large (56 configurations with 5 minutes measurement time each results in
more than 7 weeks of total measurement time alone), we use a subset of 60 configurations represen-

97

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Algorithm 4 Parameterization of Multi-VM Request Weights (based on Rostami, 2014)
Configuration:
~tr,~tw (∈ T ν)← Read and write clients

// Pre-calculation:
α,β (∈ A,B)← Read and write weight determined with the statistical model,

5: i.e., φ(∑ t j
r ,∑ t j

w)
// A,B,T ⊆ R>0

Definition:
πr,πw : {1, . . . ,ν}→ {1, . . . ,ν}, with πξ (~tξ) := (t

πξ (j)
ξ

) j,

such that πξ (k)< πξ (l) =⇒ t
πξ (k)
ξ

≥ t
πξ (l)
ξ

10: // Sorting permutations, i.e., π
−1
ξ

exists

Algorithm:
~α ← (ν ·α, . . . ,ν ·α)
~β ← (ν ·β , . . . ,ν ·β)
~t∗r ← πr(~tr)

15: ~t∗w← πw(~tw)
if α = β then

η ← 1
for i← 2 to ν do

if t∗r,i 6= t∗r,i−1 then
20: αi← αi−η

η++
end if

end for
for i← 2 to ν do

25: if t∗w,i 6= t∗w,i−1 then
βi← βi−η

η++
end if

end for
30: else

if α > β then
δr← α−β

ν

δw← β

ν

else
35: δr← β

ν

δw← β−α

ν

end if

ηr← ηw← 1
for i← 2 to ν do

40: if t∗r,i 6= t∗r,i−1 then
αi← αi−δrηr
ηr++

else
αi← αi−1

45: end if
if t∗w,i 6= t∗w,i−1 then

βi← βi−δwηw
ηw++

else
50: βi← βi−1

end if
end for

end if
~α ← π−1

r (~α)

55: ~β ← π−1
w (~β)

return (~α,~β)

98

7.5. I/O Performance Models of Scheduling and Interference Aspects

...

...

...

...

...
Read Clients VMi

with Request Size sr

Write Clients VMk
with Request Size sw

Figure 7.16.: Client Places in Variable Workload Model

tative for the configuration space to limit the time required for calibration. More configurations can
be considered iteratively as required to further refine the model and improve the prediction accuracy.

The topology of the QPN model is extended similar to the previous extensions to integrate the
different request types of each VM distinguishing the request classes and request sizes with separate
tokens classes. We use multiple client places, one for each request type and each VM as illustrated
in Figure 7.16. For the scheduling of the request classes, we have firing weights ~α := (α j) j and
~β := (β j) j that define the priority of a read and write request, respectively, of the j-th VM at the
storage system.

As mentioned above, we first analyze measurements where sr
sw

= 1 and ν = 1 using the model
obtained in the previous section and calibrate the model with service times obtained as described in
Section 7.4.2. Interestingly, what was well-suited for the homogeneous model does not fit well for a
mixed workload and we observe a systematic overestimation for increasing request sizes, which is
especially significant for read requests. More specifically, the request size and the prediction error
correlate logarithmically:

ρs
ξ
−ρm

ξ

ρm
ξ

≈ ∑i∈{0,1} cξ ,i · ln(sξ)
i, cξ ,i ∈ R. We explain this observation with

the internal optimizations in the storage system and the fact that two different physical caches are
involved in the processing of the requests. The read requests affect only the volatile cache, while
write requests affect both the volatile and the non-volatile cache, cf. Section 4.2 and Section 7.3.
Thus, we account for this observation and re-adjust the modeled read and write service times µr, µw

correcting the overestimation to better reflect the measurements:

µ
∗
ξ
(sξ) := µξ (sξ) · (1−∆ξ (sξ)), where (7.10)

∆ξ (sξ) := ∑
i∈{0,1}

cξ ,i · ln(sξ)
i, cξ ,i ∈ R.

Figure 7.17 shows that the recalibration was successful with a mean error of 8.19 % and 11.64 %
for read and write requests, respectively.

To allow differing read and write request sizes, we next also consider the measurements where
sr
sw
6= 1. Similarly, we need to find α and β for the read and write requests, respectively. We

99

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Read Write

0

5

10

15

20

25

4 8 16 32 64 4 8 16 32 64

Request Size (KB)

E
rr

or
(%

)

Figure 7.17.: Calibration Error after Service Time Recalibration

will proceed as explained in the earlier section and apply Algorithm 3. To again generalize the
weights for prediction, we again use the statistical modeling technique and create a MARS model
with independent variables tr

tw
and sr

sw
, and dependent variable φ . Thus, we obtain a relative weight

depending on the number of clients and request sizes in the form

φ(tr, tw,sr,sw) := λ0 +
n

∑
i=1

λi hi

(
tr
tw

)
+

m

∑
i=n+1

λi hi

(
sr

sw

)
+

n

∑
i=1

m

∑
j=n+1

λi j hi

(
tr
tw

)
h j

(
sr

sw

)
, (7.11)

λi,λi j ∈ R

We also allow interaction terms in the model as shown above and again optimally parameterize the
model creation.

Finally, we use measurements from two VMs. To estimate the priorities for the individual re-
quest classes that capture the performance interference effects across the workloads, we propose the
calibration algorithm shown in Algorithm 5. The algorithm generalizes the observations similar to
the idea of the previous algorithm and calibrates the weights by calculating local weights for each
VM and adjusting the weights according to a global view of all workloads. In the algorithm, we
use calibration coefficients ε and c that describe the performance interference effect of the read and
write requests, respectively. The coefficients can be estimated from the measurements and we use
ε = 0.3 and c = 2. After estimating the read weights, the algorithm adjusts the write weights of two
special cases observed in the measurements, where either the sum of the clients differ in all VMs or
there is a single VM with a low number of clients. In the first case, the write weights are adjusted
if the weights are not in the same relative order as the aggregated number of clients. In the second
case, the write weight of the VM with the single smallest number of aggregated clients is slightly
increased.

As a final observation, we include a priority inversion effect we observed in the measurements.
If the read request sizes are much larger then the write request sizes (by a factor of four), than

100

7.5. I/O Performance Models of Scheduling and Interference Aspects

Read Write

0

20

40

60

4 8 16 32 64 4 8 16 32 64

Request Size (KB)

E
rr

or
(%

)

Figure 7.18.: Final Calibration Error for Variable Workload Model

the priority of the read and write requests of the VM with the smallest number of read clients are
adjusted and inverted.

To conclude the model building process, we analyze the calibration error of the final variable
workload model illustrated in Figure 7.18. Across the request sizes, the average error for read and
write requests is 21.61 % and 19.11 %, respectively. Thus, the resulting QPN model fits sufficiently
well to the measurements such that we can evaluate the models.

7.5.5. Prediction Process

The prediction process for using the QPN model is illustrated in Figure 7.19. First, the workload
scenario has to be specified, which is used as input for the model. Then, the required model param-
eters need to be determined such that the model can be solved to obtain the results.

To determine the workload scenario, the number of read and write clients and the number of
VMs as well as the read and write request sizes are specified. This information is used as input
for the QPN model. For the requests of the workload scenario, the QPN model is parameterized
with the service times using Equation (7.5) and Equation (7.10). To capture the scheduling effects
with the request class prioritization, first the global and local priorities are determined using the
weight model function in Equation (7.11) as indicated in Lines 4 and 6 of Algorithm 5. Finally,
Algorithm 5 refines the priorities for the request classes. Using the workload scenario information
as well as the model parameterization, the QPN model can be solved to predict the mean response
times individually for each request class in the workload scenario. The prediction can be used to
predict the performance of a given workload as well as its effect on the co-located workloads.

101

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Algorithm 5 Parameterization of Variable Workload Request Weights (based on Rostami, 2014)
Configuration:
~tr,~tw (∈ T ν)← Read and write clients

// Pre-calculation:
αg,β g (∈ A,B)← Global read and write weight determined with the statistical model,

5: i.e., φ(∑ j t
j
r ,∑ j t

j
w,sr,sw)

~α l,~β l (∈ Aν ,Bν)← Local read and write weights within each VM j determined with the
statistical model, i.e., φ l

j(t
j
r , t

j
w,sr,sw)

// A,B,T ⊆ R>0
ε (∈ (0,1)) ,c (∈ N∗) // parameterization coefficients

10: Definition:
πa : {1, . . . ,ν}→ {1, . . . ,ν}, with πa(~t∗) := (t∗

πa(j)) j, such that πa(k)< πa(l) =⇒ t∗
πa(k)
≤ t∗

πa(l)
,

πd : {1, . . . ,ν}→{1, . . . ,ν}, with πd(~t∗) := (t∗
πd(j)) j, such that πd(k)< πd(l) =⇒ t∗

πd(k)
≥ t∗

πd(l)
,

where~t∗ :=~tr +~tw
// Sorting permutations, i.e., π

−1
ξ

exists

15: Algorithm:
~α ← 0ν

~β ← ~β l

γ ← αg

β g

αmax← γ ·maxi
{

β l
i
}

20: β max←maxi
{

β l
i
}

Iβ ←
{

ι | β l
ι = maxi β l

i
}

α
ιβ ← αmax, ∀ιβ ∈ Iβ

δ ← |{t ′ | ∃i : t ′ = tr}| · c
δr← αmax−β max

δ

25: ~t∗← πa(~tr +~tw)
// Fit read weights:

~α ← πa(~α)
n← πa(min Iβ)
if n 6= 1 then

30: for i← (n−1) to 1 do
if t∗i = t∗i+1 then

αi← αi+1
else

αi← αi+1 +δr
35: end if

end for
end if
n← πa(max Iβ)
if n 6= ν then

40: for i← (n+1) to ν do
if t∗i = t∗i−1 then

αi← αi−1
else

αi← αi−1−δr
45: end if

end for
end if
for i← 2 to ν−1 do

if αi = 0 then
50: αi← αi−1

end if
end for

// Adjust write weights in special cases:
~t∗← πd(~tr +~tw)

55: ~β ← πd(~β)
κ ← |{t ′ | ∃i : t ′ = t∗i }|
if ν = κ and
∃i, j : i 6= j∧ t∗i < t∗j ∧βi ≥ β j then

for i← 1 to ν do
βi← βi · (1− ε)

60: if i > 1 then
ε ← ε · κ−2

κ−1
end if

end for
else if κ = 2 and
∃i∀ j : βi ≤ β j =⇒ i = j then

65: βν ← βν · (1+ ε)
end if
~α ← π−1

a (~α)
~β ← π

−1
d (~β)

return (~α,~β)

102

7.6. Evaluation

Determination of Workload Scenario

Specify Number of
Clients and VMs

Specify Read and Write
Request Sizes

Determination of Model Parameters

Determine Service
Times

Determine Global and
Local Priorities

Refine Priorities for
each Request Class
using Algorithm 5

Figure 7.19.: Prediction Process for I/O Performance Models of Scheduling Aspects

7.6. Evaluation

In this section, we evaluate our QPN models along multiple dimensions in different scenarios. Sim-
ilar to the presentation of the I/O queueing models, the evaluation scenarios are grouped targeting
the evaluation of the I/O queueing models capturing the hardware aspects and the scheduling as-
pects. Before presenting the evaluation, we formulate the goals of the evaluation and the questions
we address.

7.6.1. Goals and Questions

The main goal of the evaluation is to confirm that the QPN models exhibit a sufficient prediction
accuracy for unseen system configurations. Therefore, we set the following two goals regarding
the two modeling aspects addressing the respective questions to evaluate the prediction accuracy in
both interpolation and extrapolation scenarios:

103

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Table 7.1.: Interpolation Configurations for I/O Performance Models of Hardware Aspects

Parameter Range

Request type {read, write}
Access pattern {random, sequential}
Request size [4 KB, 64 KB]

rounded to multiples of 512 bytes
Clients [10, 100]
File set size [1.25 GB, 180 GB]

rounded to multiples of 16 MB

Goal 1 — Evaluation of the I/O performance models capturing the storage hardware aspects.

Q1: What is the response time prediction accuracy when varying the configurations within
the calibrated ranges in interpolation scenarios?

Q2: What is the response time prediction accuracy when varying the configurations beyond
the calibrated ranges in extrapolation scenarios?

Goal 2 — Evaluation of the I/O performance models capturing the scheduling and interference

aspects.

Q1: What is the response time prediction accuracy when varying the configurations within
the calibrated ranges in interpolation scenarios?

Q2: What is the response time prediction accuracy when varying the configurations beyond
the calibrated ranges in extrapolation scenarios?

7.6.2. I/O Performance Models of Storage Hardware Aspects

As indicated above, we evaluate the predictive power of our homogeneous I/O performance mod-
els in both interpolation and extrapolation scenarios. For the extrapolation scenarios, we consider
extrapolation with respect to the number of clients and extrapolation with respect to the number
of VMs. We present the results in full detail for the different request classes and explicitly distin-
guish between cached and uncached data. An overview of the results is given in Figures 7.20, 7.21,
and 7.22 as well as Table 7.4.

7.6.2.1. Interpolation

First, we evaluate the I/O performance models in interpolation scenarios where the workload con-
figuration is within the calibrated ranges. For every evaluated workload scenario, we compare mean
response time measurements of 200 completely random configurations within the ranges indicated
in Table 7.1 with the simulation results obtained using the QPN models. Overall in this section,
we evaluate 1200 completely random measurement configurations in total. Regarding the absolute
response times, the mean read and write measurements are in the ranges of [0.51 ms, 30.58 ms]

104

7.6. Evaluation

Table 7.2.: Extrapolation Configurations (Clients) for I/O Performance Models of Hardware As-
pects

Parameter Extrapolation Clients

Request type {read, write}
Access pattern {random, sequential}
Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Clients {125, 150}
File set size {2.5 GB, 40 GB, 80 GB, 160 GB}

Table 7.3.: Extrapolation Configurations (VMs) for I/O Performance Models of Hardware Aspects

Parameter Extrapolation 2 VMs Extrapolation 3 VMs

Request type {read, write} {read, write}
Access pattern {random, sequential} {random, sequential}
Request size {4 KB, 8 KB, 16 KB, 32 KB, 64 KB} {4 KB, 8 KB, 16 KB, 32 KB, 64 KB}
Clients {50, 75, 100} {33, 50, 100}
File set size {2.5 GB, 40 GB, 80 GB, 160 GB} / #VMs, rounded to multiples of 16 MB

and [0.68 ms, 36.05 ms], respectively, depending on the configuration. The prediction results are
illustrated in Figure 7.20 and Table 7.4.

For cached data of random read requests, i.e., if the file set size is up to 60 GB, we obtain a mean
error of 8.40 %. There are a few higher error values occurring when the file set size is close to
60 GB. We conclude that for some configurations, the caching effects can be observed already for
such file set sizes. For uncached data, we observe a mean error of 8.25 %. A few higher error values
can be observed, mainly occurring for low load when the number of threads is less than 20. For
such configurations, every small absolute deviation results in a high relative error. For sequential
read requests, the mean error is 5.00 %.

For cached data of random write requests, i.e., if the file set size is up to 5 GB, the model yields
a mean error of 0.97 % for the evaluated configurations. For uncached data, the model exhibits a
high prediction quality. The mean error is 5.19 %. For sequential write requests, the model exhibits
a mean error of 1.02 %.

7.6.2.2. Extrapolation

We next evaluate the prediction accuracy of QPN models in two extrapolation scenarios whose
configuration parameters exceed the calibrated ranges significantly.

Extrapolation Clients In the first extrapolation scenario, we increase the workload intensity
and set the number of threads to 25 % and 50 % beyond the calibrated range. More specifically,
we compare 160 mean response time measurements for all combinations of parameters shown in
Table 7.2 against the simulation results obtained using the QPN models. Overall depending on the

105

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Read, Random Read, Sequential Write, Random Write, Sequential

0

25

50

75

100

0

5

10

15

20

0

5

10

15

0

2

4

6

Cached Uncached All Cached Uncached All

Data

E
rr

or
(%

)

Figure 7.20.: Interpolation Error for I/O Performance Models of Hardware Aspects

Read, Random Read, Sequential Write, Random Write, Sequential

0

5

10

15

0

5

10

15

0.0

2.5

5.0

7.5

0.0

0.5

1.0

1.5

Cached Uncached All Cached Uncached All

Data

E
rr

or
(%

)

Figure 7.21.: Extrapolation Error (Clients) for I/O Performance Models of Hardware Aspects

configuration, the mean read and write measurements are in the ranges of [2.74 ms, 44.86 ms] and
[5.29 ms, 59.05 ms], respectively. The prediction results are shown in Figure 7.21 and Table 7.4.

For cached data of random read requests, the model yields a mean error of 7.98 %. It can be
observed that in general, the model exhibits a higher accuracy for larger request sizes. Still, for
small request sizes, the absolute error is less than 1 ms. For uncached data, the mean error is
4.41 %. For sequential read requests, the model yields a mean error of 5.76 %. The model again
exhibits a higher accuracy for larger request sizes.

For cached data of random write requests, the model exhibits a high prediction accuracy. The
mean error is 0.60 %. For uncached data, we observe a mean error of 4.11 %. Overall for sequential
write requests, a mean error of 0.60 % shows that the model exhibits an excellent accuracy for this
scenario.

106

7.6. Evaluation

Read, Random Read, Sequential Write, Random Write, Sequential

0

5

10

15

20

0

5

10

15

20

0

5

10

15

0.0

0.5

1.0

1.5

Cached Uncached All Cached Uncached All

Data

E
rr

or
(%

)

(a) Extrapolation Error (2 VMs)

Read, Random Read, Sequential Write, Random Write, Sequential

0

10

20

0

5

10

15

20

0

10

20

0

1

2

3

Cached Uncached All Cached Uncached All

Data

E
rr

or
(%

)

(b) Extrapolation Error (3 VMs)

Figure 7.22.: Extrapolation Error (VMs) for I/O Performance Models of Hardware Aspects

Extrapolation VMs In this scenario, we increase the load on the system up to 300 % of the
calibrated range by using two and three virtual machines. More specifically, we compare 480 mean
response time measurements for all combinations of the parameters shown in Table 7.3 against
the simulation results obtained using the QPN models. Depending on the configuration, the mean
read and write measurements are in the ranges of [2.12 ms, 90.33 ms] and [4.10 ms, 148.20 ms],
respectively. The prediction results are given in Figure 7.22 and Table 7.4.

For cached data of random read requests, the model exhibits a mean error of 9.01 %. For uncached
data, the model yields a mean error of 7.62 %. For sequential read requests, the model predicts also
well with a mean error of 8.12 %.

107

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Table 7.4.: Mean Prediction Error for I/O Performance Models of Hardware Aspects (%)

rr rr rs wr wr ws
Scenario Cached Uncached All Cached Uncached All Mean – 1

nΣ

Interpolation 8.40 8.25 5.00 0.97 5.19 1.02 4.81
Extrapolation Clients 7.98 4.41 5.76 0.60 4.11 0.60 3.91
Extrapolation 2 VMs 8.01 10.65 7.69 0.55 5.66 0.47 5.51
Extrapolation 3 VMs 10.02 4.59 8.55 0.68 6.98 0.72 5.26

For cached data of random write requests, the model exhibits an excellent prediction accuracy
with a mean error of 0.62 %. For uncached data, the mean error is 6.32 %. Considering sequential
write requests, the model yields a mean error of 0.59 %.

7.6.3. I/O Performance Models of Scheduling and Interference Aspects

Similar to the previous section, we present multiple interpolation and extrapolation scenarios to
comprehensively analyze the heterogeneous QPN model. Note that since the workload is hetero-
geneous, the predictions are individual for each request class. For the sake of presentation, we
evaluate the average prediction error across the request classes and present the average errors of the
configurations for each scenario. The results are presented next, an overview of the results is given
in Figures 7.23 and 7.24 as well as Table 7.7.

7.6.3.1. Interpolation

To evaluate the interpolation quality of the model, we use random workload configurations whose
parameters are within the calibrated ranges in the following two scenarios.

Scenario I In our first scenario, we use two VMs each running a read-intensive and a write-
intensive workload, respectively. As the VMs are sharing the resources, the I/O requests are mixed
at the storage system. We compare mean response time measurements of 100 completely ran-
dom configurations within the ranges indicated in Table 7.5 against results obtained using the QPN
model. Depending on the configuration, the mean read and write measurements are in the ranges of
[1.33 ms, 9.84 ms] and [2.72 ms, 23.29 ms], respectively. The prediction results are given in Fig-
ure 7.23a and Table 7.7. In this scenario, the QPN model exhibits a very high prediction accuracy.
The mean prediction error for read and write requests is 6.49 % and 12.88 %, respectively.

Scenario II In the next scenario, use two VMs with each running mixed read and write workloads
competing for the shared storage system. We again compare mean response time measurements of
100 completely random configurations against simulation results obtained with the QPN model. The
configuration ranges are shown in Table 7.5. The overall mean read and write measurements are in
the ranges of [1.76 ms, 16.55 ms] and [3.27 ms, 62.16 ms], respectively. As shown in Figure 7.23b

108

7.6. Evaluation

Table 7.5.: Interpolation Configurations for I/O Performance Models of Scheduling Aspects

Parameter Scenario I Scenario II

VMs / Request types per VM 2 / 1 2 / 2
Clients per request type [10, 50] [10, 50]
Read request size [4 KB, 64 KB] [4 KB, 64 KB]
Write request size [4 KB, 64 KB] [4 KB, 64 KB]

(Request sizes in multiples of 512 bytes)

Read Write

0

10

20

30

40

E
rr

or
(%

)

(a) Prediction Error for Scenario I

Read Write

0

20

40

60

E
rr

or
(%

)

(b) Prediction Error for Scenario II

Figure 7.23.: Interpolation Error for I/O Performance Models of Scheduling Aspects

and Table 7.7, the QPN model also exhibits a high prediction accuracy in this scenario. The mean
prediction error for read requests is 21.64 %, while it is 19.51 % for write requests.

7.6.3.2. Extrapolation

To evaluate the extrapolation quality, we predict random workload configurations whose parameters
exceed the configuration ranges used during calibration in three scenarios.

Scenario III To extrapolate the workload intensity, we increase the number of clients running in
each of the VMs. We use 100 completely random configurations using two VMs with mixed work-
loads and their configuration ranges shown in Table 7.6. For the requests, the mean read and write
measurements are in the ranges of [6.94 ms, 28.80 ms] and [24.98 ms, 121.20 ms], respectively.
As illustrated in Figure 7.24a and shown in Table 7.7, the mean prediction error for read and write
requests is 27.48 % and 27.93 %, respectively.

Scenario IV To extrapolate the number of VMs in this scenario, we add an additional VM, such
that three VMs are running in total with mixed workloads each. Overall, we evaluate mean response
time measurements of 100 completely random configurations in three VMs with the configuration
ranges indicated in Table 7.6. The absolute mean read and write measurements are in the ranges

109

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

Table 7.6.: Extrapolation Configurations for I/O Performance Models of Scheduling Aspects

Parameter Scenario III Scenario IV Scenario IV

VMs / Request types per VM 2 / 2 3 / 2 2 / 2
Clients per request type (50, 90] [10, 50] [10, 50]
Read request size [4 KB, 64 KB] [4 KB, 64 KB] (64 KB, 128 KB]
Write request size [4 KB, 64 KB] [4 KB, 64 KB] (64 KB, 128 KB]

(Request sizes in multiples of 512 bytes)

Read Write

0

20

40

60

80

E
rr

or
(%

)

(a) Prediction Error for Scenario III

Read Write

0

25

50

75

E
rr

or
(%

)

(b) Prediction Error for Scenario IV

Read Write

0

20

40

60

E
rr

or
(%

)

(c) Prediction Error for Scenario V

Figure 7.24.: Extrapolation Error for I/O Performance Models of Scheduling Aspects

of [3.06 ms, 25.40 ms] and [4.22 ms, 87.93 ms], respectively. For this scenario, the QPN model
exhibits a decent prediction accuracy as shown in Figure 7.24b and Table 7.7. The mean read request
prediction error is 29.03 %, while the error is 23.35 % for write requests.

Scenario V In our final scenario, we extrapolate the request sizes and run two VMs with mixed
large requests. We use mean response time measurements of 100 completely random configurations
with the configuration ranges indicated in Table 7.6. The absolute mean read and write measure-

110

7.7. Summary

Table 7.7.: Mean Prediction Error for I/O Performance Models of Scheduling Aspects (%)

Scenario Read Write Mean – 1
nΣ

Interpolation 15.13
Scenario I 6.49 12.88 9.69
Scenario II 21.64 19.51 20.58

Extrapolation 25.22
Scenario III 27.48 27.93 27.71
Scenario IV 29.03 23.35 26.19
Scenario V 20.11 23.43 21.77

ments are in the ranges of [7.01 ms, 30.27 ms] and [21.47 ms, 107.50 ms], respectively. For large
requests, the QPN model exhibits a good prediction accuracy as summarized in Figure 7.24c. The
mean read and write request prediction error is 20.11 % and 23.43 %, respectively, as also summa-
rized in Table 7.7.

7.7. Summary

In this chapter, we proposed a generic, step-by-step process to create explicit, queueing theory-
based models of I/O performance in virtualized environment, where there is a limited amount of
information for the creation and calibration of a performance model. We applied our process need-
ing end-to-end response time measurements only and showed how it can be used to create QPN
models capturing both the hardware aspects and the scheduling aspects between different request
types and VMs observed in the considered system environment. The main idea throughout the
model building process was to start from a simple model and iteratively extend it to capture more
workload scenarios and system aspects. Overall, we were able to model a sufficiently complex
system environment using only a few queueing stations and parameters that require calibration if a
similar system environment should be captured.

