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Abstract. Emerging paradigms for network virtualization like Software-
Defined Networking (SDN) and Network Functions Virtualization (NFV)
form new challenges for accurate performance modeling and analysis
tools. Therefore, performance modeling and prediction approaches that
support SDN or NFV technologies help system operators to analyze
the performance of a data center and its corresponding network. The
Descartes Network Infrastructures (DNI) offers a high-level descriptive
language to model SDN-based networks, which can be transformed into
various predictive modeling formalisms. However, these modeling con-
cepts have not yet been evaluated in a realistic scenario.
In this paper, we present an extensive case study evaluating the DNI
modeling capabilities, the transformations to predictive models, and the
performance prediction using the OMNeT++ and SimQPN simulation
frameworks. We present five realistic scenarios of a content distribution
network (CDN), compare the performance predictions with real-world
measurements, and discuss modeling gaps and calibration issues causing
mispredictions in some scenarios.

Keywords: Network Modeling · Performance Prediction · Software-
defined Networking

1 Introduction

In recent years, data centers became increasingly dynamic due to the wide-spread
adoption of virtualization technologies [10]. Virtual machines, data, and services
can be offered on-demand and shared as well as migrated between different
physical hosts to optimize resource utilization and hence costs while enforcing
service-level agreements (SLAs). However, this forms new challenges for accu-
rate and timely performance analyses of these virtualized units and the resulting
data centers [3]. In addition to the virtualization of compute resources, the net-
work infrastructures shift towards virtualization as well, with the emergence of
paradigms like Software-Defined Networking (SDN) and Network Functions Vir-
tualization (NFV). Therefore, performance modeling and prediction approaches
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that support SDN or NFV technologies help system operators to analyze the
performance of a data center and its corresponding network.

There exist multiple different modeling formalism to represent data center
networks, like, domain-specific simulation models, stochastic Petri nets, queueing
networks, and stochastic process algebras. However, modeling with a given for-
malism requires to understand the meta-model and the usual modeling steps of
the respective approach. Thus, specific knowledge and experience with multiple
modeling formalisms are required to benefit from the variety of their character-
istics. Usually, such knowledge and experience is missing or limited to a single
modeling formalism.

In [20], we introduce a modeling approach that models the network using DNI
(Descartes Network Infrastructures), a high-level descriptive modeling language.
A DNI model can be transformed to multiple predictive models, which enables
the application of various modeling and analysis approaches without requiring in-
depth expertise in the respective modeling formalisms. Furthermore, we extended
the DNI to also capture SDN-based network solutions [22]. While the modeling
concept of non-SDN networks was already evaluated in [21], the SDN models
have not been evaluated yet.

In this paper, we present an extensive evaluation of the DNI, its proposed
model-to-model transformations, and two simulation frameworks OMNeT++ [28]
and SimQPN [16] in the context of a realistic case study. This case study mod-
els file download scenarios within a content distribution network (CDN). We
compare their predictions with network measurements and use the results to
identify modeling gaps and draw conclusions about directions for future work.
We present five different scenarios, covering non-SDN-based networking, SDN-
based networking using hardware tables, SDN-based networking using software
tables, node virtualization, and routing via the SDN controller. By analyzing the
above scenarios, we can compare the simulation techniques as well as the corre-
sponding model-to-model transformations and therefore contribute to a better
understanding of the respective techniques.

2 Performance Modeling and Prediction Methodology

In this section, we briefly introduce the main concepts of the Descartes Network
Infrastructure Modeling (DNI) language and the corresponding performance pre-
diction pipeline. The DNI meta-model is a descriptive model to describe a net-
work infrastructure and covers the three main aspects of every data center net-
work infrastructure: the topology, the configuration, and the traffic. The topology
includes all nodes, links, and interfaces, which can either be physical or virtual.
Nodes can be end nodes (e.g., virtual machine, server) or intermediate nodes
(e.g., switch, router). SDN switches act as both intermediate and end nodes,
as they are forwarding devices but also interact with the SDN controller. Fig-
ure 1 depicts an example of the infrastructure modeling. For every element in
the model, the performance-relevant parameters are described. The performance
for each element has to be specified according to the vendor datasheet or by con-
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Fig. 1: Example DNI infrastructure model.