We evaluated our QPN models to predict the mean I/O request response times in both interpola-
tion and extrapolation scenarios for completely random, unseen configurations. Across the different
scenarios, the mean prediction error for the I/O performance model capturing the hardware aspects
was approximately 5 % in both interpolation and extrapolation scenarios. For the I/O performance
model capturing the scheduling aspects, the mean prediction error was approximately 15 % and
25 % for the interpolation and extrapolation scenarios, respectively. Overall, the prediction ac-
curacy is within the required range such that, in conclusion, the explicit model building process
relying on measurement information successfully captured the I/O performance effects observed in
the considered system environment and can be used as a guideline for creating similar models in
other environments.

In this and in the previous chapter, we showed how to create models of the I/O performance in
virtualized environments. In the next chapter, we will show how we can use such I/O performance
models in approaches for software architecture-level modeling. More specifically, we show how

111

7. Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects

our I/O performance models can be used when modeling software architectures, where there is
limited information that can be provided to the models as input about the actual workload running
in the environment. Thereby, the created I/O performance models will benefit from an increased
applicability. The key question will be how to combine the two abstraction levels, the low-level I/O
performance models and the high-level software architecture models.

112

8. Integrating Storage-level Models into Software

Architecture-level Modeling Approaches

Model-based performance prediction approaches at the software architecture level have an increas-
ingly high level of importance. They provide a powerful and practical mechanism for both eval-
uating design decisions and capacity planning because of the high modeling abstraction level and
largely intuitive modeling constructs. The current state-of-the-art software architecture-level mod-
eling approaches, however, struggle to account for the influencing factors of I/O performance in
virtualized environments. They are not well-suited for the complex storage infrastructures em-
ployed in virtualized environments due to overly simplistic assumptions, which consequently lead
to inaccurate performance predictions in that domain.

Our goal in this chapter is to overcome this issue and introduce a novel I/O performance mod-
eling approach at the software architecture level. More specifically, we will focus on component-
based software architectures for embedding our performance modeling and prediction approach in
a modular and reusable manner. To this end, we employ the storage-level I/O performance models,
i.e., the I/O analysis models, created in the previous chapters and combine them with a software
architecture-level modeling approach. While, on the one hand, the software architecture model cap-
tures and represents the high-level structure of a software application, the I/O analysis model, on
the other hand, captures and predicts the I/O performance at the low operating system, hypervisor,
and storage infrastructure level. The main question is how to bridge the gap between the two ab-
straction levels to obtain performance results. For the solution of this discrepancy, we exploit the
model-based performance prediction process, where a software architecture model is transformed
into a target analysis model, which is a simulation model in our approach. This simulation model
is then extended to use the I/O analysis model we developed. Finally, the two models are solved in
combination to obtain performance predictions. In the following, the concepts of this combination
are elaborated and demonstrated in this chapter.

The outline of this chapter is as follows: Similar to the previous main chapters, we first present
the scientific challenges of this chapter in Section 8.1. We then in Section 8.2 introduce the general
methodology for the combination of software architecture-level models and I/O analysis models
using the model-based performance prediction process as a basis. In Section 8.3, we elaborate on
the realization of the combination using the Palladio Component Model (PCM) as a representative
software architecture-level performance modeling approach as example. In the end, Section 8.4
summarizes and concludes this chapter.

113

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

8.1. Scientific Challenges

Based on the publications (Noorshams et al., 2013c; Noorshams et al., 2014b) and thesis we super-
vised (Reeb, 2014), this chapter is concerned with the following challenges:

Challenge 1 — How can software architecture models be combined with I/O analysis models?

Combining software architecture models and I/O analysis models is not straight-
forward due to their different abstraction levels. While the software architecture
model represents the high-level components and behavior of a software applica-
tion, the I/O analysis model captures the performance of the low-level I/O requests
to a virtualized storage system. They thus differ in the required parameterization
and containing information and it is required to bridge the gap between the two
model types. It is unclear if the two modeling abstractions can be combined to ob-
tain accurate performance results or, if possible, one of the abstractions needs to be
translated or automatically transformed to the other.

Challenge 2 — How can the I/O analysis models be captured in the software architecture models

to be encapsulated and to allow for reuse?

While a translation or transformation approach might be successful as well, we aim
to embed the I/O performance modeling concepts into component-based software
architecture models in a combination approach. To this end, an appropriate com-
ponent concept and interface need to be identified for using the I/O analysis model.
This is to ensure the integrity and concepts of component-based software archi-
tectures. To increase component reuse, the system-relevant information should be
decoupled from the general model with adequate mechanisms.

Challenge 3 — What is the appropriate abstraction level to model I/O requests at the software

architecture level?

The interface of the I/O analysis model is invoked by I/O requests modeled at the
software architecture level. On the one hand, an overly abstract interface specifying
only few characteristics of the I/O requests is too coarse-grained to sufficiently
parameterize the I/O analysis model and to obtain accurate prediction results. An
example of an abstract interface is to specify the mere demand of the I/O request.
On the other hand, an overly specific interface requiring too detailed characteristics
of the I/O requests is too fine-grained to reasonably obtain the required information.
An overly specific interface may require low-level information, such as the targeted
device block addresses of the requested data, the mapping of the files to the device
block addresses, and the mapping from virtual to physical device block addresses,
for instance. Thus, the I/O requests need to be modeled at a balanced abstraction

114

8.2. Methodology

level to allow for their specification by software architects while still sufficient to
allow for the derivation of the required parameters for the I/O analysis model.

Challenge 4 — How can the combined model be solved to obtain performance results?

Combining the software architecture model with the I/O analysis model might re-
sult in coupling different modeling formalisms that need to be solved to obtain
performance predictions. Thus, an appropriate coupling of the model formalisms
as well as a coupled solution mechanism are required. Such a coupling might re-
quire to solve the involved models individually and transfer the results of one model
to the other, which can be an iterative process. Another approach might be able to
solve the combined models in parallel to integrate the result of one model into the
other.

Overall, we can formulate the following four hypotheses that are demonstrated in this chapter
addressing the challenges:

H1: We can use the storage-level I/O performance models described in the previous two chapters
as I/O analysis model within software architecture-level modeling approaches in a combined
modeling approach.

H2: We can encapsulate the I/O analysis model in a well-defined component that can be accessed
over its interface.

H3: We can model I/O requests at the software architecture level such that their specification does
not require in-depth analysis or system-specific monitoring tools.

H4: We can map the I/O request information provided at the software architecture level on the
required parameters of the I/O analysis model in a parallel, simulation-based model solution.

8.2. Methodology

Software architecture models describe the structural and behavioral aspects of an application at a
high abstraction level. Performance-aware software architecture modeling approaches use such a
description as well as the information on the system infrastructure and resource consumptions of the
application, which may be estimated or measured, to predict the performance characteristics of the
application. The PCM, as a performance modeling approach of component-based software archi-
tectures, uses such information in the model-based performance prediction process to estimate the
performance of an application (cf. Section 3.4). Using model transformations to an analysis model,
e.g., a simulation model or a queueing model, a PCM model is solved to predict the performance,
for example, to evaluate design alternatives and to answer capacity planning questions.

In this chapter, we demonstrate our software architecture-level modeling approach of I/O perfor-
mance in virtualized environments using the PCM as example, since it is a mature approach with

115

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

I/O Analysis
Model

Performance Prediction
Mechanism

Software
Architecture

Model

models

Performance-
Influencing

Factors

analyze
include

Analysis
Model

transform

integrate
using refinement
transformation

I/O-intensive
Application in

Virtualized
Environment

Performance Prediction
Target

model

Figure 8.1.: Overview of Combining an I/O Analysis Model with a Software Architecture Model
(cf. Figure 4.1)

a large amount of validation case studies, e.g., Becker (2008), Becker et al. (2009), Hauck et al.
(2009), Huber et al. (2010), Krogmann (2010), and Kuperberg et al. (2008). In the PCM, storage
resources are mapped to a single- or multi-server queue, typically with FCFS (First-Come-First-
Served) scheduling strategy, and I/O requests are represented merely by their demands that need to
be estimated manually for each request type. While this has been shown to be a reasonable degree
of abstraction for basic hardware environments (cf. Becker, 2008), storage systems in virtualized
environments are much more complex and have diverse influencing factors, cf. Section 5.2. In this
section, as part of our big picture introduced in Chapter 4, we first describe how we extend the
model-based performance prediction process to realize our approach. Then, we elaborate on how
a software architecture model is transformed into a combined analysis model integrating an I/O
analysis model as created in the previous chapters to obtain performance results.

8.2.1. Extending the Model-based Performance Prediction Process

Our goal is to allow performance modeling approaches at the software architecture level to predict
the performance of an I/O-intensive application in a virtualized environment, which is our perfor-

mance prediction target. To realize our goal, we extend the model-based performance prediction
process as illustrated in Figure 8.1. More specifically, we combine the I/O analysis model created
in the previous chapters, which is the required performance prediction mechanism, with the target
analysis model of the software architecture model to obtain a combined, typically hybrid analysis
model.

As part of our methodology, we start extending the process by analyzing I/O-intensive applica-
tions and the system environments to identify the influencing factors of I/O performance in virtu-
alized environments. We then use the factors to create I/O analysis models that capture the perfor-
mance effects of the factors. To evaluate the factors in the analysis model to which the software
architecture model is transformed, the factors also have to be included into the software architecture

116

8.2. Methodology

Software
Architecture

Model

I/O Analysis
Model

Software*
Architecture

Model

completion

use

Analysis*
Model

Refined with
Static Storage
Information

Target Analysis
Model Combined
with I/O Analysis

Model over
I/O Interface

Configured
with Feature
Tree Model

analysis
transformation

Figure 8.2.: Refinement Transformation from Software Architecture Model to Target Analysis
Model

model. This is achieved by allowing to specify both the static I/O-relevant information, e.g., the
configuration of the operating system, and the dynamic I/O request information.

To exploit the additional information in the software architecture model, a prerequisite for the
combination of the two modeling abstractions is the design of an I/O interface at the software
architecture level. The I/O interface defines the I/O requests, whose performance is determined
using the I/O analysis model combined with the target analysis model of the software architecture
model. The I/O interface includes the required dynamic I/O request information in the software
architecture model that is passed as input to the I/O analysis model (e.g., the distinction between read
and write requests and their access patterns). Furthermore, the set of static I/O-relevant information
is used to parameterize or choose the appropriate I/O analysis model. While the static information
needs to be used only once, e.g., when initializing the I/O analysis model, the dynamic I/O request
information needs to be passed with every I/O request.

For the combination approach of the high-level software architecture model and its target analysis
model with the low-level I/O analysis model, we use refinement transformations described next in
more detail.

8.2.2. Refinement Transformation for Performance Predictions

To obtain performance predictions with the software architecture model, we use a refine transfor-

mation approach as illustrated in Figure 8.2. The refinement transformation integrates the static I/O
information into the software architecture model and transforms the software architecture model
into an analysis model that is combined with the I/O analysis model. The overall process includes
both i) a completion transformation (Woodside et al., 2002) enriching the software architecture
model as well as ii) an analysis transformation to the target analysis model.

The completion transformation takes a software architecture model and generates a refined soft-
ware architecture model. Here, the software architecture model is refined with the static I/O-relevant
information and can be configured, e.g., using feature tree models (cf. Kapova et al., 2009). Depend-
ing on the required information, the completion may be realized using a sophisticated higher-order
transformation (HOT) (Kapova et al., 2009) or by simply adding the static information where re-
quired.

117

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

The analysis transformation uses the software architecture model and generates the target analysis
model to predict the system performance as in the standard model-based performance prediction
process, cf. Figure 3.8. This transformation is extended to use the refined software architecture
model and to combine its target analysis model with the I/O analysis model. The combination
is realized over the I/O interface using a bridge or adapter depending on the formalisms of the
target analysis model and the I/O analysis model. Similar formalisms allow to bridge the requests,
different formalisms require to adapt and translate the information of the one formalism to the other.
Finally, the combined analysis model is analytically solved or simulated to obtain the performance
results of the modeled software architecture.

8.3. Realization of I/O Performance Prediction in the PCM

After the schematic overview and presentation of the general approach, in this section we show how
we realize our approach by combining a software architecture model with an I/O analysis model.
We present the concepts of the realization using the PCM as example, however, as we do not depend
on specific details or implementations of the PCM, our approach can generally be applied to any
software architecture modeling approach supporting a model-based performance prediction.

The realization of our approach is structured along four aspects. We start by presenting the
modeling concept in the PCM into which we embed our approach. Then, we revisit the I/O analysis
model we created in the previous chapters and show how it is defined such that it can be integrated
into the software architecture modeling approach. We show how the software architecture model is
combined with the I/O analysis model and how it is solved to obtain performance results. Finally,
we outline the process how to use our approach for performance prediction.

8.3.1. Modeling Concept

To integrate our approach into the PCM, we use the modeling concept of layered execution envi-

ronments of the PCM introduced by Hauck et al. (2009) and illustrated in Figure 8.3. In general for
the components comprising the software architecture, we distinguish business components running
at the application layer and resource components running at the infrastructure layer. The interface
of one or more business components may be exposed to users accessing the application and issuing
requests to the system. The business components, which capture the application logic, access the
CPU and storage as well as further resources in the infrastructure layer using resource interfaces,
represented by the square interfaces in Figure 8.3. We use the resource concept to capture a virtual-
ized storage system, which accepts the I/O requests issued by the business components, as a storage
resource providing its interface as the I/O interface introduced in the previous section to combine
the software architecture model with the I/O analysis model.

The I/O interface captures the representation of an I/O request of a business component. Before
our extension, the requests were abstracted as one parameter, the demand to the storage resource. To
use the I/O interface, which is extended for approach, the I/O requests of the business components

118

8.3. Realization of I/O Performance Prediction in the PCM

Usage

Business
Component

Business
Component

A
pp

lic
at

io
n

La
ye

r
In

fr
as

tru
ct

ur
e

La
ye

r

Virtualized
Storage System

«Resource Interface»

CPU

ResourceContainer

«Resource» «Resource»

Figure 8.3.: Modeling Concept Overview (derived from Hauck et al., 2009)

are modeled in the RDSEFF as illustrated in Figure 8.4. Instead of specifying just the I/O demand,
which was needed to be estimated manually, the I/O interface is designed comprising the following
four parameters, which can be specified from the I/O requests of an application:

• Request size: the notion of I/O demand is represented by the I/O request size

• Request type: the type of an I/O request can be either a read or write request

• Sequentiality: the percentage (or probability) of a sequential access

• File set: the name and size of the file set the request is accessing

The need for the former two parameters is apparent, e.g., to distinguish between small read requests
and big write requests. The latter two parameters are required to estimate the impact on the caching
hierarchy at the storage system. For instance, the parameters indicate if the file set is too large to be
held in the caches resulting in regular cache misses or if the requests are sufficiently sequential such
that the requested data can be anticipated and pre-fetched by the storage system and the file set size
affects the I/O performance only marginally, cf. Section 5.2. The four parameters of the I/O requests
can usually be specified by analyzing the workload profile either manually or using monitoring and
automated workload characterization techniques, cf. Section 5.4. Even if the application is not
available, for example at software design time, because of the tangible nature of the parameters,

119

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

Business
Component

RDSEFF

I/O Request

Request size
Request type
Sequentiality
File set

«specifies»

Figure 8.4.: Extended I/O Interface for I/O Requests

they can be estimated more easily than the eventual demand the requests will induce at the storage
resource.

The storage resource encapsulates the I/O analysis model that is used to capture the I/O perfor-
mance of the modeled environment. The exact model and its parameterization depends on a number
of factors, e.g., which target environment is used and how it is configured. As introduced in the
previous section, we use a feature tree model to define the static I/O information, which in our case
is used to determine and parameterize the appropriate I/O analysis model. The feature tree model
we employ that leads to the I/O analysis model and parameterization is illustrated in Figure 8.5.
The system under study, i.e., the virtualization architecture and hardware environment, and the sys-

tem setup, i.e., I/O scheduler and file system, are relevant factors, cf. Section 5.2. Furthermore as
shown in the previous chapters, the I/O analysis model can be created with different formalisms
with different strengths and weaknesses (cf. Chapter 6 and Chapter 7).

8.3.2. I/O Analysis Model

In Chapters 6 and 7, we showed how to create I/O performance models in virtualized environments
using regression analysis and queueing theory, respectively. We use these models as I/O analysis
models to enhance the software architecture model for performance prediction.

For the I/O analysis model, we identify the workload parameters we need to include based on
the workload characterization in Section 5.3. To obtain the I/O analysis model, the performance
model is created as presented in the previous chapters. The following eight parameters are captured
as workload factors describing the I/O requests that access the storage resource. They are used as
input for the I/O analysis models within the storage resource of the software architecture model:

• Number of concurrent requests: The contention at the resource is captured by specifying the
pending requests as input.

120

8.3. Realization of I/O Performance Prediction in the PCM

optional
mandatory

alternative
(xor)

or

Legend
Features

I/O
Scheduler File System

System
Under Test

System
Setup

Regression
Model

Static
Information

MARS CART (...)

CFQ Deadline NOOP Ext4 XFS (...)

System A System B (...)

Model
Formalism

Queueing
Model

Figure 8.5.: Feature Tree of the I/O Analysis Model (cf. Section 5.2)

• Request type (read or write): The type of a request affects its scheduling impact and its
demand at the storage resource.

• Mean read request size: Depending on the type of the currently analyzed request, this size
indicates the average demand of either the same or the opposite requests.

• Mean write request size: similar as above

• Read access pattern (random or sequential): Indicates if the request can be anticipated and
possibly served from caches.

• Write access pattern (random or sequential): similar as above

• Read/write ratio: Requests are typically scheduled and prioritized depending on the current
request mix.

• File set size: Indicates if the accessed files can be possibly cached, thereby serving the requests
from caches.

The output of the model is the prediction for the response time of the read and write requests of
the modeled applications. This prediction constitutes the delay of the I/O requests including the
contention at the storage resource.

121

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

Workload Parameters
Request Parameters

Business
Component

RDSEFF

I/O Request

«specifies»

 Parameters:

• Request size
• Request type
• Sequentiality
• File set

So
ftw

ar
e A

rc
hi

te
ct

ur
e

Le
ve

l

 Parameters:

• Number of requests
• Request type (read / write)
• Mean read request size
• Mean write request size
• Read access pattern
• Write access pattern
• Read/write ratio
• File set size

St
or

ag
e

R
es

ou
rc

e
Le

ve
l I/O Analysis Model

Simultaneous Requests

0

20

40
60

80
100

Request Size (KB) 0

20

40

60

R
esponse

Tim
e

(m
s)

0

5

10

15

Figure 8.6.: Gap between the Abstraction Levels of the Models

PCM Model*

analysis
transformation

Analysis Model*

I/O
Analysis
Model

I/O
Interface

PCM
Simulator

Figure 8.7.: Transformation of the PCM Model

8.3.3. Simulation for Solving the Analysis Model

For the two abstraction levels, the software architecture model describes the structure and behavior
of the application, whereas the integrated I/O analysis model captures the I/O performance. On
the one hand, the information provided at the software architecture level is in form of I/O request
descriptions. On the other hand, the information required at the storage resource level is beyond
a single I/O request and rather in form of workload currently accessing the storage. To obtain the
performance results of the modeled application, it is required to bridge the gap between the two
abstraction levels summarized in Figure 8.6. To this end, we use a simulation approach to solve the
enhanced PCM model and map the information provided at the software architecture level on the
information required at the storage resource level during simulation.

As indicated in Figure 8.2 and realized as schematically shown in Figure 8.7, we transform the
PCM Model, which was refined with the static I/O information as indicated by the *, during the

122

8.3. Realization of I/O Performance Prediction in the PCM

Status
List

I/O
Request

I

add to
list

II

State
III

I/O Delay
V

I/O Analysis Model

Calculate
Delay IV

+
Request

«Resource»

Virtualized Storage System

Simultaneous Requests

0

20

40
60

80
100

Request Size (KB) 0

20

40

60

R
esponse

Tim
e

(m
s)

0

5

10

15

Figure 8.8.: Storage Resource Simulation

analysis transformation to the target analysis model, which is a simulation model in our approach.
In the simulation, we integrate the I/O analysis model that is used over the I/O interface to predict
the I/O performance. More specifically, we have extended the PCM simulator SimuCom (Becker,
2008) by a virtualized storage system scheduler that maps the information provided by the software
architecture model on the information required by the I/O analysis model as illustrated in Figure 8.8
to simulate the I/O delay at the storage resource. The simulation in the virtualized storage system
scheduler is comprised of the following five steps:

I. Initially, the I/O requests of the business components issued in the application layer (which
are modeled as shown in Figure 8.4 and Figure 8.6) arrive at the storage resource in the in-
frastructure layer. At this point, all the I/O requests accessing the same storage resource are
consolidated even if they originate from different business components or VMs as long as they
are sharing the resource component, cf. Figure 8.3.

II. The information of an arriving request is added to an internal status list maintained by the
simulation, where the information of the last n requests is stored in order to determine and
derive the current state of the I/O workload accessing the virtualized storage system (e.g.,
the current read/write ratio of all requests accessing the virtualized storage system from the
application and across the VMs), since such information is not given by a single request itself.
The value of n determines the memory length and can be estimated from the workload using the
average I/O delay delayavg

I/O and the number of I/O requests arriving per time requestsIntensity
I/O

as

n := delayavg
I/O · requestsIntensity

I/O . (8.1)

While this may not always be the best choice, the value of the memory length n can also be
calibrated for a given application model.

III. The workload state information is calculated and passed together with the request information
to the I/O analysis model. For the calculation, let Γr and Γw be the stored read and write

123

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

request sizes, respectively, in the status list. Furthermore, let Πr and Πw be the sequentiality
of the stored read and write request, respectively, in the status list. Apparently, it holds that

|Γr|+ |Γw|= |Πr|+ |Πw| ≤ n. (8.2)

The inequality holds in the beginning of the simulation, where the number of I/O requests has
not reached n yet. From the n-th request on, the equation becomes an equality. The exact
information (i.e., the workload parameters) required by the I/O analysis model as given in
Section 8.3.2 and Figure 8.6 is passed and calculated from the arriving I/O requests as follows
(cf. Section 5.3):

• Number of concurrent requests: currently active I/O requests, which are delayed at the
storage resource at the current simulation time

• Request type: passed by the request

• Mean read request size:


∑
|Γr |
j=1 Γr, j

|Γr| , |Γr|> 0

0, else

• Mean write request size:


∑
|Γw|
j=1 Γw, j

|Γw| , |Γw|> 0

0, else

• Read access pattern:

sequential, |Πr|> 0∧ ∑
|Πr |
j=1 Πr, j

|Πr| ≥ 0.5

random, else

• Write access pattern:

sequential, |Πw|> 0∧ ∑
|Πw|
j=1 Πw, j

|Πw| ≥ 0.5

random, else

• Read/write ratio: |Γr|
|Γr|+|Γw|

• File set size: passed by the request

IV. The I/O analysis model, which is encapsulated by the resource component in the infrastructure
layer, uses the parameters of the workload state and the arriving request to predict the actual
I/O delay for the given request. The I/O analysis model can be the regression model or the
queueing model as introduced in the previous chapters.

V. By using the workload state information of the storage resource, in particular the number of
concurrent requests, the I/O analysis model inherently captures the contention at the storage
resource. Thus, the predicted response time is assigned to the arriving request such that the
I/O request is delayed by this calculated value.

124

8.3. Realization of I/O Performance Prediction in the PCM

Create Software
Architecture Model of

Application

Determine required
I/O Analysis Model
with Feature Tree

Calibrate Non-I/O
Operations

Calibrate Storage
Resource

Parameterization

Solve Model to Predict
Performance of

Application

Figure 8.9.: Performance Prediction Steps

8.3.4. Prediction Process

Overall to use the extended PCM, Figure 8.9 illustrates the process to obtain performance predic-
tions of a software architecture model with our approach. The process consists of the following five
steps:

1. The initial step is creating the PCM model comprised of the software architecture and its
abstract description of the application whose performance should be evaluated. The model is
comprised of the four sub-models as before our extension specifying the components and their
behavior, the software architecture, the resource environment, and the usage of the system (cf.
Figure 3.7). In the description of the component behavior, the information on the I/O requests,
which are the parameters of the I/O interface (cf. Figure 8.4), is added.

2. Using an instance of the feature tree model shown in Figure 8.5, i.e., a feature configuration,
the required I/O analysis model is determined. The feature tree is used by evaluating the
given system configurations and simply choosing the appropriate modeling formalism whose
advantages and disadvantages have been highlighted in the previous chapters. For regression

125

8. Integrating Storage-level Models into Software Architecture-level Modeling Approaches

models, for instance, the models can be stored in a repository or created with measurements
when they are needed, e.g., for a new environment or with another configuration. If a new
model is created, it can be created incrementally by leaving some parameters fixed when mea-
suring the environment. For instance, if an application is known to access a file set of a certain
size, this parameter and its effect are not needed to be fully evaluated and the exploration of
the parameter can be postponed to save measurement time.

3. After the structural and behavioral model of the application is created, the resource demands
of the non-I/O operations of the software architecture model need to be estimated and cali-
brated, e.g., for CPU resources. For existing applications, this can be achieved using existing
techniques for resource demand estimation (cf., e.g., Spinner et al., 2014). Alternatively, the
resource demands can be approximated by fitting them to the measured or expected response
times of the operations.

4. Additionally, the parameters used for the resource component of the virtualized storage sys-
tem as illustrated in Figure 8.8 might be calibrated for the application model, e.g., the memory
length can be adapted if required.

5. After the model creation and calibration steps have been completed, the transformation of
the software architecture model to the simulation model, which is fully automated, can be
triggered to simulate the combined model and obtain performance results. The results can be
used to predict the performance of the application, e.g., to predict the effect of an increasing
number of users on the application performance.

8.4. Summary

In this chapter, we introduced a generic approach for software architecture-level modeling and pre-
diction of I/O performance in virtualized environments. The main idea is to extend the model-based
performance prediction process employed in performance-aware software architecture modeling
approaches and integrate I/O analysis models, which we created in the previous chapters, into the
target analysis models generated from software architecture models. The degrees of freedom of the
I/O analysis model can be expressed in form of a feature tree model, whose instance can be used to
determine the required model and its parameterization.

We realized our approach by extending the Palladio Component Model (PCM), a model-based
performance prediction approach for component-based software architectures. We introduced a
scheduler for virtualized storage systems that uses the I/O analysis model to capture the behav-
ior of I/O requests modeled at the software architecture level and to estimate the storage resource
contention. We exploited the concept of layered execution environments employed in the PCM to
encapsulate our virtualized storage system scheduler in a resource component that can be used over
its resource interface. Based on the analysis of I/O performance-influencing factors in the beginning
of this thesis, we identified the required parameters at the resource interface and at the I/O analysis

126

8.4. Summary

model. To solve the model and obtain performance results, we use a simulation approach, where
a PCM model is transformed into a simulation model. During the simulation, we calculate state
information of the I/O workload currently accessing the storage (e.g., the read/write ratio) from the
I/O requests. The state and the I/O request information is then used as input for the I/O analysis
model to determine the delay of a given I/O request at the storage resource.

After this final chapter of our I/O performance prediction approach, we present the validation of
this thesis in the next chapter. We present case studies along the path of the thesis contributions as
indicated in the big picture of our approach. Put together, the case studies constitute the end-to-end
validation starting from the validation of our workload characterization approach until the creation
of the I/O analysis models and its integration into the software architecture-level modeling approach
as presented in this chapter. Moreover, the validation chapter discusses the applicability of our work
reflecting both the strengths and the limitations of our approach.

127

9. Validation

In this validation chapter, we evaluate our goal of this thesis to enable I/O performance predictions
in virtualized environments. For the evaluation of our goal and this thesis, in the following we
present multiple case studies along the overall steps of this work presented in the previous chapters
beginning from the workload characterization, to the storage-level I/O analysis models, through to
the software architecture-level models. A subset of the case studies have been part of our publica-
tions (Noorshams et al., 2013a; Noorshams et al., 2014a; Noorshams et al., 2014b; Busch et al.,
2015) based on the theses we supervised (Bruhn, 2012; Busch, 2013; Reeb, 2014).

Before presenting the case studies in this chapter in full detail, Section 9.1 first introduces the
goals and questions addressed in the case studies. Then, Section 9.2 gives an overview of the
experimental setup of the case studies. The first part of the case studies is presented in Section 9.3
evaluating our workload characterization approach. Then, Section 9.4 presents case studies on the
storage-level performance predictions based on regression analysis. In Section 9.5, we show a
set of case studies for evaluating the performance predictions with our software architecture-level
modeling approach. Finally, Section 9.6 discusses the scope and the applicability of our approach.

9.1. Goals and Questions

The goal of this thesis is to allow for performance predictions of I/O-intensive applications in virtu-
alized environments with both practical performance engineering approaches and intuitive software
architecture-level performance modeling techniques. We evaluate our approach in multiple case
studies grouped into multiple parts. The case studies constitute the end-to-end validation of our
work with explicit focus on the proposed aspects of our approach.

Figure 9.1 shows the four evaluation parts of this chapter along the steps of our big picture given
in Chapter 4, where we have abstracted and simplified the big picture showing the extending steps
of our work, which are evaluated in this chapter. We first evaluate the workload characterization
we obtained from the performance-influencing factors in Part I. We then in Part II evaluate our I/O
analysis model and the storage-level performance prediction with regression analysis-based models.
Finally, we present case studies evaluating the performance predictions at the software architecture
level in Part III. To conclude in Part IV, we discuss the scope of our work addressing the applicability
and the limitations.

Each evaluation part is structured hierarchically as elaborated in the following to give an overview
of the validation goals and the questions addressed in the validation:

129

9. Validation

Legend

Artifact ActivityRelation

PART I PART II PART IV

Storage-level ModelingWorkload Characterization

I/O-intensive
Application in

Virtualized
Environment

Annotated
Architecture

Model

Analysis
Model

transform

PCM Simulation Model

models

I/O Analysis
Model

Performance-
Influencing

Factors

analyze

model

integrate

include

Performance Prediction
Target

PART III

Software Architecture-level Modeling

Discussion of the Approach

Figure 9.1.: Evaluation Overview (cf. Figure 4.1)

PART I: Workload Characterization – Section 9.3

Goal 1 — Abstraction level of the workload characterization.

Q1: Can the workload characterization of a running I/O-intensive application be extracted
by the automated process?

Q2: Is the chosen abstraction level of the workload characterization sufficient to capture the
influences of an I/O-intensive application on the I/O performance?

Goal 2 — Feasibility of performance evaluation using the workload characterization.

Q1: Can the characterized workload that is captured be used to estimate the performance
of an I/O-intensive application?

Q2: Can the characterized workload that is captured be used to estimate the performance
of consolidated I/O-intensive applications?

PART II: Storage-level Modeling – Section 9.4

Goal 1 — Prediction accuracy of the regression models.

Q1: What is the prediction accuracy for I/O performance when using different regression
techniques?

Q2: What is the prediction accuracy for I/O performance interference when using different
regression techniques?

130

9.2. Experimental Setup

Goal 2 — Regression technique optimization.

Q1: Is the regression technique optimization significantly increasing the model prediction
accuracy?

Q2: How many iterations are required to find an optimal parameterization for the regression
techniques?

PART III: Software Architecture-level Modeling – Section 9.5

Goal 1 — Prediction accuracy of the combined model for capacity planning.

Q1: What is the prediction accuracy for an increasing number of clients when calibrated
for a certain number of clients?

Q2: Can the combined model be used to predict the performance of multiple I/O-intensive
applications that share the environment?

Goal 2 — Model overhead and transferability.

Q1: What is the modeling overhead to predict the performance of an application?

Q2: What is the modeling overhead if the system environment is changed?

PART IV: Discussion of the Approach – Section 9.6

Goal 1 — Approach applicability.

Q1: What are the aspects that increase the applicability of the approach?

Q2: What is the prediction accuracy without our approach?

Goal 2 — Approach conclusions.

Q1: What evaluation criteria of the approach are fulfilled?

Q2: What are the assumptions and limitations of the approach?

9.2. Experimental Setup

Before presenting our case studies, in this section we introduce the software as well as the system
environments employed for the validation of our approach.

9.2.1. Tools and Benchmarks

The experimental evaluation in the case studies is fully automated and realized with the Storage

Performance Analyzer (SPA) (Noorshams et al., 2015), cf. Section 5.4. SPA coordinates and controls
the measurements and, if required, monitors the system environment during the measurements. The
collected measurements are stored for analysis and used to create regression models in an automated

131

9. Validation

process as needed. SPA has integrated the two benchmarks that are used in the case studies, both
use direct I/O (using the O_DIRECT flag, cf. open – Linux man page n.d.) to specifically measure
the I/O performance.

For measurements with fine-grained configurations, we use the Flexible File System Benchmark

(FFSB) (n.d.) because of its configuration possibilities allowing to evaluate the effects of the I/O
performance-influencing factors (cf. Section 5.2). Furthermore, we use FFSB as a basis for the
I/O analysis model that is integrated into the PCM, which is the software architecture-level model
used in this work (cf. Section 3.4), since the benchmark allows to evaluate the required parameters.
Running at the application layer, FFSB measures the end-to-end response time in two phases. First,
the target file set of the required size is created using 16 MB files. Then, the specified number of
workload threads (clients) are started and they start issuing read or write requests to the file set,
where any thread issues a request after its previous one has been completed. The requests of each
workload thread are comprised of 256 subsequent read or write requests of a specified size to a
randomly chosen file. For a sequentially configured access pattern of a request type, the subsequent
requests of the workload threads are directed to consecutive block addresses within a file.

To evaluate composite application workloads, we use the Filebench (n.d.) framework. Filebench
employs a workload definition language to define and emulate typical I/O-intensive applications.
The application workload is comprised of a sequence of file system operations, e.g., a file in a file
set is opened, read, and then closed. The sequence is executed repeatedly by a number of workload
threads (clients) during the measurement period. To define the application workload, Filebench
uses, among others, the following operations:

• openfile: Opens a randomly chosen file in the file set.

• closefile: Closes an opened file.

• createfile: Creates an empty file.

• deletefile: Deletes a randomly chosen file.

• statfile: Requests the meta information of a file.

• readwholefile: Reads a file in one request.

• writewholefile: Writes a file in one request.

• appendfilerand: Appends a random amount of data (with specified mean size) to a file.

In the case studies, we use a file server and a mail server application that are defined using the above
operations as shown in Listing 9.1 and Listing 9.2, respectively. In contrast to FFSB, the file sets
of the workloads in Filebench are not necessarily fully created before the workload threads start
issuing the requests.

132

9.2. Experimental Setup

Listing 9.1: File Server Workload
File set:

- number of files = 10000
- mean file size = 128 KB
- file preallocation = 80 %

5 Threads:
- 50 (default)

Operations:
- createfile
- writewholefile

10 - closefile
- openfile
- appendfilerand , mean size = 16 KB
- closefile
- openfile

15 - readwholefile
- closefile
- deletefile
- statfile

Listing 9.2: Mail Server Workload
File set:

- number of files = 50000
- mean file size = 16 KB
- file preallocation = 80 %

5 Threads:
- 16 (default)

Operations:
- deletefile
- createfile

10 - appendfilerand , mean size = 16 KB
- closefile
- openfile
- readwholefile
- closefile

15 - openfile
- appendfilerand , mean size = 16 KB
- closefile
- openfile
- readwholefile

20 - closefile

133

9. Validation

Guest VM Host VM (Dom0)

Linux Linux

Sun Fire X4440

CPUs,
RAM

Citrix XenServer

RAID Array

SAS

NVC

Figure 9.2.: Schematic Illustration of Sun Fire X4440

9.2.2. System Environments

In the case studies, we use two representative, state-of-the-art server environments to validate our
approach: A Sun Fire environment and an IBM System z environment introduced in the next two
sections.

9.2.2.1. Sun Fire

The first environment is a Sun Fire X4440 x64 server system and is schematically shown in Fig-
ure 9.2. The server contains four 6-core processors and 128 GB of main memory. The storage
subsystem consists of a RAID array with 8 Serial Attached SCSI (SAS) hard disks. The array
contains a 256 MB battery-backed, non-volatile cache (NVC) for write requests. The system is
virtualized using a Citrix XenServer hypervisor and the applications run in Linux guest VMs. The
scheduler of the hypervisor manages the access of the guest VMs to the resources. In contrast to
accesses to the CPUs, XenServer uses for I/O requests accessing the storage resource a privileged
host VM (Dom0) able to access the physical devices. The guest VMs are equipped with multiple
cores and sufficient memory. The file system is configured to the de facto standard EXT4 and as I/O
scheduler, we use the default scheduler in virtualized environments (Ling et al., 2013).

9.2.2.2. IBM System z

The second environment is based on the IBM mainframe System z and the storage system DS8700
first introduced in Section 4.2. To briefly summarize, Figure 9.3 illustrates that the System z pro-
vides processors and memory resources and the DS8700 provides storage space. The environment
is virtualized using the Processor Resource and System Manager (PR/SM) hypervisor creating log-
ical partitions (LPARs, i.e., VMs) that use the resources. To optimize I/O performance, the storage
system DS8700 contains a storage server having a volatile cache (VC) and a non-volatile cache
(NVC) that are enhanced with several pre-fetching and destaging algorithms for increased perfor-
mance (Dufrasne et al. (2010), cf. Section 4.2). In our environment, the DS8700 contains 2 GB

134

9.3. Case Studies on Workload Characterization

LPAR 1 (VM)

z/Linux

PR/SM (Hypervisor)

IBM System z

CPU, RAM

Processors,
Memory

NVC
VC

SSD/
HDD

RAID Arrays

Storage Server

IBM DS8700

Fibre
Channel

Switched
Fibre Channel

LPAR 2 (VM)

z/Linux

Figure 9.3.: Schematic Illustration of IBM System z and DS8700

NVC and 50 GB VC with a RAID-5 array containing seven HDDs and measurements are obtained
in z/Linux LPARs equipped with multiple cores. The I/O-related operating system configurations
are similar to the ones of our previous environment.

9.3. Case Studies on Workload Characterization

In this section, we evaluate our workload characterization introduced in Chapter 5. We focus on our
two evaluation goals to analyze the abstraction level of the workload characterization as well as its
performance evaluation possibilities. The workload characterization steps shown in the following
two case studies are fully automated. Before we begin with the case studies, we introduce the
overall evaluation process. After presenting the case study results, we summarize and discuss the
evaluations.

9.3.1. Overview

The general process for the case studies is illustrated in Figure 9.4 and is comprised of the following
five steps: i) We analyze an I/O-intensive application, e.g., a file server, whose users generate a high-

level workload, e.g., by uploading and downloading files. ii) The high-level workload translates to
low-level I/O workload comprised of simple read and write operations. iii) We observe and monitor
this low-level workload to calculate the metrics of our workload characterization, cf. Section 5.3,
where we use a closed workload intensity characterization. iv) We use the calculated metrics as
input for a reference benchmark to mimic the captured low-level workload. v) We finally compare
the response times obtained using the reference benchmark with the response times of the low-level
I/O workload of the application. For every run (i.e., repetition), we calculate the response time

difference ∆RT between the reference benchmark and the application’s I/O workload using

∆RT :=
∣∣∣∣RT App−RT Re f

RT Re f

∣∣∣∣ , (9.1)

where RT App and RT Re f denote the mean response time of the application and the reference bench-
mark, respectively. For the I/O-intensive application, we use Filebench to measure the considered

135

9. Validation

Monitoring

I/O-intensive
Application,

e.g., File server/
Mail server

Storage

Workload
Characterization:

 - Workload Intensity
 - Request Mix
 - Request Size
 - Access Pattern
 - File Size
 - File Set Size

Mapping to
Reference

Benchmark

Low-level
Workload, i.e.,
reads/writes

High-level
Workload, e.g.,
Upload Files

iv

iii

ii

i

Comparison

Response
Times

Response
Times

v

Figure 9.4.: Workload Characterization Overview

application workloads as introduced in Section 9.2. Furthermore, we use FFSB as reference bench-
mark. In the case studies, we use our two system environments comprised of the IBM System z
and the Sun Fire system, cf. Section 9.2. All measurements, monitoring, and data collection are
automated and the measurements are repeated 20 times each running five minutes with a warm-up
period of one minute.

9.3.2. Case Study I: Workload Characterization

In our first case study, we characterize the two considered applications, a file server and a mail
server application measured using Filebench. In this case study, we use our IBM System z and
IBM DS8700 environment. The evaluation process as introduced in Section 9.3.1 is realized in this
case study as schematically illustrated in Figure 9.5. To characterize the application workload, the
application is first run and monitored to extract the performance and workload characteristics for
the configuration of the reference benchmark. Then, we run the reference benchmark and compare
its response times with the response times of the original workload to evaluate the difference.

The application workloads comprise a set of file system operations, e.g., a file is opened, read,
and finally closed, where the file server and the mail server workload are defined as shown in
Listing 9.1 and Listing 9.2, respectively. Running the two application workloads and extracting the
workload characteristics, Table 9.1 shows both the average of the mean characteristics as well as the
standard deviation of the mean characteristics across the 20 repetitions for the considered workloads.
Furthermore, the table indicates that we obtain a stable characterization across all metrics given the
small standard deviations in relation to the mean values.

Next, we use the characteristics obtained from the applications in Table 9.1 as input for the ref-
erence benchmark. We run our reference benchmark and compare the response time measurements

136

9.3. Case Studies on Workload Characterization

Application
Workload

System

Reference
Benchmark

R
esponse Tim

e
A

nalysisW
or

kl
oa

d
C

ha
ra

ct
er

iz
at

io
n

Figure 9.5.: Workload Characterization Process

Table 9.1.: Workload Characterization for the File and Mail Server Application across 20 runs

File server Mail server
Mean Std. dev. Mean Std. dev.

File Size 129.76 KB 3.91 KB 16.62 KB 0.74 KB
File Set Size 1163.49 MB 5.91 MB 683.68 MB 58.37 MB
Workload Intensity 50 Threads 0 Threads 16 Threads 0 Threads
Request Size Read 105 152.00 B 166.67 B 14 151.17 B 31.63 B
Request Size Write 80 473.09 B 190.77 B 15 639.04 B 81.59 B
Request Mix 41.85 % 0.37 % 55.96 % 0.11 %
Access Pattern Ratio (Read) 97.00 % 2.30 % 28.74 % 0.52 %
Access Pattern Ratio (Write) 99.23 % 0.27 % 57.24 % 1.22 %

with the results obtained using Filebench. For the file server application, the response time measure-
ments of the I/O operations are shown in Table 9.2. For the file server workload, we have two types
of write operations, write and append. For the read and write operations, we obtain a mean response
time of 11.21 ms and 11.65 ms, respectively. Mimicking the file server application with our refer-
ence benchmark, we measure a mean response time of 11.67 ms and 18.48 ms with a mean standard
deviation σ (i.e., the standard deviation averaged over the 20 runs) of 21.13 ms and 20.77 ms for
the read and write requests, respectively. Overall across the repetitions, we obtain a response time
difference ∆RT in the ranges of [1.18 %, 9.62 %] and [33.89 %, 41.06 %] for the read and write
requests, respectively. While the response time difference is very low for read requests, it is higher
for write requests because of the mixed write/append operations of the application. Illustrated in
Figure 9.6, the mean response time difference is 3.93 % and 36.96 % for the read and write requests,
respectively. The response time measurements of the I/O operations of the mail server application
are shown in Table 9.2. Here, each operation is measured twice as shown in the workload description
(cf. Listing 9.2). For the read and append (i.e., write) operation, we obtain a mean response time of
0.98 ms and 0.83 ms, respectively. Now, using FFSB with the extracted configuration to mimic the
application, we obtain a mean read response time of 0.81 ms with a mean standard deviation σ of
2.78 ms. Further, we obtain a mean write response time of 1.29 ms with a mean standard deviation

137

9. Validation

Table 9.2.: Mean and Standard Deviation of the Mean Application Response Times

Workload Operation Resp. Time Std. dev.

File server
ReadWholeFile 11.21 ms 0.26 ms

AppendFileRand 9.36 ms 0.25 ms

WriteWholeFile 13.93 ms 0.47 ms

Mail server
ReadWholeFile

0.98 ms 0.03 ms
0.98 ms 0.03 ms

AppendFileRand
0.66 ms 0.01 ms
1.00 ms 0.03 ms

File Server Mail Server

0

10

20

30

Read Write Read Write

Operation

∆
R

T
(%

)

Figure 9.6.: Mean Response Time Difference ∆RT with Standard Error in Case Study I

σ of 2.94 ms. In comparison, the response time difference ∆RT for read requests is in the ranges of
[17.01 %, 25.87 %] and in the ranges of [31.25 %, 38.54 %] for write requests. Since the absolute
response times are relatively small, the results are considered acceptable. On average, as shown in
Figure 9.6, the response time difference is 20.82 % and 35.72 % for the read and write requests,
respectively. The results show that the I/O workload characterization of the considered workloads
can be obtained in an automated process and are sufficient to capture the key characteristics of the
I/O workloads and their I/O performance.

9.3.3. Case Study II: Workload Migration & Consolidation

In this case study, we use our workload characterization to estimate the impact of migrating an
application from a base to a target system. We employ the process described in Section 9.3.1 in
two scenarios in this case study as schematically illustrated in Figure 9.7 and Figure 9.8. As the
base system, we use the IBM System z and IBM DS8700 environment. We use the Sun Fire en-
vironment as the target system. In our migration scenario, we characterize our application on the

138

9.3. Case Studies on Workload Characterization

Original
Workload

Base System

Reference
Benchmark

Original
Workload

Target System

Reference
Benchmark

Migration

?

R
esponse Tim

e
A

nalysisW
or

kl
oa

d
C

ha
ra

ct
er

iz
at

io
n

Figure 9.7.: Workload Migration Process

Original
Workload A*

Base System Target System

Migration &
Consolidation

?

R
esponse Tim

e
A

nalysisW
or

kl
oa

d
C

ha
ra

ct
er

iz
at

io
n Original

Workload B*

Reference
Benchmark*

Reference
Benchmark*

Reference
Benchmark**

Reference
Benchmark**

Original
Workload A**

Original
Workload B**

* separated execution
 on dedicated hardware

** consolidated execution
 on one machine

Figure 9.8.: Workload Consolidation Process

base system. In particular, we use the file server application in this scenario. Then, we use our
reference benchmark and migrate to the target system. We run the reference benchmark and, finally,
we use the response times obtained with our reference benchmark to estimate the response times
of the original workload on the target system. In our consolidation scenario, we characterize two
applications on the base system in isolation, where we use both the file and the mail server appli-
cation in a heterogeneous scenario, i.e., using two different applications. We then use the reference
benchmark and migrate to the target system, where we run two instances of the benchmark in two
virtual machines in consolidation. Finally, we use the measurements of the reference benchmark
to estimate the impact of consolidating the applications in respective virtual machines on the target
system. We use the workload characterization of the applications in isolation obtained in our first
case study as shown in Table 9.1.

We configure the reference benchmark with the workload characterization to estimate the perfor-
mance of the applications in the target environment in the migration and consolidation scenario. For
both scenarios, we calculate the response time difference as shown in Equation (9.1).

139

9. Validation

Table 9.3.: Mean and Standard Deviation of the Mean Application Response Times

Workload Operation Resp. Time Std. dev.

File server
ReadWholeFile 67.21 ms 0.55 ms

AppendFileRand 34.96 ms 0.44 ms

WriteWholeFile 31.68 ms 0.47 ms

File and
Mail Server

AppendFileRand
85.00 ms 2.08 ms
30.57 ms 0.87 ms
29.94 ms 0.69 ms

WriteWholeFile 93.43 ms 2.46 ms

ReadWholeFile
139.48 ms 2.56 ms
47.67 ms 1.22 ms
46.11 ms 1.20 ms

File Server File and Mail Server

0

5

10

15

20

25

Read Write Read Write

Operation

∆
R

T
(%

)

Figure 9.9.: Mean Response Time Difference ∆RT with Standard Error in Case Study II

Workload Migration. The response time measurements of the application’s I/O operations in
the migration scenario are shown in Table 9.3. Having again two write operations in the file server
application, in the target environment we obtain a mean response time of 67.21 ms and 33.32 ms
for the read and write requests, respectively. Using the reference benchmark in the target envi-
ronment, the mean response time is 55.29 ms (σ = 20.61 ms) for the read requests and 42.21 ms
(σ = 14.49 ms) for the write requests. Overall, the response time difference of the file server work-
load for read requests is in the ranges of [19.12 %, 28.02 %] and for write requests in the ranges
of [12.77 %, 24.12 %]. Averaging the response time difference, we obtain a mean response time
difference of 21.59 % for read request and 20.98 % for write request as shown in Figure 9.9.

Workload Consolidation. For the two applications in consolidation, the response times of the
I/O operations are shown in Table 9.3. The read and write operations are averaged and we obtain

140

9.3. Case Studies on Workload Characterization

a mean response time of 77.75 ms and 59.71 ms for the read and write requests, respectively. For
the measurements of our reference benchmark, the mean response time is 89.34 ms for the read
requests and 79.12 ms for the write requests. Comparing the response time measurements, the
response time difference for read requests is in the ranges of [9.23 %, 17.32 %], while it is in the
ranges of [21.46 %, 28.28 %] for write requests. Overall, the mean response time difference is
12.95 % and 24.51 % for the read and write requests, respectively, cf. Figure 9.9.

In both scenarios, the measurement results between the workloads show sufficient agreement
such that, in conclusion, we are able to automatically obtain the I/O workload characterization
of an application and can use it to successfully estimate the impact of workload migration and
consolidation.