ducting tailored measurements. The DNI network modeling language considers
different forwarding performance characteristics for SDN switches, depending
on whether the packet is processed using hardware or software flow tables [23].
Sending the packet headers of unknown flows from an SDN switch to the SDN
controller is also supported by DNI with a separate performance description.
Traffic is modeled in DNI as flows that are linked to communicating applica-
tions, which are deployed on end nodes. Each flow has exactly one traffic source
– the traffic generator – and multiple possible destinations. Flows can be com-
posed into a workload model that defines the payload size as well as the temporal
behavior by supporting sequences, loops, and branches. Lastly, the configuration
of a network contains information about routes, protocols, and protocol stacks.
The flexible modeling concept of DNI allows defining customized protocols and
protocol stacks, including overheads by the data unit headers. The information
of the configuration is used to calculate the paths in the topology graph and
coarsely estimate the overheads introduced by the protocols. A route in DNI
can either be described between a pair of nodes (source and destination) or flow-
based, by defining a route for every flow individually. The flow-based routing
representation enables the modeling of software-defined networks, which might
use the OpenFlow protocol, for example.

The accuracy of the simulation – as well as the simulation time – is primarily
dependent on the level of detail of the performance model. As highly detailed
models require increased simulation time, they might not be applicable for large
data center networks prediction; additionally, they require specifying many low-
level parameters, which might be cumbersome for large networks. Therefore, DNI
enables modeling in different levels of detail and therefore supports different use
cases. Additionally, in order to predict the performance of a model, a transfor-
mation into a predictive model has to be performed, as shown in Figure 2. The
transformation from the descriptive model into a predictive model is performed
by adapters, which can be supplemented by transformations into additional pre-
diction models. Currently, DNI supports transformations to Queueing Petri Nets
(QPNs) [22] and to OMNeT++generic [20]. The generated models can be sim-
ulated using OMNeT++ [28] and SimQPN [16] (for QPN), respectively. This
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Fig. 2: Workflow from descriptive network model through transformation into a
predictive model and simulation to performance results.

enables users to decide on the right simulation framework, depending on the
specific requirements (in terms of, e.g., accuracy and simulation time) of the
given use-case.

3 Case Study Design

In this section, we describe the base scenario of the case study presented in
this work. The presented evaluation uses a file download scenario, where differ-
ent file resources are requested by multiple clients over a specified network. As
the file resources are redundantly located on the servers, client requests may be
handled by one or more servers and thus provide the resources from an opti-
mal network location. Typical examples for such distributed resource requests
within a data center are cluster file systems or software-defined storage [5, 29, 7].
Content distribution networks (CDNs) [14, 19] for files or streams are another
example of such distributed file requests which are frequently used both inside
and outside a data center. A client can request single or multiple resources, ei-
ther as batch download or one by one, with a deterministic or exponentially
distributed pause between each of the individual requests. The presented exper-
iments are executed leveraging the L7sdntest software [25], which works similar
to Uperf [26]. L7sdntest includes specialized SDN features, like support of the
SNMP and OpenFlow protocols, the signaling between clients and servers to the
SDN controller, and the management of SDN flow tables by the SDN controller.
Additionally, the L7sdntest provides a central experiment controller to control
complex experiments.

The structure of the used network is based on a representative data center
layout and is visualized in Figure 3. A redundant pair of distributions switches
SW10 and SW00 represent the backbone of the network. The top-of-rack switches
SW40, SW41, SW42, SW43, and SW35 are connected to each of these distribution
switches. The nodes C10, C11, C12, C13, C17, C36, C37, C38, and C39 are con-
nected to the top-of-rack switches and represent data center servers or clients.
The role of the nodes can be freely configured, as L7sdntest software implements
each client and server in a unified way so that each client has the functionality
of a server and vice versa. The SDN controller, deployed on node C16, is directly
connected to distribution switch SW00.
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Fig. 3: Experimental testbed used for SDN experiments.