9.3.4. Summary and Discussion

In this section, we presented two case studies to show that our workload characterization of I/O-
intensive applications is a reasonable abstraction of an application workload. In two case stud-
ies, we extracted the workload characterization of a mail and a file server application measured
with Filebench in an automated manner. We compared the applications’ response times to the
ones obtain with our reference benchmark FFSB that uses the workload characterization as input
to mimic the application. Addressing Goal 1 of the evaluation, the first case study demonstrates
the automated applicability and appropriateness of our workload characterization approach to cap-
ture performance-relevant aspects of the considered applications. We measured the two considered
applications in our System z environment, obtained the workload metrics while monitoring the en-
vironment, and evaluated the response time difference between the application and the reference
benchmark. While the response time difference was relatively low for read requests and higher for
write requests, the response time difference was mostly caused by abstracting the variations in the
requests and request sizes simply using averaged request sizes with our reference benchmark. This
can cause higher variations when having multiple different operations of one workload type, for
instance, having multiple append and write file system operations that are translated to write re-
quests at the storage level. Still, the response times of the application and the reference benchmark
were in the same order of magnitude for both types of requests, thus, the characterization provided
a reasonable abstraction of the more complex workloads considered in the case study. In our sec-
ond case study, we addressed both the first and the second goal of the evaluation. We showed that
the workload characterization approach is able to capture the performance-relevant aspects of the
considered applications in an automated process. Furthermore, we showed how our approach can
be used to estimate the impact of application migration and consolidation as we estimated the I/O
performance of the applications in a migrated, new environment. For this estimation, our approach
is more flexible as, for instance, a simple record/replay mechanism, since we are able to capture
an application as well as vary specific parameters (e.g., the workload intensity) if required, which
would be difficult and sometimes impossible for production workloads. In the case study, we were
able to reuse the characterization of the previous case study, thus, there was no additional overhead

141

9. Validation

for the process as we migrated to another environment. Overall, the performance estimation in the
unknown environment was acceptable, even when the workloads were mixed and different applica-
tions consolidated with response times of operations between 30 ms and 140 ms and a maximum
response time difference of 25 %. While, in general, the estimation accuracy could be improved
with a more fine-grained representation and characterization, it would introduce additional com-
plexity and our approach showed to be a reasonable compromise between complexity and accuracy
to use for automated performance evaluation.

9.4. Case Studies on Storage-level Modeling

In the following, we evaluate our storage-level modeling approach using the regression analysis-
based performance prediction introduced in Chapter 6. We address our two evaluation goals and
analyze the prediction accuracy achieved with our approach as well as the reduction in prediction
error with our regression technique parameterization approach. Overall, the measurements as well
as the regression modeling steps shown in the case studies are fully automated. In this section, we
present three different case studies using our IBM System z environment for the evaluation. We first
present a brief overview of the approach and conclude with a summary and discussion of the results
after the case studies.

9.4.1. Overview

In our case studies, we employ the I/O performance modeling process introduced in Section 6.4,
where in the case studies we will first specify the respective modeling target. For each case study,
we choose a representative measurement space configuration, which is then explored with mea-
surements in an automated manner. We then select a set of regression models and search for their
optimal configuration. From the set of studied regression techniques, we choose to create models
using MARS with interaction terms, CART, and Cubist, since MARS models can be seen as an
extension of linear regression models and the Cubist models are a direct extension of M5 trees. Fur-
thermore, the Cubist algorithm is equal to the M5 algorithm for Cubist’s standard parameterization.
To search for the optimal configuration, the regression technique parameterization step is config-
ured reasonably (S3 algorithm with number of splits ζ = 4, number of explorations η = 5, and
maximum number of iterations θ = 10). The considered parameters of the regression techniques
are described in Section 6.3. Finally, for each regression technique we use the measurement data to
create the regression models, which are finally evaluated with new configurations that are not used
in the modeling process. For the evaluation, we calculate the prediction error as the

relative error :=

∣∣∣∣∣metricM
avg−metricP

avg

metricM
avg

∣∣∣∣∣ , (9.2)

where the metric is either response time or throughput, such that we compare the measured average
performance metricM

avg with the average predicted performance metricP
avg.

142

9.4. Case Studies on Storage-level Modeling

Table 9.4.: FFSB Experimental Setup Configuration

I/O scheduler CFQ, NOOP
Threads 100
File set size 1 GB, 25 GB, 50 GB, 75 GB, 100 GB
Request size 4 KB, 8 KB, 12 KB, 16 KB, 20 KB, 24 KB,

28 KB, 32 KB
Access pattern random, sequential
Read percentage 0 %, 25 %, 30 %, 50 %, 70 %, 75 %, 100 %

9.4.2. Case Study I: Modeling Performance-influencing Factors

In our initial case study, we model major I/O performance-influencing factors introduced in Sec-
tion 5.2. To this end, we employ the FFSB benchmark to systematically measure the system en-
vironment with the required fine-grained configurations and use the measurements to create op-
timized regression models. The explicit setup configuration is chosen representatively and given
in Table 9.4. The parameter space is explored in a full factorial design leading to a total of 1120
measurement configurations. For each configuration, in the measurements we use a one minute
warm-up and a five minute measurement phase. In one minute, the benchmark collects approxi-
mately 575000 measurement samples on average and between approximately 90000 and 2800000
measurement samples depending on the configuration. Overall, the mean response times of the read
and write requests are in the ranges of [2.2 ms, 70.4 ms] and [2.8 ms, 60.7 ms], respectively, and
the throughputs of the read and write requests are in the ranges of [4.02 MB/s, 386.70 MB/s] and
[2.99 MB/s, 171.1 MB/s], respectively.

For each of the considered regression techniques, we create four different models to capture the
I/O performance: A read response time model (RTr), a write response time model (RTw), a read
throughput model (TPr), and a write throughput model (TPw). Thus using the three regression
techniques, we create a total of 12 regression models. We evaluate 100 measurement configurations
with parameter values chosen completely randomly within the configured ranges (e.g., 90 GB file
set size, 30 KB request size, etc.). For each configuration, we compare the model predictions with
measurements on the real system. For the 100 configurations, Figure 9.10 illustrates the prediction
errors, the mean prediction errors are shown in the bars in the upper part and as the small crosses
in the lower part. Overall, the models perform very well and especially MARS and Cubist have a
high prediction quality with less than 7 % and 8 % mean prediction error, respectively. After the
parameterization of the models, the CART trees are highly branched, but their prediction accuracy
with approximately 10 % mean error is good. Averaging the four models of the techniques, the
mean of the 95th percentile of the prediction error is 20.89 %, 24.32 %, and 27.48 % for MARS,
Cubist, and CART, respectively.

Finally, we evaluate the improvements in prediction accuracy achieved with our optimized re-
gression parameterization and compare the optimized models with models created with standard
parameters. We evaluate the performance prediction error for each model with the 100 completely
random configurations similar to the evaluation above. In summary, especially MARS and CART

143

9. Validation

MARS CART Cubist

0

5

10

RTr RTw TPr TPw RTr RTw TPr TPw RTr RTw TPr TPw

M
ea

n
R

el
at

iv
e

E
rr

or
(%

)

MARS CART Cubist

0

30

60

90

RTr RTw TPr TPw RTr RTw TPr TPw RTr RTw TPr TPw

R
el

at
iv

e
E

rr
or

(%
)

Figure 9.10.: Prediction Quality (Case Study I)

benefit significantly from the parameter optimization approach and show an average reduction in
prediction error of 66.30 % and 74.08 %, respectively. The reduction in prediction error for Cubist
is 15.7 %. To support these results, we evaluate the statistical significance of the reduction in predic-
tion error in a set of paired t-tests. In these tests, the p-value of both MARS and CART is less than
2.2e−16 and the p-value of Cubist is 3.39e−4, hereby confirming that the parameter optimization
is statistically significant for every considered regression technique. In conclusion, our parameter
optimization approach is key to significantly reduce the prediction errors of the regression models.

144

9.4. Case Studies on Storage-level Modeling

Table 9.5.: Filebench Experimental Setup Configuration

Workload type Mail server workload
Threads 16(∗), 32, 48, 64, 80, 96
Files 1000(∗), 5000, 10000, 20000, 30000,

40000, 50000, 60000, 70000, 80000,
90000, 100000

Mean file size 4 KB, 16 KB(∗), 32 KB, 48 KB, 64 KB,
96 KB, 128 KB, 192 KB
(∗) default value

9.4.3. Case Study II: Modeling Application Workload

For our second case study, we use Filebench to measure and model an application workload and
predict its I/O performance. We use a mail server workload with configurations as indicated in
Table 9.5 triggering a set of mixed file system operations, such as file creation and deletion as
well as whole file reads and append operations of random size, cf. Listing 9.2. We evaluate all
configuration combinations and vary the number of clients (threads), the number of files, and the
mean file sizes as shown in Table 9.5 in a full factorial design leading to a total of 576 measurement
configurations. Similar to the previous case study, we use a one minute warm-up phase and a
five minute measurement phase for each measurement configuration. During the measurements,
the benchmark collects approximately 980000 read and append samples on average and between
approximately 825000 and 1100000 samples depending on the configuration. Furthermore, the
absolute mean response times of the read and append requests are in the ranges of [0.36 ms, 2.74 ms]
and [0.40 ms, 1.70 ms], respectively, and the throughputs of the read and append requests are in the
ranges of [5.95 MB/s, 62.95 MB/s] and [5.60 MB/s, 7.60 MB/s], respectively.

Using each considered regression technique, we create different models for each I/O performance
metric: A read response time model (RTr), an append response time model (RTa), a read throughput
model (TPr), and an append throughput model (TPa) resulting in a total of 12 regression models.
Each model is evaluated using 100 measurement configurations with parameter values chosen ran-
domly within the configured ranges. For each configuration, we compare the model predictions with
measurements on the system. Figure 9.11 illustrates the prediction errors for the various models.
Overall, the models exhibit a very high prediction accuracy and especially MARS shows excellent
results with less than 4 % mean error. The Cubist and CART models perform also very well with
approximately 7 % and 8 % mean prediction error, respectively. Across the four I/O performance
metrics, the mean of the 95th percentile of the prediction error is very good for MARS with 9.66 %.
It is higher for Cubist and CART with 20.78 % and 20.88 %, respectively.

To again evaluate the improvements in model accuracy achieved with our optimized regression
parameterization, we compare the accuracy of the models when using the optimized regression
parameters with those configured with the standard parameters. We evaluate the performance pre-
diction error of the models with 100 random configurations similar to the evaluation above. For
this case study, the optimization approach reduces the prediction error by 4.2 %, 27.3 %, and 8.7 %

145

9. Validation

MARS CART Cubist

0

5

10

RTr RTa TPr TPa RTr RTa TPr TPa RTr RTa TPr TPa

M
ea

n
R

el
at

iv
e

E
rr

or
(%

)

MARS CART Cubist

0

20

40

RTr RTa TPr TPa RTr RTa TPr TPa RTr RTa TPr TPa

R
el

at
iv

e
E

rr
or

(%
)

Figure 9.11.: Prediction Quality (Case Study II)

for MARS, CART, and Cubist, respectively. Evaluating the results in a paired t-test, the p-value
of MARS, CART, and Cubist is 5.26e−4, 9.63e−14, and 2.19e−3, respectively, thus confirming that
the reduction in prediction error is again statistically significant for every considered regression
technique.

9.4.4. Case Study III: Modeling Performance Interference

In the final case study of this evaluation part, we analyze the I/O performance interference between
applications running in separate VMs, i.e., we analyze how the performance of one application is
directly affected by the workload of an application running in a co-located VM as the applications

146

9.4. Case Studies on Storage-level Modeling

Table 9.6.: Hybrid Experimental Setup Configuration

Filebench Workload Parameters @VM1

Workload type File server workload
Threads 50(∗)

Files 10000(∗)

Mean file size 128 KB(∗)

FFSB Workload Parameters @VM2

Threads 50
File set size 1 GB, 2 GB, 5 GB, 10 GB
Request size 4 KB, 8 KB, 16 KB, 32 KB, 64 KB
Access pattern random, sequential
Read percentage 10 %, 30 %, 50 %, 70 %, 90 %

(∗) default value

are sharing the storage resources. In this case study, we focus on applications with a constant and
equal workload intensity and vary the workload type (e.g., read- or write-intensive workload) in one
VM to evaluate how the performance is affected by the characteristics of the workload. In general,
I/O performance isolation in virtualized environments is widely an open issue, thus varying the
workload intensity would lead to obvious performance interference. For the measurements, we use
both the FFSB benchmark and Filebench running a file server workload, which consists of mixed
file system operations, such as file creation and deletion as well as whole file reads, whole file writes,
and append operations of random size, cf. Listing 9.1. The workloads run in two separate virtual
machines with the configurations chosen representatively as listed in Table 9.6. We evaluate all
combinations in a full factorial design leading to a total of 200 measurement configurations. Similar
to our previous case studies, we use a one minute warm-up phase and a five minute measurement
phase.

Before modeling the performance interference, we analyze the absolute number of operations
and the I/O performance. An initial indication for the performance interference between the appli-
cations is the number of read, append, and write operations of the file server workload generated
with Filebench in VM1. Depending on the configuration of the FFSB workload in VM2, the number
of operations in VM1 varies between approximately 375000 and 700000 with a mean of approxi-
mately 550000 operations, while the number of operations in VM2 varies between approximately
420000 and 3100000 with a mean of approximately 1300000 operations. For VM1, the mean
response times of the read, append, and write requests are in the ranges of [13.08 ms, 34.08 ms],
[11.63 ms, 32.12 ms], and [17.90 ms, 52.81 ms], respectively, and the throughputs of the read, ap-
pend, and write requests are in the ranges of [54.80 MB/s, 108.30 MB/s], [3.40 MB/s, 6.20 MB/s],
and [55.30 MB/s, 109.10 MB/s], respectively, depending on the configuration. For VM2, the mean
response times of the read and write requests are in the ranges of [4.34 ms, 26.75 ms] and [7.45 ms,
37.59 ms], respectively, and the throughputs of the read and write requests are in the ranges of
[1.38 MB/s, 218.00 MB/s] and [2.21 MB/s, 95.20 MB/s], respectively, depending on the configura-

147

9. Validation

tion. These values indicate that the performance of both applications strongly depends on the type
of workloads running in the VMs, which is obvious for the workload that is changed (VM2), but
also applies to the co-located workload that remains constant (VM1).

Modeling the interference effects with the considered regression techniques, we create a total of
10 models for each technique: For VM1, we use the configuration in VM2 as independent vari-
ables and create a read response time model (RT1

r), an append response time model (RT1
a), a write

response time model (RT1
w), a read throughput model (TP1

r), an append throughput model (TP1
a),

and a write throughput model (TP1
w). Since the configuration in VM1 remains constant in this case

study, for VM2 we do not need to use the configuration in VM1 as independent variables explicitly.
We create a read response time model (RT2

r), a write response time model (RT2
w), a read throughput

model (TP2
r), and a write throughput model (TP2

w) using the configuration in VM2 as independent
variables. Thus, we create a total of 30 models and evaluate 100 configuration scenarios with param-
eter values chosen randomly within the configured ranges. We use these random parameter values
as configuration for the FFSB benchmark and predict both the performance of the FFSB benchmark
and the performance interference on the co-located VM running the file server application. For each
scenario, we compare the model predictions with measurements on the real system. The prediction
results are given in Figures 9.12 and 9.13 for the various models. Particularly interesting are the
prediction errors shown in Figure 9.12 indicating that the models are able to predict very accurately
how different workload types (e.g., read-intensive or write-intensive) affect the application perfor-
mance on the co-located VM. This is not obvious, since the performance interference is significant
as analyzed above. As illustrated in Figure 9.14, even if the workload remains constant, the re-
sponse times of the I/O operations spread by between 261 % and 295 % depending on the workload
produced by the co-located VM. Overall, the models exhibit a very high prediction accuracy for
both VMs. In general, the MARS models show the highest performance prediction accuracy with
approximately 2.1 % and 5.0 % mean prediction error for VM1 and VM2, respectively. The Cubist
models also exhibit low prediction errors with approximately 2.6 % and 10.0 % mean prediction
error for VM1 and VM2, respectively. Finally, the CART models appear to have the highest error
in this case study with approximately 5.2 % and 13.5 % mean prediction error for VM1 and VM2,
respectively. For VM1, the mean of the 95th percentile of the prediction error across the six models
is very low for MARS and Cubist with 8.39 % and 9.99 %, respectively, while it is slightly higher
with 15.14 % for CART. For VM2, the mean of the 95th percentile of the prediction error across the
four models is 16.15 %, 27.39 %, and 34.00 % for MARS, Cubist, and CART, respectively.

Finally, we evaluate the improvements in model accuracy achieved through our optimized regres-
sion parameterization approach comparing the accuracy of the models when using the optimized
regression parameters with the models created with standard parameters. We evaluate the per-
formance prediction error for each model with 100 random configurations similar to the analysis
above. Depending on the scenario and the regression technique, we obtain a reduction in prediction
error with the optimization approach between 5.0 % and 32.3 %. Furthermore, the p-value is at

148

9.4. Case Studies on Storage-level Modeling

MARS CART Cubist

0.0

2.5

5.0

7.5

RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w

M
ea

n
R

el
at

iv
e

E
rr

or
(%

)

MARS CART Cubist

0

10

20

RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w RT1
r RT1

a RT1
w TP1

r TP1
a TP1

w

R
el

at
iv

e
E

rr
or

(%
)

Figure 9.12.: Prediction Quality VM1 (Case Study III)

149

9. Validation

MARS CART Cubist

0

5

10

15

20

RT2
r RT2

w TP2
r TP2

w RT2
r RT2

w TP2
r TP2

w RT2
r RT2

w TP2
r TP2

w

M
ea

n
R

el
at

iv
e

E
rr

or
(%

)

MARS CART Cubist

0

20

40

60

RT2
r RT2

w TP2
r TP2

w RT2
r RT2

w TP2
r TP2

w RT2
r RT2

w TP2
r TP2

w

R
el

at
iv

e
E

rr
or

(%
)

Figure 9.13.: Prediction Quality VM2 (Case Study III)

150

9.4. Case Studies on Storage-level Modeling

10

20

30

40

50

Read Append Write

R
es

po
ns

e
Ti

m
e

(m
s)

Figure 9.14.: Performance Interference Impact

most 1.46e−3, thus confirming that the optimization is statistically significant for every considered
regression technique.

9.4.5. Summary and Discussion

In this section, we presented three case studies on the creation of optimized regression models using
three regression techniques to analyze and predict the I/O performance and interference effects in
virtualized environments. We evaluated the prediction accuracy in the case studies creating per-
formance models with two different I/O benchmarks. The three case studies comprised models of
major I/O performance-influencing factors, of application workloads, and of I/O performance inter-
ference effects of workloads sharing the storage resources. We used our IBM System z environment
and created the performance models in a fully automated process. Overall, we effectively created
performance models with high predictive power. Notably, out of the three considered regression
techniques, MARS exhibited the highest prediction accuracy in comparison with CART and Cubist
in every case study. The mean prediction error of MARS was between 2.1 % and 7 % in the case
studies, while it was between 5.2 % and 13.5 % for CART and between 2.6 % and 10 % for Cubist.
In summary, we can conclude with regard to our first evaluation goal that we are able to extract
accurate regression models with low prediction errors.

In the case studies, the low prediction errors are especially due to our regression parameter op-
timization approach reducing the error of MARS, CART, and Cubist by up to 66.3 %, 74.08 %,
and 21.9 %, respectively. Furthermore, the regression parameter optimization approach reduced the
prediction error of every considered technique with statistical significance in every case study. Elab-
orating on our second evaluation goal, the optimization was key to obtain the accurate models. For
the optimization runs, Figure 9.15 summarizes for all the case studies the earliest iterations in which
the best regression parameterizations for the regression models were found. Here, we can observe
some interesting aspects. First, the Cubist optimization rarely required all ten iterations to find the

151

9. Validation

Case Study I Case Study II

Case Study III (VM1) Case Study III (VM2)

0

2

4

6

8

10

0

2

4

6

8

10

MARS CART Cubist MARS CART Cubist

MARS CART Cubist MARS CART Cubist

Regression Models

E
ar

lie
st

It
er

at
io

n
of

O
pt

im
al

M
od

el

Figure 9.15.: Optimization Length Summary

best optimization, which is particularly relevant, since the optimization of Cubist is computationally
expensive (cf. Section 6.3). However, Cubist was also optimized along discrete parameters, which
means that if interesting candidates are found, the adjacent areas can be evaluated exhaustively, i.e.,
the search will not continue infinitely as in the case for continuous parameters. The second obser-
vation is that the best parameterization for CART was for multiple models the initial starting point
(Iteration 0), which results in the most branched, most complex CART model. This may be because
the CART models were not able to sufficiently abstract and model the underlying structure of the
data for these scenarios1. If we set aside these cases, the CART parameterization was then usually
requiring more iterations, which is however not overly computationally expensive (cf. Section 6.3).
The final observation for MARS is that the best parameterization is often found in later iterations.
In 14 out of 18 cases, the earliest iteration with the best parameterization was Iteration 7 or above.
Overall, if the regression techniques have continuous parameters, the optimization process might
require more iterations to find the best parameterization. The parameter values, however, might not
differ significantly in the later iterations as the step widths in the search decrease, such that a good
enough model might also be found and considerable within fewer iterations of the optimization.

1Actually, these are not the only scenarios in which the CART models are highly branched, however, this can only be
seen by analyzing the resulting regression parameter values and is not obvious from Figure 9.15.

152

9.5. Case Studies on Software Architecture-level Modeling

Overall, merely ten iterations of our S3 algorithm sufficed to significantly improve the prediction
accuracy of the regression techniques in our case studies.

9.5. Case Studies on Software Architecture-level Modeling

In this section, we evaluate our software architecture-level modeling approach detailed in Chapter 8
with respect to our two evaluation goals, the prediction accuracy and the modeling overhead. We
use the PCM as software architecture modeling approach. We have integrated regression models
into the PCM as I/O analysis model to capture the I/O performance, since they can be obtained in
a fully automated manner. In the following, we present four case studies using our two considered
system environments to evaluate our combined modeling approach. We first give a brief overview
of the evaluation next. After the case studies, we summarize and discuss the results.

9.5.1. Overview

In the case studies, we model the software architecture of the considered applications using the
PCM, where we have integrated the I/O analysis model to predict the delays of the I/O requests.
As I/O analysis model, we use separate regression models for the read and write requests based
on Multivariate Adaptive Regression Splines (MARS), cf. Section 6.3, as they have been the best
predicting regression techniques in this domain in our case studies in Section 9.4. In general, how-
ever, the approach is not limited to the MARS models and the regression modeling formalism as I/O
analysis model. We use FFSB to measure the required parameters of the I/O analysis model listed
in Section 8.3.2 and use the measurements to create the regression models, whose parameters are
optimized using our S3 algorithm (cf. Section 6.2).

For our measurements of the applications that are modeled with the PCM, we use the file server
and the mail server applications provided by Filebench deployed in our two system environments
based on the Sun Fire as well as the IBM System z servers, cf. Section 9.2. We run the applications
multiple times with one minute warm-up time and five minutes measurement time and then average
the measurements across the repetitions. We use three repetitions, where the measurements exhibit
sufficiently stable results in our environments. We model the applications as well as the system
environments with the PCM. For the requests of the applications, we model the create and delete
operations as requests to the CPU resource. We model the open, close, and stat operations as
requests to a Delay resource (infinite server resource). We model the I/O operations read, write, and
append as requests to the virtualized storage system resource whose performance is captured by the
I/O analysis model.

To evaluate the prediction accuracy, we use the following two metrics, i) the mean I/O response
time prediction error errI/O and ii) the end-to-end response time prediction error errE2E that are
defined as

errI/O :=
1
n

n

∑
i

∣∣∣∣opsIOM
i −opsIOP

i
opsIOM

i

∣∣∣∣ (9.3)

153

9. Validation

and

errE2E :=
∣∣∣∣∑i opsM

i −∑i opsP
i

∑i opsM
i

∣∣∣∣ , (9.4)

respectively, where opsIOM
i and opsIOP

i is the measured and predicted response time of the i-th
I/O operation (i.e., read, write, or append), respectively, and opsM

i and opsP
i is the measured and

predicted response time of the i-th operation, respectively.

9.5.2. Case Study I: File Server on Sun Fire

In our initial case study, we measure and model the file server application in the Sun Fire envi-
ronment. To get an impression of the PCM model, Figure 9.16 illustrates the modeled application
using the PCM in two simplified views, which are captured in the PCM in different submodels
(cf. Section 3.4). Figure 9.16a shows the components and resources as well as the interface of
the application, which is exposed to the users. The interface of the application is modeled accord-
ing to the operations provided by Filebench. The application component maps the operations on
the respective resource, where we employ a CPU, a Delay, and the Virtualized Storage System re-
source. Operations to the CPU and Delay resource specify their demand, which is a simple decimal
number (double), operations to the storage resource are determined by the extended parameters,
which also include more complex data types such as enumerations (enum) and composite data types
(composite). Figure 9.16b illustrates the usage model describing the sequence in which the users
invoke the operations of the application. This model is obtained from the Filebench workloads,
where in the file server we have a population of 50 users with no think time, which describes a
closed workload. Furthermore, the sequence of operations in this case study is determined from the
workload definition as given in Listing 9.1. The operations are either calibrated with their demand
or parameterized according to the workload definition.

To capture the application in the PCM, we calibrate the architecture model of the file server with
40 clients (threads), which is a value below the default value to also predict the default number of
clients. To this end, we calibrate the resource demands of the operations using the CPU and Delay
resource as well as the memory length for the I/O analysis model and the passed parameters. For
the prediction, we increase the number of clients and evaluate both the mean I/O response time
prediction error as well as the end-to-end response time prediction error.

We increase the number of clients up to 70 and observe that the end-to-end response time mea-
surements increase from 103.09 ms (40 clients) to 188.51 ms (70 clients). For the configurations,
Figure 9.17 illustrates the prediction error with the software architecture model. In general, the
architecture model exhibits a very high prediction accuracy in this case study with approximately
between 5 % and 8 % prediction error for both the mean I/O response time and the end-to-end
response time. The prediction accuracy is notably high especially considering the fact that two dif-
ferent types of write operations, i.e., 128 KB write and 16 KB append requests, are predicted using

154

9.5. Case Studies on Software Architecture-level Modeling

Usage

Application

A
pp

lic
at

io
n

La
ye

r
In

fr
as

tru
ct

ur
e

La
ye

r

Delay

CPU

ResourceContainer

«Resource» «Resource»

Virtualized
Storage System

«Resource»

«Interface»

void openfile(double demand)
void closefile(double demand)
void createfile(double demand)
void deletefile(double demand)
void statfile(double demand)
void readwholefile(double requestSize,
 enum requestType, double sequentiality,
 composite fileset)
void writewholefile(double requestSize,
 enum requestType, double sequentiality,
 composite fileset)
void appendfilerand(double requestSize,
 enum requestType, double sequentiality,
 composite fileset)

«describes»

(a) Components and Resources (cf. Figure 8.3)

Usage
«ClosedWorkload»

Population: 50
Think Time: 0

writewholefile
requestSize: 128 KB
requestType: write
sequentiality: 0
fileset: FileServer

createfile
demand: x
 (calibrated)

closefile
demand: y
 (calibrated)

...

(b) Interaction of the Users with the System

Figure 9.16.: Illustration of the Application Modeled with the PCM (simplified)

155

9. Validation

errI/O errE2E

0.0

2.5

5.0

7.5

50 60 70 50 60 70

Clients

E
rr

or
(%

)

Clients 50 60 70

errI/O 4.84 % 7.56 % 6.86 %
errE2E 5.62 % 7.90 % 7.43 %

Figure 9.17.: Prediction Error in Case Study I

the same I/O analysis model in the simulation that takes as input the mean write request size of
requests currently accessing the storage, cf. Section 8.3.

9.5.3. Case Study II: Mail Server on Sun Fire

In our second case study, we use another application and model the mail server in the Sun Fire
environment. We adapt the PCM model shown in the previous case study to fit to the description
of the mail server application. Similar to the previous case study, we calibrate the PCM model of
the mail server with a number of clients below the default value with 10 clients and calibrate the
operations using the CPU and Delay resources as well as the memory length for the I/O analysis
model and the passed parameters. We increase the number of clients in steps of 10 and evaluate
both the mean I/O response time prediction as well as the end-to-end response time prediction.

When we increase the number of clients up to 40, we observe that the end-to-end response time
measurements increase from 24.98 ms (10 clients) to 56.40 ms (40 clients). Figure 9.18 illustrates
the prediction error with the PCM model. Compared to our previous case study, the prediction error
is higher, however, we also increased the workload intensity from calibration to prediction by up to
300 % for this application. Still, the accuracy with an I/O prediction error between 16 % and 20 %
and an end-to-end prediction error between 18 % and 23 % is well within acceptable ranges.

9.5.4. Case Study III: File Server on System z

In this case study, we use another system environment and model the file server application consid-
ered in our first case study in the IBM System z environment. Since we use the same application

156

9.5. Case Studies on Software Architecture-level Modeling

errI/O errE2E

0

10

20

20 30 40 20 30 40

Clients

E
rr

or
(%

)

Clients 20 30 40

errI/O 20.31 % 16.43 % 16.68 %
errE2E 23.44 % 18.36 % 19.21 %

Figure 9.18.: Prediction Error in Case Study II

as before, we can reuse the structural information that is modeled with the PCM. We merely have
to exchange the I/O analysis model and recalibrate the PCM model. Similar to the first case study,
we calibrate the PCM model of the file server with 40 clients and increase the number of clients in
steps of 10 to evaluate both the mean I/O response time prediction error errI/O and the end-to-end
response time prediction error errE2E .

Increasing the number of clients up to 70, we observe that the end-to-end response time mea-
surements increase from 38.66 ms (40 clients) to 68.55 ms (70 clients). Figure 9.19 shows the
prediction error with the PCM model for the configurations. The prediction error in this case study
is encouraging with a prediction error between 16 % and 18 % for the I/O response time and a
prediction error of approximately 15 % for the end-to-end response time. Compared to the first case
study employing the Sun Fire environment, we observe higher prediction errors in this case study.
This is due to the high processing speed of the storage system resulting in a software bottleneck in
the Filebench application during the response time measurements, which we first had to mitigate
manually to obtain acceptable results.

9.5.5. Case Study IV: File and Mail Server on System z

In our final case study, we use the System z environment and extend the application setup modeling
the file server as well as the mail server application, where each application runs in a separate VM.
We measure the file and the mail server with 40 and 10 clients, respectively, and increase the number
of clients for both applications simultaneously in steps of 10 to predict the mean I/O response time
prediction error errI/O and the end-to-end response time prediction error errE2E .

157

9. Validation

errI/O errE2E

0

5

10

15

20

50 60 70 50 60 70

Clients

E
rr

or
(%

)

Clients 50 60 70

errI/O 16.45 % 16.02 % 18.12 %
errE2E 15.33 % 14.34 % 14.93 %

Figure 9.19.: Prediction Error in Case Study III

For the applications, we observe that the end-to-end response time measurements are between
52.67 ms (40 clients) and 106.87 ms (70 clients) for the file server and between 37.03 ms (10 clients)
and 65.25 ms (40 clients) for the mail server. To predict the I/O performance, we still use a sin-
gle regression model integrated into the PCM to capture the I/O performance of the consolidated
applications. The prediction errors are summarized in Figure 9.20 and Figure 9.21 for the file and
the mail server, respectively. For the file server, the model exhibits a constant prediction accuracy
across the scenarios with approximately 16 % mean I/O response time prediction error as well as
end-to-end response time prediction error. For the mail server, the prediction error is again higher
than the file server application as the workload intensity is again increased from calibration to pre-
diction by up to 300 %. Still, the prediction error is acceptable with approximately between 18 %
and 25 % mean I/O response time prediction error and between 18 % and 28 % end-to-end response
time prediction error.

9.5.6. Summary and Discussion

In this section, we presented four case studies modeling a file server and a mail server application
at the software architecture level running in two representative virtualized environments, whose
I/O performance is not easily modeled manually (cf. Chapter 7). To capture the I/O performance
of the system environments, we employed our regression analysis-based modeling approach in an
automated process to obtain an I/O analysis model with reduced manual effort. We integrated
the regression models into the software architecture model of the PCM and demonstrated that the
combination approach can be used to predict the performance of the considered I/O-intensive appli-
cations. We evaluated the prediction accuracy for capacity planning scenarios when the number of

158

9.5. Case Studies on Software Architecture-level Modeling

errI/O errE2E

0

5

10

15

20

50 60 70 50 60 70

Clients

E
rr

or
(%

)

Clients 50 60 70

errI/O 16.62 % 16.77 % 16.64 %
errE2E 15.49 % 16.17 % 16.64 %

Figure 9.20.: Prediction Error in Case Study IV – File Server

errI/O errE2E

0

10

20

30

20 30 40 20 30 40

Clients

E
rr

or
(%

)

Clients 20 30 40

errI/O 17.54 % 24.09 % 24.68 %
errE2E 18.10 % 25.91 % 28.29 %

Figure 9.21.: Prediction Error in Case Study IV – Mail Server

159

9. Validation

users increases and obtained an average end-to-end prediction error across the prediction scenarios
of 6.98 %, 20.34 %, 14.87 %, and 20.39 % in the four case studies. Overall, this addresses our
first evaluation goal and shows that the combined model can be used to predict the performance
with sufficient accuracy. Furthermore, the case studies showed relevant results regarding our sec-
ond evaluation goal and the modeling overhead and transferability. As the regression models were
created in an automated process, the modeling overhead of the storage infrastructure was minimal.
This is especially beneficial to capture both the I/O performance as well as the mutual performance
influences of parallel workloads at the storage resources as shown in our final case study, where two
parallel applications running in separate VMs share the storage resources. Also, the structural and
behavioral model of the applications captured with the PCM could be reused when the system envi-
ronment changed, which increases the transferability of the architecture model. Only the regression
model capturing the I/O performance needed to be exchanged and the resource demands in the PCM
needed to be re-calibrated.

Realizing the case studies also revealed some considerations beyond the prediction results. A
first observation is that the prediction accuracy of the combined model might also depend on the
calibration of the I/O analysis model parameterization. For instance, the overall I/O load produced
on the storage system in our IBM System z environment was reduced as mentioned above because
of a software bottleneck in the Filebench applications during the response time measurements as a
result of very fast I/O request processing by the storage system, which resulted in overestimations
of the I/O delays by the combined model. To address this issue, we had to manually identify the
bottleneck in Filebench and mitigate its effect. Furthermore, in our final case study we reduced
the calculated concurrent request parameter by 25 % when passed to the I/O analysis model during
simulation. In general, further tailoring of the calibration might increase the prediction accuracy,
however, we limited the calibration process in the case studies to a practically reasonable amount to
obtain sufficiently accurate performance predictions. A further consideration is that the regression
models employed in the case studies to capture the I/O performance are created at a certain abstrac-
tion level with the goal to predict mean response times, thus the models abstract the distributions of
the response times and have an inherent potential for inaccuracies. To extend the approach to pro-
vide response time distributions, the simulation could use further regression models that model and
predict response time quantiles. However, this also increases the modeling overhead. Finally, a sig-
nificant observation in the case studies is that to obtain a regression model for the I/O performance,
a large number of measurements is needed in general to cover all configuration combinations. In
the case studies, we reduced the number of required measurements for the regression models by
first testing the parameter ranges produced by the application workload. The regions around those
ranges were then explored with measurements to create the regression model. An alternative ap-
proach would be to use our queueing theory-based modeling approach to predict the I/O response
times, however, creating the model requires more manual effort in general.

160

9.6. Discussion of the Approach

9.6. Discussion of the Approach

Overall, the case studies in the previous sections showed that we are able to obtain reasonable
I/O performance predictions in non-trivial virtualized environments. After the presentation of the
prediction results along the previous case studies, this section highlights the scope of our work by
discussing the applicability and the evaluation criteria as well as the assumptions of the approach. In
the following sections, we elaborate on these considerations grouping the discussion along multiple
aspects: i) Automation, ii) modeling abstraction, iii) complementary formalisms, iv) predicting the
performance without our approach, v) discussion of the evaluation criteria, and vi) assumptions and
limitations. Overall, aspects i) and ii) are important aspects that allow to employ our approach by
non-performance engineering experts. These aspects as well as aspect iii) are significant for an
increased applicability of our work.

9.6.1. Automation

One of the key factors for the applicability and reproducibility of the approach presented in this the-
sis is its high degree of automation and tool support (cf. Section 5.4, Noorshams et al. 2015). More
specifically, all measurements, monitoring, and I/O performance model creations presented in the
case studies of this chapter are fully automated. Merely the software architecture-level model in the
PCM was created manually in our case studies, however, existing approaches showed how to create
PCM models from running applications (e.g., Brosig et al., 2011; Brosig et al., 2009) and from
source code (e.g., Krogmann, 2010), which was not the focus of our work. As a result, this sup-
ports the applicability and the reproducibility of the approach through the reduced manual effort and
limited vulnerability to manual errors during the performance evaluation, which in turn increases
the efficiency of the work. Furthermore, this reduces the required expertise for performance model
creation as well as required depth of analysis of the system environment.

9.6.2. Modeling Abstraction

Our overall approach is targeted at obtaining practical performance models including the model-
ing and prediction at the software architecture level. As part of our approach, the storage-level
I/O analysis models were generally developed to provide easily parameterizable abstractions. The
regression analysis-based models introduced in Chapter 6 merely require observations in form of
measurements, which were obtained in our case studies using different I/O benchmarks. Simi-
larly, the queueing theory-based models presented in Chapter 7 are calibrated with response time
measurements only and do not require in-depth monitoring data. While the modeling formalisms
and elements of the storage-level I/O analysis models are at a lower abstraction level, as detailed in
Chapter 8 we employ the I/O analysis models and integrate them into the software architecture-level
modeling approach of the PCM, which is generally characterized by a high modeling abstraction
level and comprised of largely intuitive modeling constructs. The combined models in our exten-
sion of the PCM as evaluated in Section 9.5 are key for the I/O performance models at the high

161

9. Validation

abstraction level. Simply the structure and the behavior of an application need to be specified as
indicated in Figure 8.3 and Figure 8.4 as well as Figure 9.16.

Addressing the relevance of this extension of the PCM, Chapter 7 presented how the modeling of
I/O performance can be done explicitly with the use of modeling formalisms for request scheduling.
Modeling such a request scheduling in the PCM is not intended and it is therefore not natively
supported. Without our extension, it is required to extend the PCM by an explicit scheduler (e.g.,
realized by a simulator) to enforce the request scheduling as needed and identified by example
in Chapter 7. This scheduler extension, however, has to be realized manually, which is not only
demanding expertise and system understanding, but also a significant amount of time. From a
practical point of view, the benefit of our approach combining storage-level models with software
architecture-level models is that it abstracts the complexity and modeling overhead and hides them
into tools and automated processes, since the target group of the PCM is comprised of software
developers that are not necessarily performance engineering experts. As shown in Chapter 8, the
modeler only provides estimations for the I/O requests without their resource demands or scheduling
behavior at the storage level. All the request information from the application level to the storage
level is mapped in the PCM during a simulation-based model solving and our storage scheduler in
the simulation is able to estimate the actual I/O request delays.

9.6.3. Complementary Formalisms

For our I/O performance analysis, we have used and tailored multiple, complementary formalisms to
increase the applicability of our work. We used both an implicit and an explicit modeling approach
to create the storage-level I/O analysis models. The implicit, regression analysis-based modeling
approach is fully automated. The caveat of this approach is, however, that the required number of
measurements grows exponentially with the number of modeled factors. Still, a possible use case
for such an approach is to create the regression models automatically by the system manufacturer
when deploying the system environment. In general, newly developed systems are usually evalu-
ated with benchmarks and extending the process by an automated model creation step can provide
a benefit and support the customers to use the resources efficiently. If the required measurements
need to be reduced, the explicit, queueing theory-based modeling approach can be used by a per-
formance expert to create the performance model initially. As the measurements for calibration can
be automated as done in our work, the model can be calibrated automatically if a similar system
environment is to be modeled. Finally, we use and integrate our I/O analysis models into a software
architecture-level modeling approach developing a high-level modeling approach that is simple to
employ. Overall, these modeling approaches can be used to find the best fitting system environment
for given applications by estimating the applications’ performance and the required resources to
guarantee a certain level of application responsiveness.

162

9.6. Discussion of the Approach

9.6.4. Predicting the Performance without our Approach

The multiple case studies of this chapter showed that our approach is able to predict the I/O per-
formance in virtualized environments with a high degree of automation. By extending the PCM,
we developed an approach to predict the I/O performance at the software architecture level, since
we claimed that the existing software architecture-level modeling approaches do not sufficiently
consider the performance-influencing factors. At this point, however, the questions arise: What is
the prediction accuracy of the PCM without our extension? Are the additional modeling artifacts
of our extension justified? To support our claim that our approach is key to obtain accurate predic-
tions, we find an example showing that the PCM without our extension struggles to predict the I/O
performance in virtualized environments with sufficient accuracy.

For this example, we exploit our knowledge gained in Chapter 7. There, we analyzed the effects
of different types of I/O requests on the performance of the respective requests. More specifically,
we observed in our reference environment that read and write requests are processed depending
on the ratio of the request types. In the PCM without our extension (in the following denoted
PCM Standard), I/O requests are abstracted and represented by their demand. In the PCM with our
extension (in the following denoted PCM Extended), we are able to explicitly distinguish between
read and write requests and their I/O delay is determined by our I/O analysis model. Consequently,
our hypothesis is that if we change the ratio of read and write requests of an application deployed
in our reference environment, we find an example where the prediction accuracy of PCM Extended
excels the prediction accuracy of PCM Standard.

To this end, we modify the setup of one of our previous case studies. Similar to the third case
study shown in Section 9.5, we model the file server application in the IBM System z environment
(cf. Section 9.2). For both PCM Extended and PCM Standard, we calibrate the PCM model of the
file server application with a given number of clients. Then, we predict the effect when the number
of read operations in the file server application is increased by a factor of five, i.e., we predict the
effect of five reads instead of one in the sequence of the application. The performance predictions
of this scenario are given in Figure 9.22, where we have indicated the target prediction accuracy of
up to 30 % prediction error (cf. Menascé et al., 2000). We evaluated the mean I/O response time
prediction error errI/O and the end-to-end response time prediction error errE2E as defined in Equa-
tion (9.3) and Equation (9.4), respectively. We calibrated the PCM models with 50 clients (default
value) as well as with 60 clients and predicted the performance in each case when the read propor-
tion increases. As shown in Figure 9.22, PCM Extended exhibits a good prediction accuracy with
approximately 20 % mean I/O response time prediction error and approximately 12 % end-to-end
response time prediction error. By contrast, the prediction error is significantly higher with PCM
Standard exceeding the prediction error threshold. We purposefully triggered the high prediction
errors of PCM Standard of more than 50 % in these scenarios. Overall, this confirms our hypoth-
esis showing that our approach is required and allows for accurate I/O performance predictions in
virtualized environments at the software architecture level.

163

9. Validation

errI/O errE2E

0

10

20

30

40

50

50 60 50 60

Clients

E
rr

or
(%

) PCM

Extended

Standard

(a) PCM Extended

Clients 50 60

errI/O 20.72 % 20.25 %
errE2E 11.90 % 11.44 %

(b) PCM Standard

Clients 50 60

errI/O 51.49 % 54.05 %
errE2E 50.52 % 53.58 %

Figure 9.22.: Prediction Error of the Standard PCM and the PCM with our Extension

9.6.5. Discussion of the Evaluation Criteria

In the introduction of this work in the first chapter, we highlighted the five evaluation criteria our
approach aims to fulfill, we aim i) to provide an abstraction of the system environment, ii) to
accurately predict the performance, iii) to create the models efficiently, iv) to scale and model
realistic environments, and v) to provide automation and tool-support:

1. Abstraction: Overall, we can summarize that we abstracted two real-world, realistic environ-
ments with manageable performance models. Our regression analysis-based approach derives
the relationship between the performance-influencing factors and the I/O performance statisti-
cally and in an automated process. Our queueing theory-based approach requires an analysis
by an expert, but allows for simplified reuse by only requiring to calibrate a few queueing
stations and model parameters as described in Chapter 7. By allowing to use our I/O perfor-
mance modeling approach at the software architecture level, we enable to model and predict
the I/O performance at a high abstraction level without demanding deep knowledge of the
system details.

2. Accuracy: Across the multiple case studies, we successfully predicted the I/O performance
in different environments and in many scenarios with the required accuracy of less than 30 %
prediction error. As described in the final case studies, our approach does not only provide
accurate prediction, but also showed to successfully capture the I/O performance and hide the
complexity of virtualized environments at the software architecture level.

164

9.6. Discussion of the Approach

3. Efficiency: In our I/O performance modeling approach, we increase the model building effi-
ciency by providing a high degree of automation and clear processes throughout the different
aspects. In regard to the software architecture-level modeling approach, we were even able
to reduce the model parameterization effort while at the same time increasing the prediction
accuracy as demonstrated in the final case studies and the previous section. More specifically,
while it was previously necessary to manually estimate the resource demands of I/O requests,
our approach merely requires to specify parameters of the requests, such as the request type
and size, which can be specified from the workload description or easily estimated because
of the tangible nature of the parameters. Furthermore, using the fully automated regression
analysis-based modeling approach reduces the required expertise and analysis of the system
environment allowing to capture the I/O performance effects with reduced manual effort. If
the number of measurements needs to be reduced, our queueing theory-based modeling ap-
proach can be applied, where only calibration measurements are required after the structure
of the model is identified.

4. Scalability: Across the case studies, we evaluated our approach in two realistic, state-of-the-
art system environments based on IBM System z and Sun Fire server hardware. The two
systems are not only representative, non-trivial environments, but also heterogeneous in both
virtualization architecture and hardware infrastructure. This allows to draw the conclusion
that our approach can scale to further environments and in real-world scenarios.

5. Automation: As dedicatedly discussed above, we automated our modeling approach to a high
extent to simplify the applicability and efficiency of our approach and reduce the risk for
manual errors. More specifically, all measurements and monitoring data collections as well
as the I/O performance model creations as part of our approach that are demonstrated in the
case studies of this chapter are automated and tool-supported.

9.6.6. Assumptions and Limitations

A central challenge of this thesis is to provide I/O performance predictions with a reasonable trade-
off between modeling applicability and prediction accuracy. For the presented case studies, we have
demonstrated that we are able to obtain sufficiently accurate performance predictions. In general,
however, our modeling approach has assumptions and limitations.

Since the storage-level I/O analysis models are measurement-based, the probably most appar-
ent assumption for the I/O performance models is that the regarded system environment needs to
be available to obtain measurements at the time of the model creation. This has implications for
performance evaluations at software design time and requires that at least the target system or a
comparable one can be used to create the I/O analysis models. Estimations may help as well, but
are probably less effective. Once such a system environment is available, the benefit of our ap-
proach is that the storage-level performance model is represented by the workload characterization

165

9. Validation

in a generic manner, such that the model can be created once and can be used for different applica-
tions and workload profiles for performance predictions at the software architecture level.

Regarding the application, our modeling approach was designed to model stable workload as op-
posed to, e.g., bursty and fluctuating workload. Although we have not demonstrated this, we reason
that we are able to at least obtain a reasonable pessimistic performance estimation of bursty and
fluctuating workload. If the application is modeled at the time of the highest load, an estimation for
the worst case performance of the system is still helpful to plan the system capacity accordingly. For
example, an application may have usually 20 users and 50 users during peak hours. Our approach
can be used to predict the performance for 20 users first, and then for 50 users afterwards, such that
the system environment can be optimized for both situations individually.

In the models, we abstracted the workload factors and used mean values for the dimensions of the
workload characterization throughout the modeling process. Similarly, the I/O performance predic-
tions aim to predict the mean response times and throughputs and are not intended to predict the
performance distributions per se. Usually, the average performance is a reasonable indicator for the
overall system performance and a metric that is easy to understand and interpret. In general, how-
ever, SLAs may include worst case performance guarantees in terms of the maximum response time
or the 95th percentile of the response time, for example. For such cases, our approach needs to be
extended to consider distributions for the workload factors as well as for the modeling formalisms,
for example by using multiple regression analysis models capturing the relevant performance quan-
tiles or approximating the distributions of the performance in the queueing models more closely.

In the case studies on our software architecture-level modeling approach, the applications mod-
eled with the PCM were straightforward to capture at the architecture level. This is because the focus
of our work was not to evaluate if the PCM can capture a complex application, but to analyze how
the I/O performance in complex environments can be predicted by providing only the architecture-
level application information and using this information in a combined model solving approach to
obtain the results. At this point, more complex applications with bursty and varying behavior, for
example, might require to extend the models employed within our approach as discussed above by
using response time distributions and possibly refining the performance-influencing factors. Still,
the considered applications are representative, typical I/O-intensive applications and sufficient as a
proof-of-concept of our approach.

In our performance modeling process, we analyzed the different modeling approaches assuming
to have enough time for the model creation, calibration, and validation, which is a reasonable as-
sumption at software design time. During software runtime, further constraints typically arise, such
as limited amount of time and data available for the modeling process. While we were focused on
efficiently creating the performance models, it needs to be investigated if and how our approach
needs to be extended to account for online performance prediction scenarios. For example, our
automated workload characterization approach can be used to first extract the workload characteris-
tics of a running application, and then our regression analysis-based modeling approach specifically

166

9.6. Discussion of the Approach

focusing on an efficient model creation can be applied to obtain a performance model. This model
created under online conditions can then be evaluated for its applicability and prediction accuracy.

Considering the modeled resource, the focus of our work was exclusively I/O performance of
storage resources. While we abstracted some file system operations as CPU operations, a combined
consideration of CPU, memory, and network resources with the storage resources including mutual
performance effects is not addressed in our work. Generally, there can be mutual performance
influences and bottlenecks that can be investigated in modeling approaches analyzing such effects.
Still, our work is beneficial for I/O performance analysis when the storage resource is the bottleneck
and provides a basis for extension to account for combined effects with other resources. Such
a combined consideration is useful in heterogeneous environments that serve different applications
that are not necessarily all I/O-intensive as well as in cases where the bottleneck shifts from resource
to resource depending on the workload profile. For example, light data workload may be served
from memory, thus putting the burden on the CPU and memory resources, whereas heavy data
workload may not be buffered by the memory sufficiently, thus shifting the bottleneck to the storage
resource.

In the context of storage resources, the focus of our work is block-based storage as described in
Chapter 2. Other storage paradigms, such as file-based and object-based storage, were not analyzed
as part of our work and may reveal other abstractions and opportunities for performance modeling
approaches. These approaches could in turn be tailored to efficiently obtain performance results in
scenarios that were not in the focus of this work, for instance, when employing object storage in
Cloud environments.

Finally with regard to our system setup, our work was applied to up to three VMs accessing and
sharing a storage system. Typical productive environments are comprised of many VMs and storage
systems and it needs to be investigated if our work can be applied in such scenarios and possibly
how it needs to be extended to capture larger setups efficiently. Still, the case studies of our work in
the non-trivial environments encourage the applicability of our work in further, complex scenarios.