3.1 Hardware Testbed

For the hardware testbed, nine commodity servers (C10, C11, C12, C13, C17,
C36, C37, C38, and C39) are used. Each server is equipped with a four-core CPU,
32GB of memory, and a 1 Gbps Ethernet network interface. Eight of them are
connected to HP 5130 top-of-rack switches SW40, SW41, SW42, and SW43, one
of them to the SW35 HP 3500 switch, all with a bandwidth of 1 Gpbs. The
topology of the hardware testbed is shown in Figure 3. The HP 5130 run the
Comware switch operating system, the HP 3500 is controlled by the ProVision
switch operating system. The top-of-rack switches are connected to the HP 5700
distribution switches SW10 and SW00 via 10 Gpbs SFP+ DAC copper cables. The
distribution switches are connected with each other using copper QSFP+ DAC
with a maximum bandwidth of 40 Gpbs. Depending on the required OpenFlow
version, Ryu [27] was used for OpenFlow 1.0, and HP SDN VAN Controller [9]
was used for OpenFlow 1.3. The SDN controller was deployed on the server C16.
In order to isolate the experiment control traffic from the experiment traffic,
two different VLANs and an additional switch SW02 are used. An experiment
controller, deployed on server C00, manages the L7sdntest software, requests
switch statistics via SNMP over the isolated control traffic network, and stores
the results.
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3.2 Modeling

Predict the performance of the network, requires building a corresponding DNI
network model. As described in Section 2, all servers, switches, network inter-
faces, and links have to be mapped to their corresponding element in the model.
While the servers C10, C11, C12, C13, C17, C36, C37, C38, and C39 act as end
nodes that generate and consume traffic, the switches SW10, SW00, SW40, SW41,
SW42, SW43, and SW35 are modeled as intermediate nodes which forward traffic.
When the network operates in SDN mode, the switches also get the role of end
nodes assigned as they communicate with the SDN controller via the South-
bound API with a control channel protocol like, e.g., OpenFlow [12]. If virtual
machines are used, they are modeled as nodes, each with an own performance
description, and are assigned to a physical node. The SDN controller itself is
modeled as an application on server C16. Network interfaces are also modeled as
child entities of clients and servers. The connections between servers and switches
are modeled as links with additional performance parameters. All end nodes get
a performance description, specifying a software layer delay. The intermediate
performance description for the switches defines the forwarding latency, switch-
ing capacity, and forwarding bandwidth. For SDN switches, the performance for
processing the packets using hardware tables is specified together with the perfor-
mance of using software tables. Switches of the same type each receive identical
performance descriptions. For all network interfaces, the packet processing time
and the interface throughput is defined within their performance description.
Furthermore, for each link, a propagation delay as well as a maximal supported
bandwidth is specified. The link from the server to the top of rack switches are
configured by a maximal supported bandwidth of 1 Gpbs and their uplink to the
distribution switches with a maximal bandwidth of 10 Gbps. The link between
the distribution switches SW10 and SW00 is specified using a maximal supported
bandwidth of 40 Gbps in the network model. The SDN controller on server C16

is connected via a 1 Gbps link to the distribution switch SW00. In the protocol
configuration, the L4 protocols TCP and UDP, with their underlying protocol
stack, i.e., IP and MAC, each with their maximum data payload as well as the
packet overhead, are modeled.

To transport the packages through the network, corresponding routes are
configured. DNI supports two routing mechanisms: In the classical mode, routes
are specified on each interface whereby at each interface, one route is marked
as the default route. The classical routing mode is used for all non-SDN mea-
surements. For the SDN scenarios, the second routing mechanism of DNI, the
SDN flow rules, are used. An SDN flow rule refers to a node, a flow, as well as
an SDN controller. A probability configuration attribute specifies whether the
packet should be processed using hardware or using software tables. The last part
of the model is the definition of the workload. Each request is mapped to a flow
and the traffic sources and destinations are specified for all flows. Additionally,
the size of the file to be transferred is specified for each flow.
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4 Case Study

In this section, we evaluate the prediction accuracy of predictive models ob-
tained in the flexible performance prediction approach for SDN-based data center
networks. The approach leverages DNI models instantiated from the DNI meta-
model and obtains predictive models using model transformations. For each DNI
model, we generate two predictive models using the DNI-to-OMNeT++generic
and DNI-to-QPN model transformations. The generated models are solved with
the respective OMNeT++generic and SimQPN solvers. Based on the base sce-
nario introduced in Section 3, we analyze the following five scenarios:

Scenario #1 Non-SDN Networking
Scenario #2 SDN Hardware Tables
Scenario #3 Node Virtualization
Scenario #4 Software Flow Tables
Scenario #5 SDN Controller

Each scenario consists of at least 30 repetitions of the experiment scenario. A
single repetition of an experiment scenario takes between 3 and 60 minutes, de-
pending on the specific scenario. For the measured data, an average throughput
is calculated for each second after removing the warm-up and cool-down periods.
Finally, the average steady-state throughput, as well as confidence intervals and
percentiles, are calculated. Additionally, all models used in this case study are
available online3.

4.1 Non-SDN Networking

In this scenario, three client applications are deployed on servers C39, C38,
and C17. The clients request files from predefined servers: C10, C12, and C36.
The clients request 100 times the same resource of size 20 MB, where each re-
quest is issued every 5 seconds. The breaks between requesting the resources
are deterministic. The communication pattern is presented in Figure 4, where

3 https://gitlab2.informatik.uni-wuerzburg.de/descartes/dni-meta-
model/tree/dev/examples/sdn-measurements
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Fig. 5: Network throughputof SW35→C39 with non-SDN networking.

each gray arrow represents the reply of a server to the respective client. Each
server reacts to the client requests immediately and starts transmission of the
requested resource. The three pairs of servers communicate simultaneously and
share the network infrastructure with each other. For each communicating pair,
we measure the network capacity for 1, 5, 10, 15, 20, 25, 30, and 35 users. These
measurements of reference throughput are obtained using SNMP-based moni-
toring procedures implemented in L7sdntest software.

Modeling For this scenario, the DNI model described in Section 3.2 is used
as a base. As this scenario investigates on a non-SDN network, we remove all
model elements corresponding to SDN features, such as the SDN controller and
the SDN applications on the switches. Additionally, the SDN flow rules are re-
placed by more coarse-grained interface-based route configurations.

Results In this scenario, we compare the prediction accuracy of two predic-
tive models: OMNeT++generic and QPN. Based on the obtained predictions,
the network reaches its maximal capacity at the level of about 25-30 users. The
Throughput does not increase beyond the maximum of 942 Mbps for 30 and 35
users. The measured and predicted throughput on a selected network interface
(SW35→C39) is presented in Figure 5a, whereas the relative prediction error in
Figure 5b. The measurement results are stable and the size of confidence inter-
vals does not exceed 60 Mbps. Both generated predictive models provided very
good performance prediction accuracy. OMNeT++generic delivered predictions
with lower error (at most 3%) than SimQPN (at most 5.2%). The maximal
absolute prediction error was below 40 Mbps for SimQPN and 20 Mbps for
OMNeT++generic. For the case of 1-25 users, both solvers underestimated the
throughput, whereas, for a fully saturated network, the predictions were overesti-
mating the measured capacity by up to 14 Mbps. Based on these measurements,
we conclude that DNI correctly models the structure and performance properties
of the traditional network.
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Fig. 6: Network throughput of SW35→C39 using SDN hardware tables.