In summary, we have shown that our approach is able to predict the performance of I/O-intensive
applications in sufficiently complex environments with generally acceptable accuracy. In our ap-
proach, we were focused on modeling mean performance characteristics of block-based storage in
cases where the storage resource is the bottleneck. Given the required time and data, our mod-
eling approach provides tailored techniques for virtualized environment using different modeling
formalisms to model and predict the performance depending on the available expertise. For a fur-
ther applicability, our approach can serve as a basis for different extensions and investigations along
multiple dimensions as highlighted in this section revealing paths for future research.

167

Part III.

Related Work and Conclusion

169

10. Related Work

There are multiple fields concerned with performance evaluation and modeling that are related to
the work presented in this thesis. The focus of this chapter is to systematically analyze existing
approaches and address their relationship to our work. To this end, in the following we broadly sur-
vey related work grouped into multiple areas. We begin with a brief overview of the related areas in
Section 10.1. We then in Section 10.2 discuss related approaches that analyze and model I/O perfor-
mance in virtualized environments. Section 10.3 summarizes approaches concerned with analyzing
and modeling of I/O performance interference. As part of our work, we integrated our I/O perfor-
mance models into software architecture modeling approaches and we focus on similar approaches
in Section 10.4. We further expand the discussion to more broadly related work. We introduce
selected, established approaches for modeling disk and disk array performance in Section 10.5 and
in Section 10.6, we elaborate on general system performance evaluation and modeling approaches.
To conclude, Section 10.7 summarizes this chapter and highlights the main distinguishing aspects
of this thesis.

10.1. Overview

To give an overview of the performance evaluation and modeling approaches presented in this chap-
ter, in this section we briefly introduce the areas of related work. The general areas are illustrated
in Figure 10.1, where we color-coded the areas w.r.t. their relation to our work. The areas are i) I/O
performance analysis and modeling in virtualized environments, ii) I/O performance interference
analysis and modeling in virtualized environments, iii) software architecture-level I/O performance
modeling, iv) disk-based I/O performance modeling in native environments, and v) general systems
performance evaluation and modeling in virtualized environments. Among these areas, our work
fits into the areas i) – iii) and is highlighted in their intersection in Figure 10.1.

The areas and the related approaches can be roughly classified along the following three dimen-
sions:

• Modeling in Virtualized Environments – Modeling in Native Environments

Approaches modeling performance in virtualized environment are in the areas i), ii), the inter-
secting parts of area iii) with areas i) and ii), and area v). The remaining parts are addressing
performance in native environments.

• Modeling of I/O Performance – Modeling of System Performance

Areas addressing and analyzing I/O performance are areas i) – iv) and the intersecting part of
area v) with area i).

171

10. Related Work

Generally More Related Generally Less Related

I/O Performance
Interference Modeling

Chiang et al. (2011),
Koh et al. (2007),

Groot et al. (2013),
Yang et al. (2012),

Pu et al. (2010)

Huber et al. (2010)

Becker et al. (2009),
Shanthikumar et al. (1983)

Kraft et al. (2012)

Architecture-level I/O
Performance Modeling

Wert et al. (2012),
Woodside et al. (2001)

Systems Performance
Evaluation and Modeling

Balsamo et al. (2004),
Koziolek (2010),

Huber et al. (2012),
Hauck et al. (2013),

Barham et al. (2003),
Iyer et al. (2009)

Disk-based I/O
Performance Modeling

Bucy et al. (2008),
Harrison et al. (2007),
Lebrecht et al. (2011),

Varki et al. (2000),
Lee et al. (1993)

I/O Performance
Analysis and Modeling

i)

ii)

iii)

iv)

v)

Ahmad et al. (2003),
Gulati et al. (2009)

Our
Work

Kundu et al. (2012)

Figure 10.1.: Areas of Related Work with the Center I/O Performance Analysis and Modeling in
Virtualized Environments

• Modeling at the Architecture Level – Modeling at the Storage Level

Evaluation approaches at the architecture level are in area iii) and its intersecting parts with
areas i), ii), and iv). The rest is focusing on a more lower, storage level.

In the following sections, we will discuss the related work within the five areas. For the sake of
clarity, a compact overview of the related work can be found in Appendix A.

10.2. I/O Performance Analysis and Modeling

The first area of related work is focused on analyzing and modeling storage I/O performance in
virtualized environments. The approaches in this area are closely related to the I/O analysis models
of our work, however, the approaches are primarily focused on capturing the I/O performance-
influencing factors at a low abstraction level and it is not straightforward to include such models into
software architecture models, since the required information between the two modeling abstraction
levels needs to be synchronized.

Closest to our work among the approaches in this area, Kraft et al. (2012) present two queue-
ing theory-based approaches to model and predict the I/O performance in virtualized environments.

172

10.3. I/O Performance Interference Modeling

They focus on scenarios when consolidating multiple VMs that run I/O-intensive applications. In
their first approach, they develop a simulation model for consolidated homogeneous workloads.
They model the storage resource in the virtualized environment as a single multi-server queue
whose service times are fitted to a Markovian Arrival Process (MAP) with measurements. They
extend their work in a second approach, where they model and predict the I/O performance when
consolidating heterogeneous workloads. They develop a closed queueing model where the storage
resource is also abstracted as a single queue whose service times are fitted to a MAP. In both of
their approaches, the authors employ monitored measurements on the block layer abstracting the
application and file layer. Moreover, in contrast to our work the approaches are focused on I/O
performance prediction of VM consolidation scenarios and do not evaluate, e.g., performance and
interference effects due to changes in the workload intensity in the VMs.

To evaluate the I/O performance of VMware’s ESX Server virtualization, Ahmad et al. (2003)
run I/O benchmarks in multiple environments whose storage subsystem is comprised of a direct-
attached disk, a RAID array, and a SAN built with a Fibre Channel-attached RAID array, respec-
tively. Their goal is to evaluate the virtualization overhead and compare the virtual to the native I/O
performance using benchmarks. In one of their case studies, they emulate a mail server workload
with a disk benchmark, which can be compared to our workload characterization approach. The
authors, however, do not compare the performance of the emulated workload with the original one.
They further derive mathematical models to estimate the virtualization overhead and use it to predict
the resulting I/O performance deterioration.

By applying different machine learning techniques, Kundu et al. (2012) use artificial neural net-
works and support vector machines to model the performance of applications deployed in virtualized
environments. The applications are obtained from two different benchmarks, whose throughputs are
collected. They predict the performance of the application as a function of the resources allocated
to the host VM. In their models, they use CPU, memory, and I/O allocation as independent variables
and application performance as dependent variable. The models are then used for capacity planning
and VM sizing scenarios in terms of CPU and memory allocation for a given I/O latency.

In a further work, Gulati et al. (2009) present a study on storage workload characterization in
virtualized environments. The authors analyze four workloads generated from both applications
and benchmarks. The workloads are characterized with storage metrics, e.g., seek distances, request
sizes, and burstiness. They also analyze consolidated workloads in separate VMs, but they do not
develop any performance models.

10.3. I/O Performance Interference Modeling

The second area of related work analyzes and models I/O performance interference effects in virtu-
alized environments. This area is primarily focused on evaluating how co-located workloads sharing
the physical storage resources are affecting the performance of one another. This area is also closely
related to the first area and similarly analyzes I/O performance-influencing factors at a low abstrac-
tion level. To further highlight the difference of our work to the approaches presented next, none of

173

10. Related Work

these approaches uses queueing theory-based or architecture-level modeling approaches to capture
the I/O performance interference effects. Furthermore, some of the approaches use vendor-specific
monitoring tools (e.g., xen-top) to obtain internal information of the global system environment,
which is not necessarily always feasible in every environment.

Closest to our work among the approaches in this area, Chiang et al. (2011) use linear and second
degree polynomials to create models of I/O performance interference. As independent variables,
they use read and write request arrival rates as well as local and global CPU utilization. In contrast
to our work, however, they do not distinguish between, e.g., request sizes and access patterns. Our
measurements have shown that such factors have a significant impact on the I/O performance. Fur-
thermore, we observed a logarithmic effect on the I/O performance for some of the factors we con-
sider (cf. Chapter 7), which cannot be captured accurately by linear and second degree polynomials.
The models created in their work are used for scheduling algorithms to manage task assignments in
virtualized data centers. Their approach is evaluated using simulation results.

Koh et al. (2007) analyze performance interference across multiple resources including storage
resources in a Xen-based virtualized environment. They use benchmarks and applications, such
as gzip, running in two VMs – the physical hardware environment is not detailed. They develop
two types of linear models to predict the performance of an application in consolidation, which
is normalized w.r.t. the application performance in isolation. The first type is based on principal
component analysis. The second type is a linear regression model using low-level monitoring data
across the resources as independent variables, for example, CPU time, cache hits, VM switches per
second, numbers of read and write requests issued, and time spent for I/O requests. Similar to the
previous approaches, they do not consider, e.g., the access pattern of the I/O requests.

Addressing I/O performance interference for a certain domain, Groot et al. (2013) model and
predict the I/O performance when running multiple processes of MapReduce applications simul-
taneously on the same host. For their model, they split the tasks of a MapReduce application into
multiple phases, which issue certain read and write requests, and for each phase, the authors develop
mathematical models to use for prediction. Overall, while the approach addresses I/O performance
interference among workloads, it differs from our work primarily in two aspects. First, the focus of
their work is modeling MapReduce applications. Second, they model the I/O performance interfer-
ence among MapReduce processes rather that among workloads running in co-located VMs.

In more remotely related work, Yang et al. (2012) present a framework that uses a set of I/O
operations to identify and reveal I/O scheduling characteristics of the hypervisor. They experi-
ment in Xen-based and in VMware-based virtualized environments as well as in a public Cloud
environment. They show how the scheduling information can be exploited to slow down the I/O
performance of co-located virtual machines.

Further, Pu et al. (2010) present an experimental study to analyze and evaluate CPU and network
I/O performance interference in a Xen-based virtualized environment with two VMs. They evaluate
different workload combinations using workloads that access different sized files. They conclude
that the least performance deterioration occurs for the consolidation of workloads with different

174

10.4. Architecture-level I/O Performance Modeling

resource demands, i.e., CPU-bound and network I/O-bound demand in the case of mixing small
with large file requests.

10.4. Architecture-level I/O Performance Modeling

As a unique distinguishing factor, we are to the best of our knowledge the first work to address
capacity planning questions using performance models of I/O-intensive applications deployed in
virtualized environments at the software architecture level. We realized our approach by combin-
ing architecture-level with storage-level performance models. In this section, we highlight both
aspects and discuss approaches for architecture-level performance modeling as well as approaches
for combining different types of performance models.

As a basis of our work, we use the PCM as presented by Becker et al. (2009). As discussed
before, storage resources in the PCM are represented as a single queue with a given scheduling
strategy and I/O requests are represented by one parameter, which is the request demand. While
this is a reasonable abstraction for traditional environments, our analysis revealed that the model
of I/O requests needed to be extended to accurately capture the I/O performance in virtualized
environments.

Using the PCM, Huber et al. (2010) present an industrial case study on design alternatives for
storage virtualization. The authors evaluate in the case study synchronous and asynchronous I/O
request handling in the virtualization layer of a system environment based on an IBM System z
server. As emphasized in their work, the goal of the study is to evaluate whether the PCM can be
applied in industry rather than, in contrast to the goal of our approach, aiming to generally predict
the performance of I/O-intensive applications in virtualized environments.

The remaining approaches in this section address how low-level performance models for re-
sources can be used in higher-level performance models. Closest to our work among those ap-
proaches, Wert et al. (2012) develop a concept for combining statistical, measurement-based perfor-
mance models with software architecture-level models. Their goal is to support performance pre-
dictions for systems that include parts whose internal structure is unknown, e.g., external services
and legacy systems. The work outlines the general, domain-independent concept and technical re-
alization to achieve their goal. Furthermore, they present an example of a statistical model for a
MySQL database to illustrate such a measurement-based performance model, however, they do not
show the result when the model is integrated into the software architecture model. Moreover, the
difference to our work is that we propose a specific approach for integrating I/O performance mod-
els into software architecture models including a concrete design of relevant parameters that need
to be specified both at the software architecture level and at the storage level. Thus, we specifically
analyzed what information is required for I/O performance prediction at the architecture level and
how it can be realized.

The previous work uses an automated approach to obtain a statistical performance model. A
similar approach is presented by Woodside et al. (2001) for abstracting resources. In this work, the
authors present an environment comprised of a measurement harness, a statistical modeling module,

175

10. Related Work

and a model repository. The goal of their approach is to develop statistical models for resource
demands of software components and subsystems. The authors indicate that the resource demand
models could be used in a performance model of the software environment, however without going
into specific details how this could be realized.

In a further work that is related to our work methodologically, Shanthikumar et al. (1983) present
a general classification scheme for hybrid modeling using analytical and simulation models. In their
work, the authors present several case studies and include ones abstracting simple disks as queues.
This is the typical abstraction level for traditional disks and considered in, e.g., the PCM before.
Our approach extends the I/O performance modeling concepts allowing to predict the performance
in more complex, virtualized system environments.

10.5. Disk-based I/O Performance Modeling

There are a number of classical performance modeling approaches for disks and disk arrays in
native environments. The major distinguishing factor in comparison to our approach is that the
disk models typically rely on low-level instrumentation and monitoring data, such as allocation
of data to disk sectors, disk seek times, disk rotation time, and single disk utilization. In typical
virtualized environments, such information is hardly available for storage users, if available at all,
hampering the practicability and reliable parameterization of these models. Among the disk-based
I/O performance models, the most prominent approaches are briefly summarized next.

Bucy et al. (2008) have developed DiskSim, a very detailed and accurate simulator of disk sys-
tems. DiskSim particularly simulates fine-grained disk system components, such as the devices,
buses, device drivers, and request schedulers, for example, to obtain the performance behavior in a
high level of detail. Harrison et al. (2007) use queueing models to capture the performance behavior
of RAID arrays focusing on RAID-01 and RAID-5 systems. They model the disks analytically,
where the disk response time is comprised of the waiting time in the disk queue, the seek time, the
rotational latency, and the transfer time. Lebrecht et al. (2011) extend the work to RAID arrays
with zoned disks that have more disk sectors on the outer tracks than in the inner tracks. They also
consider key disk characteristics, such as the seek time, the rotational latency, and the data transfer
time, to model the disk response times. Comparable work has been proposed by Varki et al. (2000)
and Lee et al. (1993) developing analytical, closed queueing models for disk arrays. Varki et al.
(2000) use a network and model the disks as queues similar to the previous approaches. In their
approach, the performance of a request is derived from single disk response times. Lee et al. (1993)
create analytical functions to first estimate the utilization of the disks in the array, which is then used
to derive the response time and the throughput.

10.6. Systems Performance Evaluation and Modeling

The final area of related work deals with general system performance evaluation and modeling in
virtualized environments that are not specifically addressing I/O performance. The selected ap-

176

10.7. Summary

proaches presented in this section are related from a methodological point of view how the per-
formance is analyzed for different resources and purposes. As the approaches are more distantly
related to the work presented in this thesis, we only briefly summarize the concepts in this section.
A more detailed and general overview is presented, for example, by Balsamo et al. (2004) and Kozi-
olek (2010), who broadly survey approaches for performance evaluation and modeling of software
systems without explicitly focusing on I/O performance as in our work.

Among the approaches in this area, Huber et al. (2012) present an approach for quantitative eval-
uation of performance-influencing factors in virtualized environments. They employ their approach
to evaluate the performance overhead in VMware-based and in Xen-based virtualized environments.
Furthermore, they create linear regression models for the scalability of virtualized CPU and memory
performance. Comparable to this approach, Hauck et al. (2013) present an automated approach for
goal-oriented measurements to evaluate performance-relevant infrastructure properties. The mea-
surements are defined in their approach as experiments with certain workload patterns. In their
work, the authors analyze OS scheduler properties as well as CPU and disk I/O virtualization over-
heads. In an earlier work, Barham et al. (2003) have developed the Xen hypervisor. The authors
evaluate the hypervisor and compare its performance to a native system as well as to other virtu-
alization technologies. For their evaluation, they use a variety of benchmarks, e.g., a file system
benchmark and a web server benchmark, to stress the system throughout the resources and analyze
key performance indicators, such as the hypervisor overhead and scalability. Finally in a further
work, Iyer et al. (2009) analyze resource contention and performance interference when sharing
resources in virtualized environments. The authors analyze and evaluate primarily core, cache, and
memory effects in a multi-core environment.

10.7. Summary

In short, there are generally different approaches concerned with I/O performance analysis in vir-
tualized environments. In contrast to our work, however, the existing approaches capture the I/O
performance-influencing factors at a low abstraction level as well as with focus on specific scenarios
only or with validation limited to basic environments. Moreover, we are to the best of our knowl-
edge the first work to propose a performance modeling approach of I/O-intensive applications in
virtualized environments at the software architecture level. Finally, we provide multiple tailored
approaches using different modeling formalisms to practically and reasonably abstract real-world
system environments and capture their I/O performance.

Overall, we surveyed related work and grouped the approaches into five areas. The approaches
in the first and second areas analyze and model I/O performance as well as I/O performance in-
terference effects in virtualized environments. Approaches in these areas are typically modeling
at a low abstraction level and are not intended for their applicability within higher-level modeling
approaches. Moreover, the approaches focus on specific modeling formalisms, which are subject
to inherent limitations regarding their applicability. The third area addresses I/O performance mod-
eling at the software architecture level as well as combining low-level models with software archi-

177

10. Related Work

tecture models, where in this thesis we propose a novel approach for I/O performance modeling
in virtualized environments. The final two areas comprise approaches dealing with disk-based I/O
performance analysis and modeling in native environments, which require low-level instrumenta-
tion and monitoring data for parameterization, and approaches for systems performance evaluation
and modeling in virtualized environments not specifically focusing on I/O performance, which con-
sequently do not address the specific challenges of I/O performance modeling.

178

11. Conclusion

In the final chapter, we conclude the thesis summarizing the results. Further, we discuss the limits
of our work highlighting paths for future research.

11.1. Summary

In this thesis, we presented a novel approach for performance analysis and modeling of I/O-intensive
applications in virtualized environments using multiple, complementary formalisms and combined
them with modeling approaches at the software architecture level. For the practical use, we identi-
fied the required modeling parameters at a reasonable abstraction level and automated the modeling
process to a high degree. We evaluated the contributions of our work in multiple case studies us-
ing real-world, representative system environments based on IBM System z and Sun Fire server
hardware demonstrating that we are able to successfully predict the performance of I/O-intensive
applications in sufficiently complex system environments.

For our approach, we extended the model-based performance prediction process by first analyzing
important performance-influencing factors. We then used those factors to create I/O performance
models using multiple formalisms. We finally used these models in software architecture models,
which were extended with the performance-influencing factors and solved in a simulation com-
bined with the I/O performance models to obtain prediction results. To realize our approach, we
identified major performance-influencing factors that we have grouped into workload-relevant and
system-relevant factors. Based on these factors, we derived a workload characterization, which can
be obtained from running applications automatically, and used it in the I/O performance modeling
approaches. Here, we created implicit and explicit performance models based on regression anal-
ysis and queueing theory, respectively. Regression analysis-based models learn the I/O behavior
implicitly by generalizing from measurements without modeling the causes for the performance be-
havior. To use such models, we have developed an automated regression technique parameterization
and selection approach. As the number of measurements required for the regression analysis-based
models grows exponentially with the number of modeled factors, we developed a tailored process
based on queueing theory to model the I/O performance explicitly. Compared to creating regression
analysis-based models, this process requires more manual effort and expertise for the model cre-
ation initially. However, the resulting models can be reused more easily by recalibrating the model
parameters if the system is changed or a similar system is used. To use the I/O performance models
at the software architecture level, we used and extended the Palladio Component Model, a model-
based performance prediction approach for component-based software architectures. We identified

179

11. Conclusion

the required parameters at the software architecture level that can be used during the simulation of
the application’s architecture model to map the parameters on the required parameters of the I/O
performance models. The I/O performance models are then solved to capture the storage resource
contention and to estimate the I/O request delays of the modeled application.

The evaluation of our approach showed very good results in terms of prediction accuracy across
the different case studies. In general, we were able to successfully predict the I/O performance with
close conformance to measurements on the real systems in various scenarios using both our regres-
sion analysis-based and queueing-theory-based approaches. Furthermore, to the best of our knowl-
edge, we were the first work to predict the performance of I/O-intensive applications in virtualized
environments at the software architecture level. In the case studies of our software architecture-level
modeling approach, we modeled a file server and a mail server application in the two environments
based on Sun Fire and IBM System z servers. For the prediction of the applications, we evaluated
the mean I/O response time prediction error and the end-to-end response time prediction error when
predicting the application performance in typical capacity planning scenarios if the number of users
increases. We used the applications in isolation as well as in consolidation and were able to predict
the response times with the required accuracy and less than 30 % mean prediction error.

Overall, we were able to fulfill our five evaluation criteria. First, we developed I/O performance
models that were able to abstract the complexity of representative, sophisticated virtualized in-
frastructures into practical performance models. Second, as highlighted above, we were able to suc-
cessfully capture and predict the I/O performance behavior with sufficient accuracy as demonstrated
across our case studies. Third, we defined clear processes and automated approaches to increase the
efficiency of our approach especially reducing the effort for software architects to model and pre-
dict the performance at the software architecture level. Further, we demonstrated our approaches
throughout our work in representative, state-of-the-art environments to show the scalability of our
work and its applicability to real-world systems. Finally, we automated the processes and modeling
steps to a high extent providing tool-support where applicable.

In short, the main results of our work for modeling and predicting I/O performance and interfer-
ence effects can be summarized as follows. i) We developed a workload characterization that can
be obtained from running applications in an automated manner and that can be used to describe the
I/O behavior of typical I/O-intensive applications. ii) We developed a fully automated regression
analysis-based modeling approach that can optimally parameterize and choose from a set of regres-
sion techniques. iii) We developed a tailored process for queueing theory-based modeling to capture
the hardware as well as request scheduling and optimization aspects of representative storage sys-
tems. We demonstrated our process creating a queueing model, where we used only few queueing
stations and calibrated the model with observations in form of end-to-end response time measure-
ments only. iv) We combined our I/O performance models with the Palladio Component Model
bridging the gap between low-level I/O performance models and high-level software architecture
models. v) In various case studies, we successfully predicted the performance of I/O-intensive ap-

180

11.2. Limitations and Outlook on Future Research

plications deployed in sufficiently complex storage environments with reduced manual effort due to
the high degree of automation throughout our approach.

Our approach is intended for multiple use cases and application scenarios. Data center operators
can use the I/O performance models for an analysis and evaluation of capacity planning decisions
and for system sizing. Furthermore, they can evaluate the scalability of their infrastructures and
the impact of workload and VM consolidation. Software developers and architects can predict the
performance at the architecture level to evaluate components that result in bottlenecks or disturb
co-located components or applications. Finally, they can use the models to optimize the system
configurations and to evaluate resource allocation decisions. In general, our approach supports tai-
loring resource allocations as needed as well as evaluating workload deployment and consolidation
decisions and their trade-offs.

11.2. Limitations and Outlook on Future Research

The approach presented in this thesis was evaluated specifically in realistic environments with the
goal to develop practical prediction models for typical environments. The prediction results pre-
sented throughout the case studies showed to be promising and accurate such that we can conclude
that the models can be applied in similar contexts. For the approach in general, there are limits to
the applicability as discussed in the validation of the approach. Thus, we identify multiple options
for future research:

• Bursty and Fluctuating Workload

In our work, we focused on steady, non-varying workload. To account for bursty workloads
and workloads fluctuating over time in our approach, it is first required to find an appropriate
metric, which can be a more sophisticated metric (cf. Mi et al., 2008; M. Wang et al., 2002)
or a rather pragmatic one, e.g., the number of users issuing requests. Since for our approach
the metric is used in our measurements as input to create the models, this metric needs to be
fairly simple enough such that it can be emulated, i.e., that it can be reasonably reproduced
with measurements. Finally, the models need to be extended to be able to include such varying
workloads.

• Horizontal Scaling of Workloads, VMs, and Storage Systems

While we applied our approach in representative and realistic environments, our approach is
evaluated with up to three virtual machines running up to two workloads each. Data centers
operate many more applications per storage system and many of them as well. It is an open
question how our approach can scale to such large numbers or how it needs to be adapted
such that it can be applied efficiently.

• Online Regression Analysis-based Modeling

Our regression analysis-based approach assumes that the I/O performance model is created
having sufficient time, e.g., by the system manufacturer when the storage system is deployed.

181

11. Conclusion

While this is a reasonable assumption at software design time, it is interesting to investigate
online approaches to collect the required data and measurements during operation to increase
the applicability of the approach pursued in this thesis. Here, it is unclear how to monitor the
system environment and what data to collect to efficiently create such prediction models.

• File-based and Object-based Storage Services

The focus of our work was block-based storage. There are interesting storage paradigms, such
as file-based and object-based storage. The latter is also often used in Cloud environments, for
instance, to store static data produced by backups and archives. Evaluating the possibilities
to extend our work in these directions can be interesting to provide more insights and tailored
approaches in these areas. To account for these two paradigms, an additional abstraction
layer can be defined atop our performance models, for instance. Another possibility can be
to develop a tailored workload characterization and then adapt our I/O performance modeling
approaches and processes.

• Virtualization of Memory and Storage Resources

In our work, we specifically modeled I/O performance considering storage virtualization.
In general, the storage scheduling and the memory management of both the operating system
and the hypervisor can have mutual effects that were not subject of our analysis. For example,
overcommitted or insufficient memory usually leads to frequent memory swapping and, thus,
to intensive storage accesses.

• Network Performance Effects in Network Virtualization and Storage Area Networks

The assumption in our work is that the storage resource is the bottleneck. Usually, network
virtualization as evaluated by Rygielski et al. (2014), for instance, or network effects in stor-
age area networks can impact the I/O performance as well, especially in highly distributed
environments.

• Big Data and Storage Virtualization

In recent years, the term Big Data for handling massive volumes of data emerged and its im-
portance motivated new programming models, such as MapReduce. In this domain, important
aspects are storage performance as well as efficient storage and network usage in virtualized
environments for Big Data applications that distribute and analyze the data. Future research
can analyze the performance of such Big Data applications that are based on virtualized re-
sources to improve their performance and resource efficiency.

• Coupled Simulation of Application and I/O Performance Models

In our work, we integrated solving the I/O performance model into the software architecture
model’s simulation, which in this work is the SimuCom simulator for PCM models (Becker
et al., 2009). In general, there are several strategies for coupled simulations as discussed by
Shanthikumar et al. (1983) that can be followed to evaluate their effect.

182

11.3. Concluding Remarks

• Self-aware Computing Systems

The long-term vision by Kounev et al. (2010a) is to develop self-aware computing systems
that are able to optimally allocate resources in an autonomic manner. Elements of their vision
are approaches for online performance prediction (Brosig, 2014) as well as approaches for au-
tonomic resource management (Huber, 2014). Such approaches are developed to manage all
resources in a data center and can be combined with the analysis of storage resources and I/O
performance as presented in this work to develop a holistic self-aware system environment.

11.3. Concluding Remarks

I/O performance in virtualized environments is critical for today’s data centers. It can cause ap-
plication performance penalties in several orders of magnitude if the storage resources turn out to
become a bottleneck. This risk is typically addressed by highly overprovisioning the expensive stor-
age resources. The goal of this work was to develop practical performance engineering approaches
that can be employed to address the I/O performance issues in virtualized environments. Our vision
is that the approach of this thesis can provide a basis for further research as well as for performance
analysis and efficient resource management in productive environments in the future.

183

A. Related Work at a Glance

In the following, Tables A.1 – A.5 give a compact overview summarizing the approaches related to
the approach presented in this thesis. For a quick assessment, we summarize how related the ap-
proaches are to our work, for a more detailed discussion please refer to Chapter 10. The approaches
are grouped by the presented areas of related work illustrated in Figure 10.1 and ordered by their
appearance in Chapter 10, which was usually in descending order of their relation to our work.

Table A.1.: Summary of Related Work in Area i)

I/O Performance Analysis and Modeling

Approach Related to
Our Work

Summary and Main Difference

Kraft et al. (2012) 88888 I/O queueing models with focus on VM consol-
idation scenarios.

Ahmad et al. (2003) 88899 Evaluate the I/O performance of VMware ESX
Server virtualization and model the virtualiza-
tion overhead.

Kundu et al. (2012) 88899 Use machine learning approaches to model the
performance of applications in virtualized envi-
ronments depending on the allocated resources.

Gulati et al. (2009) 88999 Workload characterization in terms of key stor-
age metrics for I/O workload, but without per-
formance modeling.

185

A. Related Work at a Glance

Table A.2.: Summary of Related Work in Area ii)

I/O Performance Interference Modeling

Approach Related to
Our Work

Summary and Main Difference

Chiang et al. (2011) 88889 Use polynomial models with request arrival
rates and CPU utilizations as independent vari-
ables.

Koh et al. (2007) 88889 Use linear models to predict normalized per-
formance in consolidation across different re-
sources.

Groot et al. (2013) 88899 Model I/O performance interference between
processes of MapReduce applications.

Yang et al. (2012) 88999 Develop a framework to identify characteristics
of the hypervisor I/O scheduler.

Pu et al. (2010) 89999 Present an experimental study to analyze CPU
and network I/O performance interference.

Table A.3.: Summary of Related Work in Area iii)

Architecture-level I/O Performance Modeling

Approach Related to
Our Work

Summary and Main Difference

Becker et al. (2009) 88899 Develop the PCM, which is a basis for our
work. Storage resources are abstracted as a sin-
gle queue.

Huber et al. (2010) 88899 Present an industrial case study on design alter-
natives for storage virtualization to evaluate the
applicability of the PCM in industry.

Wert et al. (2012) 88889 General concept, which is not specific to a
certain domain, for combining measurement-
based with software architecture-level perfor-
mance models.

Woodside et al. (2001) 88999 Present an environment to develop statistical
models for resource demands of software com-
ponents and subsystems.

Shanthikumar et al. (1983) 88999 Present a general classification scheme for hy-
brid models that are comprised of analytical and
simulation models.

186

Table A.4.: Summary of Related Work in Area iv)

Disk-based I/O Performance Modeling

Approach Related to
Our Work

Summary and Main Difference

Bucy et al. (2008) 89999 Very detailed and fine-grained disk system sim-
ulator.

Harrison et al. (2007) 89999 Analytical RAID model including low-level
disk information.

Lebrecht et al. (2011) 89999 Analytical RAID model with zoned disks in-
cluding low-level disk information.

Varki et al. (2000) 89999 Analytical RAID model including single disk
response times.

Lee et al. (1993) 89999 Analytical disk array model calculating utiliza-
tions of disks in the array.

Table A.5.: Summary of Related Work in Area v)

Systems Performance Evaluation and Modeling

Approach Related to
Our Work

Summary and Main Difference

Balsamo et al. (2004) 89999 Survey for performance evaluation and model-
ing of software systems.

Koziolek (2010) 89999 Survey for performance evaluation and model-
ing of software systems.

Huber et al. (2012) 88999 Present an approach to evaluate performance-
influencing factors in virtualized environments
and create linear models for virtualized CPU and
memory scalability.

Hauck et al. (2013) 88999 Approach for goal-oriented measurements to
quantify performance-relevant infrastructure
properties.

Barham et al. (2003) 89999 Introduce the Xen hypervisor and evaluate its
performance across resources.

Iyer et al. (2009) 89999 Analyze core, cache, and memory resource con-
tention in a multi-core virtualized environment.

187

Bibliography

Ahmad, I., Anderson, J., Holler, A., Kambo, R., and Makhija, V. (2003). „An analysis of disk perfor-
mance in VMware ESX server virtual machines.“ In: IEEE International Workshop on Workload

Characterization, 2003. WWC-6. Pp. 65–76 (cit. on pp. 3, 173, 185).
Balsamo, S., Di Marco, A., Inverardi, P., and Simeoni, M. (2004). „Model-Based Performance Pre-

diction in Software Development: A Survey.“ In: IEEE TSE 30.5, pp. 295–310 (cit. on pp. 4, 177,
187).

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., and
Warfield, A. (2003). „Xen and the Art of Virtualization.“ In: SIGOPS Oper. Syst. Rev. 37 (5),
pp. 164–177 (cit. on pp. 4, 43, 177, 187).

Baun, C., Kunze, M., Nimis, J., and Tai, S. (2011). Cloud computing: Web-based dynamic IT ser-

vices. Springer (cit. on p. 15).
Bause, F. (1993). „Queueing Petri Nets - A formalism for the combined qualitative and quantita-

tive analysis of systems.“ In: Proceedings of the 5th International Workshop on Petri Nets and

Performance Models (cit. on p. 27).
Bause, F. and Kritzinger, F. (2002). Stochastic Petri Nets - An Introduction to the Theory. Second.

Vieweg Verlag (cit. on p. 26).
Becker, S. (2008). „Coupled model transformations for QoS enabled component-based software

design.“ PhD thesis. Universität Oldenburg (cit. on pp. 6, 28, 29, 33, 34, 116, 123).
Becker, S., Koziolek, H., and Reussner, R. (2009). „The Palladio component model for model-driven

performance prediction.“ In: Journal of Systems and Software 82.1, pp. 3–22 (cit. on pp. 4, 27,
29, 34, 116, 175, 182, 186).

Bolch, G., Greiner, S., Meer, H. de, and Trivedi, K. (2006). Queueing Networks and Markov Chains:

Modeling and Performance Evaluation with Computer Science Applications. Wiley-Interscience
publication. Wiley (cit. on pp. 25, 27, 79).

Boutcher, D. and Chandra, A. (2010). „Does virtualization make disk scheduling passe.“ In: SIGOPS

Oper. Syst. Rev. 44.1, pp. 20–24 (cit. on p. 82).
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. (1984). Classification and Regression Trees.

The Wadsworth and Brooks-Cole statistics-probability series. Chapman & Hall (cit. on p. 63).
Brosig, F. (2014). „Architecture-Level Software Performance Models for Online Performance Pre-

diction.“ PhD thesis. Karlsruhe Institute of Technology (KIT) (cit. on pp. 5, 183).
Brosig, F., Huber, N., and Kounev, S. (2011). „Automated Extraction of Architecture-Level Per-

formance Models of Distributed Component-Based Systems.“ In: 26th IEEE/ACM International

189

Bibliography

Conference On Automated Software Engineering (ASE 2011). Oread, Lawrence, Kansas (cit. on
p. 161).

Brosig, F., Kounev, S., and Krogmann, K. (2009). „Automated Extraction of Palladio Component
Models from Running Enterprise Java Applications.“ In: Proceedings of the 1st International

Workshop on Run-time mOdels for Self-managing Systems and Applications (ROSSA 2009). In

conjunction with Fourth International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS 2009), Pisa, Italy, October 19, 2009. ACM, New York, NY, USA (cit.
on p. 161).

Bruhn, D. (2012). „Modeling and Experimental Analysis of Virtualized Storage Performance using
IBM System z as Example.“ Master’s Thesis (Diplomarbeit). Karlsruhe Institute of Technology
(KIT) (cit. on pp. 54, 129).

Bucy, J. S., Schindler, J., Schlosser, S. W., Ganger, G. R., and Contributors (2008). The DiskSim

Simulation Environment - Version 4.0 Reference Manual. Carnegie Mellon University, Pittsburgh,
PA (cit. on pp. 4, 176, 187).

Busch, A. (2013). „Workload Characterization for I/O Performance Analysis on IBM System z.“
Master’s Thesis. Karlsruhe Institute of Technology (KIT) (cit. on pp. 39, 129).

Busch, A., Noorshams, Q., Kounev, S., Koziolek, A., Reussner, R., and Amrehn, E. (2015). „Au-
tomated Workload Characterization for I/O Performance Analysis in Virtualized Environments.“
In: Proceedings of the ACM/SPEC International Conference on Performance Engineering. ICPE
’15. Austin, Texas, USA: ACM (cit. on pp. 7, 39, 46, 47, 129).

Chiang, R. C. and Huang, H. H. (2011). „TRACON: Interference-aware Scheduling for Data-
intensive Applications in Virtualized Environments.“ In: Proceedings of 2011 International Con-

ference for High Performance Computing, Networking, Storage and Analysis. SC ’11. Seattle,
Washington: ACM, 47:1–47:12 (cit. on pp. 4, 174, 186).

Clark, T. (2005). Storage virtualization: technologies for simplifying data storage and management.
Addison-Wesley Professional (cit. on p. 17).

Czarnecki, K. (1998). „Generative Programming: Principles and Techniques of Software Engineer-
ing Based on Automated Configuration and Fragment-Based Component Models.“ PhD thesis.
Technical University of Ilmenau (cit. on p. 41).

Dean, J. and Ghemawat, S. (2008). „MapReduce: Simplified Data Processing on Large Clusters.“
In: Communications of the ACM 51.1, pp. 107–113 (cit. on p. 20).

Dufrasne, B., Bauer, W., Careaga, B., Myyrrylainen, J., Rainero, A., and Usong, P. (2010). IBM

System Storage DS8700 Architecture and Implementation. http://www.redbooks.ibm.com/
abstracts/sg248786.html (cit. on pp. 36, 43, 134).

Elish, M. and Elish, K. (2009). „Application of TreeNet in Predicting Object-Oriented Software
Maintainability: A Comparative Study.“ In: 13th European Conference on Software Maintenance

and Reengineering, 2009. CSMR ’09. Pp. 69–78 (cit. on p. 53).

190

http://www.redbooks.ibm.com/abstracts/sg248786.html
http://www.redbooks.ibm.com/abstracts/sg248786.html

Bibliography

Filebench. https://github.com/Filebench-Revise/Filebench-Revise (version with fixes
of http://sourceforge.net/apps/mediawiki/filebench/). [Online; last accessed: Dec
2014] (cit. on p. 132).

Flexible File System Benchmark (FFSB). http://github.com/FFSB-prime (version with fixes
and extensions of http://ffsb.sf.net). [Online; last accessed: Dec 2014] (cit. on pp. 82,
132).

Friedman, J. H. (1991). „Multivariate Adaptive Regression Splines.“ In: Annals of Statistics 19.1,
pp. 1–141 (cit. on p. 62).

Gantz, J. and Reinsel (IDC), D. (2012). THE DIGITAL UNIVERSE IN 2020: Big Data, Bigger

Digital Shadows, and Biggest Growth in the Far East. http://www.emc.com/collateral/
analyst-reports/idc-the-digital-universe-in-2020.pdf. [Online; last accessed: Dec
2014] (cit. on p. 1).

Goldberg, R. P. (1974). „Survey of Virtual Machine Research.“ In: Computer 7.9, pp. 34–45 (cit. on
p. 15).

Gregg, B. (2005). DTrace Tools: iopattern. http://www.dtracebook.com/index.php/Disk_
IO:iopattern. [Online; last accessed: Dec 2014] (cit. on p. 46).

Groot, S., Goda, K., Yokoyama, D., Nakano, M., and Kitsuregawa, M. (2013). „Modeling I/O In-
terference for Data Intensive Distributed Applications.“ In: Proceedings of the 28th Annual ACM

Symposium on Applied Computing. SAC ’13. Coimbra, Portugal: ACM, pp. 343–350 (cit. on
pp. 4, 174, 186).

Gulati, A., Kumar, C., and Ahmad, I. (2009). „Storage workload characterization and consolida-
tion in virtualized environments.“ In: 2nd International Workshop on Virtualization Performance:

Analysis, Characterization, and Tools (VPACT) (cit. on pp. 4, 173, 185).
Guo, J., Czarnecki, K., Apel, S., Siegmund, N., and Wasowski, A. (2013). „Variability-Aware Per-

formance Prediction: A Statistical Learning Approach.“ In: 28th IEEE/ACM International Con-

ference on Automated Software Engineering (ASE). Silicon Valley, California, USA: IEEE (cit.
on p. 53).

Harrison, P. and Zertal, S. (2007). „Queueing models of RAID systems with maxima of waiting
times.“ In: Performance Evaluation 64 (7-8), pp. 664–689 (cit. on pp. 4, 176, 187).

Hastie, T., Tibshirani, R., and Friedman, J. (2008). The Elements of Statistical Learning: Data Min-

ing, Inference and Prediction. 2nd ed. Springer (cit. on pp. 22–25, 61, 63, 70).
Hauck, M. (2013). „Automated Experiments for Deriving Performance-relevant Properties of Soft-

ware Execution Environments.“ PhD thesis. Karlsruhe Institute of Technology (KIT) (cit. on
p. 15).

Hauck, M., Kuperberg, M., Huber, N., and Reussner, R. (2013). „Deriving performance-relevant
infrastructure properties through model-based experiments with Ginpex.“ In: Springer Journal of

Software and Systems Modeling, pp. 1–21 (cit. on pp. 4, 177, 187).
Hauck, M., Kuperberg, M., Krogmann, K., and Reussner, R. (2009). „Modelling Layered Com-

ponent Execution Environments for Performance Prediction.“ In: Proceedings of the 12th In-

191

https://github.com/Filebench-Revise/Filebench-Revise
http://sourceforge.net/apps/mediawiki/filebench/
http://github.com/FFSB-prime
http://ffsb.sf.net
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf
http://www.dtracebook.com/index.php/Disk_IO:iopattern
http://www.dtracebook.com/index.php/Disk_IO:iopattern

Bibliography

ternational Symposium on Component Based Software Engineering (CBSE 2009). LNCS 5582.
Springer, pp. 191–208 (cit. on pp. 34, 116, 118, 119).

Huber, N. (2014). „Autonomic Performance-Aware Resource Management in Dynamic IT Service
Infrastructures.“ PhD thesis. Karlsruhe Institute of Technology (KIT) (cit. on p. 183).

Huber, N., Becker, S., Rathfelder, C., Schweflinghaus, J., and Reussner, R. (2010). „Performance
Modeling in Industry: A Case Study on Storage Virtualization.“ In: ACM/IEEE 32nd Interna-

tional Conference on Software Engineering (ICSE 2010), Software Engineering in Practice Track.
Cape Town, South Africa: ACM, pp. 1–10 (cit. on pp. 4, 34, 116, 175, 186).

Huber, N., Quast, M. von, Brosig, F., Hauck, M., and Kounev, S. (2012). „A Method for Experimen-
tal Analysis and Modeling of Virtualization Performance Overhead.“ In: Cloud Computing and

Services Science. Ed. by I. Ivanov, M. van Sinderen, and B. Shishkov. Service Science: Research
and Innovations in the Service Economy. New York: Springer, pp. 353–370 (cit. on pp. 4, 177,
187).

InformationAge (2011). The year of virtual storage. http://www.information- age.com/
channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-

year-of-virtual-storage.thtml. [Online; last accessed: Dec 2014] (cit. on p. 1).
Iyer, R., Illikkal, R., Tickoo, O., Zhao, L., Apparao, P., and Newell, D. (2009). „VM3: Measuring,

modeling and managing VM shared resources.“ In: Computer Networks 53 (17), pp. 2873–2887
(cit. on pp. 4, 177, 187).

Izenman, A. J. (2009). Modern Multivariate Statistical Techniques: Regression, Classification, and

Manifold Learning. New York, NY: Springer (cit. on pp. 22–25, 55).
Jensen, K. (1981). „Coloured Petri Nets and the Invariant Method.“ In: Mathematical Foundations

on Computer Science, LNCS 118:327-338 (cit. on p. 26).
Kaplan, J. M., Forrest, W., and Kindler, N. (2008). Revolutionizing Data Center Energy Efficiency.

Tech. rep. McKinsey & Company (cit. on p. 1).
Kapova, L. and Goldschmidt, T. (2009). „Automated feature model-based generation of refinement

transformations.“ In: Software Engineering and Advanced Applications, 2009. SEAA’09. 35th

Euromicro Conference on. IEEE, pp. 141–148 (cit. on p. 117).
Koh, Y., Knauerhase, R., Brett, P., Bowman, M., Wen, Z., and Pu, C. (2007). „An Analysis of

Performance Interference Effects in Virtual Environments.“ In: IEEE International Symposium

on Performance Analysis of Systems Software, 2007. ISPASS-2007. Pp. 200–209 (cit. on pp. 4,
174, 186).

Kounev, S. (2006). „Performance Modeling and Evaluation of Distributed Component-Based Sys-
tems using Queueing Petri Nets.“ In: IEEE TSE 32.7 (cit. on pp. 27, 79, 81).

Kounev, S., Brosig, F., Huber, N., and Reussner, R. (2010a). „Towards self-aware performance
and resource management in modern service-oriented systems.“ In: Proceedings of the 7th IEEE

International Conference on Services Computing (SCC 2010), July 5-10, Miami, Florida, USA.
Miami, Florida, USA: IEEE Computer Society (cit. on p. 183).

192

http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml
http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml
http://www.information-age.com/channels/the-cloud-and-virtualization/perspectives-and-trends/1596523/the-year-of-virtual-storage.thtml

Bibliography

Kounev, S., Spinner, S., and Meier, P. (2010b). „QPME 2.0-A Tool for Stochastic Modeling and
Analysis Using Queueing Petri Nets.“ In: From active data management to event-based systems

and more. Springer, pp. 293–311 (cit. on p. 27).
Koziolek, H. (2010). „Performance Evaluation of Component-based Software Systems: A Survey.“

In: Performance Evaluation 67.8, pp. 634–658 (cit. on pp. 4, 177, 187).
Kraft, S., Casale, G., Krishnamurthy, D., Greer, D., and Kilpatrick, P. (2012). „Performance Models

of Storage Contention in Cloud Environments.“ In: Springer Journal of Software and Systems

Modeling (cit. on pp. 3, 4, 172, 185).
Krogmann, K. (2010). „Reconstruction of Software Component Architectures and Behaviour Mod-

els using Static and Dynamic Analysis.“ PhD thesis. Karlsruhe Institute of Technology (KIT)
(cit. on pp. 34, 116, 161).

Kuhn, M. and Johnson, K. (2013). Applied Predictive Modeling. Springer (cit. on pp. 22–25, 56,
73).

Kuhn, M., Witson, S., Keefer, C., and Coulter, N. (2012). Cubist Models for Regression. http:
//cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf. [Online; last
accessed: Dec 2014] (cit. on p. 64).

Kundu, S., Rangaswami, R., Gulati, A., Zhao, M., and Dutta, K. (2012). „Modeling Virtualized
Applications using Machine Learning Techniques.“ In: Proceedings of the 8th ACM SIGPLAN/

SIGOPS conference on Virtual Execution Environments. VEE ’12. London, England, UK: ACM,
pp. 3–14 (cit. on pp. 3, 173, 185).

Kuperberg, M., Krogmann, K., and Reussner, R. (2008). „Performance Prediction for Black-Box
Components using Reengineered Parametric Behaviour Models.“ In: Proceedings of the 11th

International Symposium on Component Based Software Engineering (CBSE 2008), Karlsruhe,

Germany, 14th-17th October 2008. Vol. 5282. Lecture Notes in Computer Science. Springer-
Verlag Berlin Heidelberg, pp. 48–63 (cit. on pp. 34, 116).

Lebrecht, A. S., Dingle, N. J., and Knottenbelt, W. J. (2011). „Analytical and Simulation Modelling
of Zoned RAID Systems.“ In: The Computer Journal 54 (5), pp. 691–707 (cit. on pp. 4, 176,
187).

Lee, E. K. and Katz, R. H. (1993). „An analytic performance model of disk arrays.“ In: SIGMET-

RICS Perform. Eval. Rev. 21.1 (cit. on pp. 4, 176, 187).
Ling, X., Ibrahim, S., Jin, H., Wu, S., and Songqiao, T. (2013). „Exploiting Spatial Locality to

Improve Disk Efficiency in Virtualized Environments.“ In: Proceedings of the IEEE 21st Inter-

national Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication

Systems (MASCOTS 2013). San Francisco, USA (cit. on pp. 43, 82, 134).
Massiglia, P. and Bunn, F. (2003). Virtual Storage Redefined: Technologies and Applications for

Storage Virtualization. VERITAS Software Corporation (cit. on pp. 17, 18).
Menascé, D. and Almeida, V. (2000). Scaling for E-Business: Technologies, Models, Performance,

and Capacity Planning. Prentice Hall (cit. on pp. 5, 79, 81, 163).

193

http://cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf
http://cran.r-project.org/web/packages/Cubist/vignettes/cubist.pdf

Bibliography

Menascé, D., Almeida, V., and Dowdy, L. (1994). Capacity Planning and Performance Modeling:

From Mainframes to Client-Server Systems. New Jersey: Prentice-Hall (cit. on p. 78).
Menascé, D., Almeida, V., Dowdy, L. W., and Dowdy, L. (2004). Performance by Design: Computer

Capacity Planning by Example. Prentice Hall science explorer. Prentice Hall (cit. on pp. 25, 27,
79, 81).

Mesnier, M., Ganger, G. R., and Riedel, E. (2003). „Object-based storage.“ In: IEEE Communica-

tions Magazine 41.8, pp. 84–90 (cit. on p. 20).
Mi, N., Casale, G., Cherkasova, L., and Smirni, E. (2008). „Burstiness in multi-tier applications:

symptoms, causes, and new models.“ In: Proceedings of the 9th ACM/IFIP/USENIX International

Conference on Middleware. Middleware ’08. Leuven, Belgium: Springer-Verlag New York, Inc.,
pp. 265–286 (cit. on p. 181).

Mills, M. P. (2013). The Cloud Begins with Coal – Big Data, Big Networks, Big Infrastructure,

and Big Power – An Overview of the Electricity used by the Global Digital Ecosystem. http:
//www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.

pdf?c761ac. [Online; last accessed: Dec 2014] (cit. on p. 1).
Noorshams, Q., Bruhn, D., Kounev, S., and Reussner, R. (2013a). „Predictive Performance Model-

ing of Virtualized Storage Systems using Optimized Statistical Regression Techniques.“ In: Pro-

ceedings of the ACM/SPEC International Conference on Performance Engineering. ICPE ’13.
Prague, Czech Republic: ACM, pp. 283–294 (cit. on pp. 7, 54, 129).

Noorshams, Q., Busch, A., Kounev, S., and Reussner, R. (2015). „The Storage Performance Ana-
lyzer: Measuring, Monitoring, and Modeling of I/O Performance in Virtualized Environments.“
In: Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering.
ICPE ’15. (Invited Demo Paper). Austin, Texas, USA (cit. on pp. 7, 39, 48, 131, 161).

Noorshams, Q., Busch, A., Rentschler, A., Bruhn, D., Kounev, S., Tůma, P., and Reussner, R.
(2014a). „Automated Modeling of I/O Performance and Interference Effects in Virtualized Stor-
age Systems.“ In: 34th IEEE International Conference on Distributed Computing Systems Work-

shops (ICDCS 2014 Workshops). 4th International Workshop on Data Center Performance,

DCPerf ’14. Madrid, Spain, pp. 88–93 (cit. on pp. 7, 54, 129).
Noorshams, Q., Kounev, S., and Reussner, R. (2013b). „Experimental Evaluation of the Performance-

Influencing Factors of Virtualized Storage Systems.“ In: Computer Performance Engineering.

9th European Workshop, EPEW 2012, Munich, Germany, July 30, 2012, and 28th UK Workshop,

UKPEW 2012, Edinburgh, UK, July 2, 2012, Revised Selected Papers. Ed. by M. Tribastone and
S. Gilmore. Vol. 7587. Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 63–
79 (cit. on pp. 7, 35, 39, 41).

Noorshams, Q., Reeb, R., Rentschler, A., Kounev, S., and Reussner, R. (2014b). „Enriching Soft-
ware Architecture Models with Statistical Models for Performance Prediction in Modern Storage
Environments.“ In: Proceedings of the 17th International ACM Sigsoft Symposium on Component-

Based Software Engineering. CBSE ’14. Marcq-en-Bareul, France: ACM, pp. 45–54 (cit. on
pp. 8, 29, 33, 114, 129).

194

http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac
http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac
http://www.tech-pundit.com/wp-content/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac

Bibliography

Noorshams, Q., Rentschler, A., Kounev, S., and Reussner, R. (2013c). „A Generic Approach for
Architecture-level Performance Modeling and Prediction of Virtualized Storage Systems.“ In:
Proceedings of the ACM/SPEC International Conference on Performance Engineering. ICPE
’13. Prague, Czech Republic: ACM, pp. 339–342 (cit. on pp. 8, 33, 114).

Noorshams, Q., Rostami, K., Kounev, S., and Reussner, R. (2014c). „Modeling of I/O Performance
Interference in Virtualized Environments with Queueing Petri Nets.“ In: Proceedings of the IEEE

22nd International Symposium on Modeling, Analysis and Simulation of Computer and Telecom-

munication Systems. MASCOTS ’14. France, Paris (cit. on pp. 8, 78).
Noorshams, Q., Rostami, K., Kounev, S., Tůma, P., and Reussner, R. (2013d). „I/O Performance

Modeling of Virtualized Storage Systems.“ In: Proceedings of the IEEE 21st International Sym-

posium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems.
MASCOTS ’13. San Francisco, USA, pp. 121–130 (cit. on pp. 8, 78).

Object Management Group (OMG). Unified Modeling Language (UML). http://schema.omg.
org/spec/UML/index.htm. [Online; last accessed: Dec 2014] (cit. on p. 28).

Oliveira, S. F., Furlinger, K., and Kranzlmüller, D. (2012). „Trends in Computation, Communication
and Storage and the Consequences for Data-intensive Science.“ In: Proceedings of the 2012 IEEE

14th International Conference on High Performance Computing and Communication & 2012

IEEE 9th International Conference on Embedded Software and Systems. IEEE Computer Society,
pp. 572–579 (cit. on p. 1).

open – Linux man page. http://linux.die.net/man/2/open. [Online; last accessed: Dec 2014]
(cit. on pp. 82, 132).

Open Stack Object Storage (Swift). http://www.openstack.org/software/openstack-
storage/, http://docs.openstack.org/developer/swift/overview_architecture.
html. [Online; last accessed: Dec 2014] (cit. on p. 20).

Pu, X., Liu, L., Mei, Y., Sivathanu, S., Koh, Y., and Pu, C. (2010). „Understanding Performance
Interference of I/O Workload in Virtualized Cloud Environments.“ In: IEEE 3rd International

Conference on Cloud Computing (CLOUD), pp. 51–58 (cit. on pp. 4, 174, 186).
Quinlan, J. R. (1992). „Learning with Continuous Classes.“ In: Proceedings of the 5th Australian

joint Conference on Artificial Intelligence. World Scientific, pp. 343–348 (cit. on p. 64).
– (1993). „Combining Instance-Based and Model-Based Learning.“ In: ICML ’93, pp. 236–243

(cit. on pp. 64, 65).
R Core Team (2013). R: A Language and Environment for Statistical Computing. R Foundation for

Statistical Computing. Vienna, Austria (cit. on p. 65).
Rathfelder, C. (2012). „Modelling Event-Based Interactions in Component-Based Architectures for

Quantitative System Evaluations.“ PhD thesis. Karlsruhe Institute of Technology (KIT) (cit. on
p. 5).

Reeb, R. (2014). „Modellierung von virtualisierten Speicher-Systemen mit dem Palladio Compo-
nent Model.“ Bachelor’s Thesis. Karlsruhe Institute of Technology (KIT) (cit. on pp. 114, 129).

195

http://schema.omg.org/spec/UML/index.htm
http://schema.omg.org/spec/UML/index.htm
http://linux.die.net/man/2/open
http://www.openstack.org/software/openstack-storage/
http://www.openstack.org/software/openstack-storage/
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html

Bibliography

Reussner, R., Becker, S., Burger, E., Happe, J., Hauck, M., Koziolek, A., Koziolek, H., Krogmann,
K., and Kuperberg, M. (2011). The Palladio Component Model. Tech. rep. Karlsruhe Institute of
Technology (KIT). Karlsruhe Reports in Informatics 2011, 14 (cit. on pp. 27, 29).

Rostami, K. (2012). „Workload Characterization for I/O Performance Analysis on IBM System z.“
Bachelor’s Thesis (Studienarbeit). Karlsruhe Institute of Technology (KIT) (cit. on p. 78).

– (2014). „Modellierung von Performanzinterferenz datenintensiver Anwendungen in virtualisierten
Umgebungen am Beispiel IBM System z.“ Master’s Thesis (Diplomarbeit). Karlsruhe Institute
of Technology (KIT) (cit. on pp. 78, 95, 98, 102).

RuleQuest Research Pty Ltd (2012). Data Mining with Cubist. http://rulequest.com/cubist-
info.html. [Online; last accessed: Dec 2014] (cit. on p. 64).

Rygielski, P. and Kounev, S. (2014). „Data Center Network Throughput Analysis using Queue-
ing Petri Nets.“ In: 34th IEEE International Conference on Distributed Computing Systems

Workshops (ICDCS 2014 Workshops). 4th International Workshop on Data Center Performance,

(DCPerf 2014). Madrid, Spain, pp. 100–105 (cit. on p. 182).
Shanthikumar, J. G. and Sargent, R. G. (1983). „A Unifying View of Hybrid Simulation/Analytic

Models and Modeling.“ In: Operations Research 31.6, pages (cit. on pp. 4, 176, 182, 186).
Smith, C. U. (1990). Performance engineering of software systems. Addison-Wesley Longman Pub-

lishing Co., Inc. (cit. on p. 21).
SNIA Shared Storage Model. http://www.snia.org/education/storage_networking_
primer/shared_storage_model. [Online; last accessed: Dec 2014] (cit. on pp. 17, 19).

Snyman, J. (2005). Practical Mathematical Optimization: An Introduction to Basic Optimization

Theory and Classical and New Gradient-Based Algorithms. Vol. 97. Springer (cit. on p. 56).
Spinner, S., Casale, G., Zhu, X., and Kounev, S. (2014). „LibReDE: A Library for Resource Demand

Estimation.“ In: Proceedings of the 5th ACM/SPEC International Conference on Performance

Engineering. ICPE ’14. Dublin, Ireland: ACM, pp. 227–228 (cit. on p. 126).
TechNavio (2013). Global Server Virtualization Market 2012-2016. http://www.technavio.
com/content/global- server- virtualization- market- 2012- 2016. [Online; last ac-
cessed: Dec 2014] (cit. on p. 1).

Troppens, U., Erkens, R., Müller-Friedt, W., Wolafka, R., and Haustein, N. (2009). Storage Net-

works Explained: Basics and Application of Fibre Channel SAN, NAS, ISCSI, InfiniBand and

FCoE. John Wiley & Sons (cit. on pp. 17–19).
Varki, E. and Wang, S. X. (2000). „A Performance Model of Disk Array Storage Systems.“ In: Int.

CMG Conference, pp. 635–644 (cit. on pp. 4, 176, 187).
Vaupel, R. (2013). High Availability and Scalability of Mainframe Environments using System z and

z/OS as example. KIT Scientific Publishing (cit. on p. 15).
Walpole, R. E., Myers, R. H., Myers, S. L., and Ye, K. (2007). Probability and statistics for engi-

neers and scientists. Upper Saddle River, NJ: Pearson Prentice Hall (cit. on p. 22).

196

http://rulequest.com/cubist-info.html
http://rulequest.com/cubist-info.html
http://www.snia.org/education/storage_networking_primer/shared_storage_model
http://www.snia.org/education/storage_networking_primer/shared_storage_model
http://www.technavio.com/content/global-server-virtualization-market-2012-2016
http://www.technavio.com/content/global-server-virtualization-market-2012-2016

Bibliography

Wang, M., Ailamaki, A., and Faloutsos, C. (2002). „Capturing the Spatio-Temporal Behavior of
Real Traffic Data.“ In: IFIP WG 7.3 Symposium on Computer Performance, pp. 23–27 (cit. on
p. 181).

Wang, W. and Casale, G. (2013). „Bayesian Service Demand Estimation Using Gibbs Sampling.“
In: Proceedings of the 2013 IEEE 21st International Symposium on Modelling, Analysis and Sim-

ulation of Computer and Telecommunication Systems. MASCOTS ’13. Washington, DC, USA:
IEEE Computer Society, pp. 567–576 (cit. on p. 84).

Wert, A., Happe, J., and Westermann, D. (2012). „Integrating Software Performance Curves with the
Palladio Component Model.“ In: Proceedings of the 3rd ACM/SPEC International Conference on

Performance Engineering. ICPE ’12. Boston, Massachusetts, USA: ACM, pp. 283–286 (cit. on
pp. 4, 175, 186).

Westermann, D. (2014). „Deriving Goal-oriented Performance Models by Systematic Experimen-
tation.“ PhD thesis. Karlsruhe Institute of Technology (KIT) (cit. on p. 74).

Wolf, C. and Halter, E. M. (2005). Virtualization: From the Desktop to the Enterprise. Apress (cit.
on p. 15).

Woodside, M., Petriu, D., and Siddiqui, K. (2002). „Performance-related completions for software
specifications.“ In: Proceedings of the 24rd International Conference on Software Engineering,

2002 (cit. on p. 117).
Woodside, M., Vetland, V., Courtois, M., and Bayarov, S. (2001). „Resource Function Capture for

Performance Aspects of Software Components and Sub-systems.“ In: Performance Engineer-

ing, State of the Art and Current Trends. Ed. by R. Dumke, C. Rautenstrauch, A. Scholz, and
A. Schmietendorf. Vol. 2047. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
pp. 239–256 (cit. on pp. 4, 175, 186).

Woodside, M., Franks, G., and Petriu, D. C. (2007). „The Future of Software Performance Engi-
neering.“ In: Future of Software Engineering, 2007. FOSE’07. IEEE, pp. 171–187 (cit. on p. 21).

Yang, Z., Fang, H., Wu, Y., Li, C., Zhao, B., and Huang, H. (2012). „Understanding the Effects of
Hypervisor I/O Scheduling for Virtual Machine Performance Interference.“ In: IEEE 4th Interna-

tional Conference on Cloud Computing Technology and Science (CloudCom), pp. 34–41 (cit. on
pp. 4, 174, 186).

Yigitbasi, N., Willke, T., Liao, G., and Epema, D. (2013). „Towards Machine Learning-Based Auto-
tuning of MapReduce.“ In: IEEE 21st International Symposium on Modeling, Analysis Simulation

of Computer and Telecommunication Systems (MASCOTS), pp. 11–20 (cit. on p. 53).

197

List of Figures

1.1. Thesis Approach at a Glance . 6

2.1. Native System Environment . 16
2.2. Types of Virtualization Hypervisors . 16
2.3. SNIA Shared Storage Model (simplified) . 18
2.4. Example Realizations of the Storage Paradigms (derived from Troppens et al.

(2009) and the SNIA Shared Storage Model (n.d.)) 19

3.1. Illustration of Regression Modeling . 23
3.2. Illustration of 5-fold Cross-Validation (based on Kuhn et al., 2013) 24
3.3. Illustration of Bootstrapping (based on Kuhn et al., 2013) 25
3.4. A Queue comprised of a Waiting Line and a Server 26
3.5. A Petri Net before and after Transition Firing . 26
3.6. A Queueing Place and its Notation (Source: Kounev et al., 2010b). 27
3.7. PCM Model Instance (Source: Becker, 2008) . 28
3.8. Model-based Performance Prediction (Source: Becker, 2008) 29

4.1. General Overview of the Thesis Approach and Structure 34
4.2. Reference System Environment comprised of IBM System z and IBM DS8700 . . 36

5.1. Performance Influences (derived from Noorshams et al., 2013b) 41
5.2. Automation Components . 49
5.3. Experiment and Workload Characterization Sequence 50

6.1. Illustration of the S3 Algorithm . 59
6.2. Time Evaluation for Regression Model Creation and Evaluation 66
6.3. Time Evaluation for Regression Model Prediction 67
6.4. Time Evaluation for Regression Model Optimization 69
6.5. Relation between the Regression Techniques . 70
6.6. Model Selection Process (dashed: data flow) . 72
6.7. Performance Modeling Process (dashed: data flow) 74

7.1. Performance Model Building Methodology in Three Phases 80
7.2. Workload Characterization (simplified from Figure 5.1) 83
7.3. Model Creation Plan for I/O Performance Models of Hardware Aspects 84

199

LIST OF FIGURES

7.4. General QPN Model . 85
7.5. Cache Resource Model . 85
7.6. Calibration Error for the Initial Model . 87
7.7. Cache and RAID Resource Model for rr . 88
7.8. Calibration Error for the Refined Model . 89
7.9. Cache and RAID Resource Model for rs, wr . 90
7.10. Prediction Process for I/O Performance Models of Hardware Aspects 92
7.11. Model Creation Plan for I/O Performance Models of Scheduling Aspects 93
7.12. QPN Model for Heterogeneous Workload . 94
7.13. Calibration Error for Heterogeneous Workload Model 96
7.14. Client Places in Multi-VM Model . 96
7.15. Calibration Error for Multi-VM Model . 97
7.16. Client Places in Variable Workload Model . 99
7.17. Calibration Error after Service Time Recalibration 100
7.18. Final Calibration Error for Variable Workload Model 101
7.19. Prediction Process for I/O Performance Models of Scheduling Aspects 103
7.20. Interpolation Error for I/O Performance Models of Hardware Aspects 106
7.21. Extrapolation Error (Clients) for I/O Performance Models of Hardware Aspects . . 106
7.22. Extrapolation Error (VMs) for I/O Performance Models of Hardware Aspects . . . 107
7.23. Interpolation Error for I/O Performance Models of Scheduling Aspects 109
7.24. Extrapolation Error for I/O Performance Models of Scheduling Aspects 110

8.1. Overview of Combining an I/O Analysis Model with a Software Architecture
Model (cf. Figure 4.1) . 116

8.2. Refinement Transformation from Software Architecture Model to Target Analysis
Model . 117

8.3. Modeling Concept Overview (derived from Hauck et al., 2009) 119
8.4. Extended I/O Interface for I/O Requests . 120
8.5. Feature Tree of the I/O Analysis Model (cf. Section 5.2) 121
8.6. Gap between the Abstraction Levels of the Models 122
8.7. Transformation of the PCM Model . 122
8.8. Storage Resource Simulation . 123
8.9. Performance Prediction Steps . 125

9.1. Evaluation Overview (cf. Figure 4.1) . 130
9.2. Schematic Illustration of Sun Fire X4440 . 134
9.3. Schematic Illustration of IBM System z and DS8700 135
9.4. Workload Characterization Overview . 136
9.5. Workload Characterization Process . 137
9.6. Mean Response Time Difference ∆RT with Standard Error in Case Study I 138

200

LIST OF FIGURES

9.7. Workload Migration Process . 139
9.8. Workload Consolidation Process . 139
9.9. Mean Response Time Difference ∆RT with Standard Error in Case Study II 140
9.10. Prediction Quality (Case Study I) . 144
9.11. Prediction Quality (Case Study II) . 146
9.12. Prediction Quality VM1 (Case Study III) . 149
9.13. Prediction Quality VM2 (Case Study III) . 150
9.14. Performance Interference Impact . 151
9.15. Optimization Length Summary . 152
9.16. Illustration of the Application Modeled with the PCM (simplified) 155
9.17. Prediction Error in Case Study I . 156
9.18. Prediction Error in Case Study II . 157
9.19. Prediction Error in Case Study III . 158
9.20. Prediction Error in Case Study IV – File Server 159
9.21. Prediction Error in Case Study IV – Mail Server 159
9.22. Prediction Error of the Standard PCM and the PCM with our Extension 164

10.1. Areas of Related Work with the Center I/O Performance Analysis and Modeling in

Virtualized Environments . 172

201

List of Tables

6.1. Evaluation Overview of Regression Techniques on a Relative 5-Point Scale 71

7.1. Interpolation Configurations for I/O Performance Models of Hardware Aspects . . 104
7.2. Extrapolation Configurations (Clients) for I/O Performance Models of Hardware

Aspects . 105
7.3. Extrapolation Configurations (VMs) for I/O Performance Models of Hardware

Aspects . 105
7.4. Mean Prediction Error for I/O Performance Models of Hardware Aspects (%) . . . 108
7.5. Interpolation Configurations for I/O Performance Models of Scheduling Aspects . . 109
7.6. Extrapolation Configurations for I/O Performance Models of Scheduling Aspects . 110
7.7. Mean Prediction Error for I/O Performance Models of Scheduling Aspects (%) . . 111

9.1. Workload Characterization for the File and Mail Server Application across 20 runs 137
9.2. Mean and Standard Deviation of the Mean Application Response Times 138
9.3. Mean and Standard Deviation of the Mean Application Response Times 140
9.4. FFSB Experimental Setup Configuration . 143
9.5. Filebench Experimental Setup Configuration . 145
9.6. Hybrid Experimental Setup Configuration . 147

A.1. Summary of Related Work in Area i) . 185
A.2. Summary of Related Work in Area ii) . 186
A.3. Summary of Related Work in Area iii) . 186
A.4. Summary of Related Work in Area iv) . 187
A.5. Summary of Related Work in Area v) . 187

203

Glossary

Analysis Model performance model that can be analytically solved or simulated to obtain perfor-
mance results

Dom0 Domain 0; privileged VM in Xen-based environments

I/O data access; storage access

I/O Analysis Model performance model that can be analytically solved or simulated to obtain
results of I/O performance

LPAR Logical PARtition; a virtual machine on System z

PR/SM Processor Resource and System Manager; System z hypervisor

Storage one of the main resources of a computer system: processing, memory, communication,
and storage

z/Linux Linux distribution for System z

z/OS classical System z operating system

205

Acronyms

FCP Fibre Channel Protocol

HDD Hard Disk Drive

ICT Information and Communications Technology

IT Information Technology

NAS Network Attached Storage

NVC Non-Volatile Cache

PCM Palladio Component Model

PE Performance Engineering

QN Queueing Network

QPN Queueing Petri Net

RDSEFF Resource Demanding Service EFFect specification

SAN Storage Area Network

SCSI Small Computer System Interface

SPE Software Performance Engineering

SSD Solid State Disk

VC Volatile Cache

VM Virtual Machine

VMM Virtual Machine Monitor

207

	Abstract
	Kurzfassung
	Danksagung
	1 Introduction
	1.1 Motivation
	1.2 Thesis Goal and Research Questions
	1.3 Existing Approaches
	1.4 Evaluation Criteria
	1.5 Approach and Contributions
	1.6 Application Scenarios
	1.7 Outline

	I Foundations
	2 Virtualization Technology
	2.1 Server Virtualization
	2.2 Storage Virtualization
	2.2.1 SNIA Shared Storage Model
	2.2.2 Storage Paradigms in Virtualized Environments
	2.2.3 Discussion

	3 Performance Engineering
	3.1 Performance Modeling
	3.2 Regression Analysis-based Modeling
	3.2.1 Regression Model Creation
	3.2.2 Regression Model Evaluation

	3.3 Queueing Theory-based Modeling
	3.4 Software Architecture Modeling with the Palladio Component Model (PCM)

	II Versatile I/O Performance Analysis in Virtualized Environments
	4 Methodology
	4.1 Approach Overview
	4.2 Reference System Environment
	4.3 Outlook on Core Approach

	5 Systematic Analysis of I/O Performance-influencing Factors
	5.1 Scientific Challenges
	5.2 Classification of I/O Performance-influencing Factors
	5.2.1 Workload-relevant Factors
	5.2.2 System-relevant Factors

	5.3 I/O Workload Characterization for Performance Modeling
	5.3.1 Workload Intensity
	5.3.2 Request Size
	5.3.3 Request Mix
	5.3.4 Request Access Pattern
	5.3.5 Workload Locality

	5.4 Automation of I/O Performance Evaluation and Workload Characterization
	5.4.1 Architectural View
	5.4.2 Dynamic Sequence View

	5.5 Summary

	6 Creating Regression Analysis-based Models with Optimal Parameterization
	6.1 Scientific Challenges
	6.2 Regression Parameterization as an Optimization Problem
	6.2.1 Problem Formulation
	6.2.2 Stepwise Sampling Search (S3)

	6.3 Regression Model Selection
	6.3.1 Survey of Popular Regression Techniques
	6.3.2 Evaluation of Overhead and Complexity
	6.3.3 Process for Regression Model Selection

	6.4 Process for Modeling of I/O Performance in Virtualized Environments
	6.5 Summary

	7 Using a Tailored Process for Queueing Theory-based Modeling of I/O Hardware and Scheduling Aspects
	7.1 Scientific Challenges
	7.2 Methodology
	7.3 System Environment Analysis
	7.3.1 System Setup
	7.3.2 Identification of Performance-Relevant System Aspects
	7.3.3 Workload Characterization

	7.4 I/O Performance Models of Storage Hardware Aspects
	7.4.1 Planning
	7.4.2 Cache Resource Model
	7.4.3 Cache and RAID Resource Model
	7.4.4 Prediction Process

	7.5 I/O Performance Models of Scheduling and Interference Aspects
	7.5.1 Planning
	7.5.2 Heterogeneous Workload Model
	7.5.3 Multi-VM Model
	7.5.4 Variable Workload Model
	7.5.5 Prediction Process

	7.6 Evaluation
	7.6.1 Goals and Questions
	7.6.2 I/O Performance Models of Storage Hardware Aspects
	7.6.3 I/O Performance Models of Scheduling and Interference Aspects

	7.7 Summary

	8 Integrating Storage-level Models into Software Architecture-level Modeling Approaches
	8.1 Scientific Challenges
	8.2 Methodology
	8.2.1 Extending the Model-based Performance Prediction Process
	8.2.2 Refinement Transformation for Performance Predictions

	8.3 Realization of I/O Performance Prediction in the PCM
	8.3.1 Modeling Concept
	8.3.2 I/O Analysis Model
	8.3.3 Simulation for Solving the Analysis Model
	8.3.4 Prediction Process

	8.4 Summary

	9 Validation
	9.1 Goals and Questions
	9.2 Experimental Setup
	9.2.1 Tools and Benchmarks
	9.2.2 System Environments

	9.3 Case Studies on Workload Characterization
	9.3.1 Overview
	9.3.2 Case Study I: Workload Characterization
	9.3.3 Case Study II: Workload Migration & Consolidation
	9.3.4 Summary and Discussion

	9.4 Case Studies on Storage-level Modeling
	9.4.1 Overview
	9.4.2 Case Study I: Modeling Performance-influencing Factors
	9.4.3 Case Study II: Modeling Application Workload
	9.4.4 Case Study III: Modeling Performance Interference
	9.4.5 Summary and Discussion

	9.5 Case Studies on Software Architecture-level Modeling
	9.5.1 Overview
	9.5.2 Case Study I: File Server on Sun Fire
	9.5.3 Case Study II: Mail Server on Sun Fire
	9.5.4 Case Study III: File Server on System z
	9.5.5 Case Study IV: File and Mail Server on System z
	9.5.6 Summary and Discussion

	9.6 Discussion of the Approach
	9.6.1 Automation
	9.6.2 Modeling Abstraction
	9.6.3 Complementary Formalisms
	9.6.4 Predicting the Performance without our Approach
	9.6.5 Discussion of the Evaluation Criteria
	9.6.6 Assumptions and Limitations

	III Related Work and Conclusion
	10 Related Work
	10.1 Overview
	10.2 I/O Performance Analysis and Modeling
	10.3 I/O Performance Interference Modeling
	10.4 Architecture-level I/O Performance Modeling
	10.5 Disk-based I/O Performance Modeling
	10.6 Systems Performance Evaluation and Modeling
	10.7 Summary

	11 Conclusion
	11.1 Summary
	11.2 Limitations and Outlook on Future Research
	11.3 Concluding Remarks

	A Related Work at a Glance
	Bibliography
	List of Figures
	List of Tables
	Glossary
	Acronyms