4.2 SDN Hardware Tables

For this scenario, the switches from the previous experiment setup are recon-
figured to work in SDN mode in order to evaluate the prediction accuracy for
SDN-based networks. The SDN switching is based on flow rules that match the
IP addresses of the traffic flows. This scenario assumes proactive flow insertion.
Therefore, the flow rules are inserted by the SDN controller before the arrival of
the traffic. In order to evaluate the performance predictions for hardware SDN
modes, we assert that all flow rules are inserted into hardware flow tables of the
respective switches and the table capacity is not exceeded.

Modeling The DNI models adapted to SDN hardware mode by adding SDN
flow rules and enable the processing of the rules in the hardware tables of the
switches. Each SDN node in DNI gets assigned an additional SDN performance
description. The official vendor data sheets do not include the performance of
SDN, so we use the forwarding performance and other performance-relevant
characteristics of the switches that have been published in [24].

Results The measured and predicted throughputs on the network interface
SW35→C39 are presented in Figure 6a. These results show that there is no signif-
icant difference in performance between the native and SDN hardware mode for
the analyzed switches. The network gets saturated for 30 users and offers a maxi-
mum throughput of about 942Mbps. The maximum relative deviation of offered
throughput does not exceed 1%. However, the bounds of confidence intervals
differ up to 7% for the measurement with five users. Therefore, the deviations
likely stem from measurement errors. The predictions for SDN hardware mode
provide almost identical capacity prediction. Both generated predictive models
provide high accuracy with maximum prediction errors of 5% for SimQPN and
2.5% for OMNeT++generic. While the error for SimQPN is higher than for
OMNeT++generic, we consider the prediction error as acceptable and therefore
conclude that DNI provides the capability to model SDN hardware mode.
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4.3 Node Virtualization

SDN networks are often used in conjunction with virtualized compute resources,
which results in different network routings. In this scenario, we introduce server
virtualization on node C13 and modify the service deployment to obtain a new
configuration of flows. Server C13 becomes a Xen [2] hypervisor that hosts two
virtual machines C13a and C13b with four CPU cores and 8GB memory each.
The L7sdntest services are redeployed to leverage the high bandwidth of the
10Gbps SFP+ links between the switch SW00 and switches SW4x. Additionally,
we add multiple users that request the resources of diversified sizes: r1 = 1000,
r2 = 100, and r3 = 10MB respectively (selected arbitrarily). We also configure
a new flow of file resources that connects the virtual machines C13b and C13a
to investigate the influence of the hypervisor on the network capacity. The full
testbed configuration is presented in Figure 7. We use the same measurements
procedure as previously for all flows traversing a physical switch. Unfortunately,
the SNMP implementation in the Xen hypervisor (node C13) cannot provide
stable reports from virtual interface byte counters. Therefore, we measure flow
C13b-C13a separately using Iperf [8] to estimate the maximal capacity of the
VM-to-VM connection.

Modeling The modeling of the server virtualization consists of defining the
VMs, a virtual switch (a bridge running on the hypervisor), and virtual links con-
necting the VMs to the hypervisor bridge. The bandwidth of links and network
interfaces is set to 1000Gbps in both predictive models (as an approximation of
infinity). The maximal bandwidth of the virtual hypervisor bridge was specified
using forwarding delay. The value of forwarding delay was estimated using a
controlled experiment and set to 1µs for the Iperf workload. The experiment
was executed under a repeatable constant level of computing load on the SDN
controller.

Results The measured and predicted throughputs are presented in Table 1.
While both predictive models deliver predictions with low errors, the SimQPN
solver performed better than OMNeT++generic and provided up to 2% more
accurate predictions. The absolute prediction error of the high-bandwidth link
(SW41 → SW00) was low and did not exceed 40 Mbps on average. Anomalies
can be observed for three of the monitored network interfaces. The flows sharing
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Table 1: Scenario #5: Measured and predicted network capacity.
Reference QPN Relative OMNeT Relative

Measured port Mbps Mbps error % Mbps error %
lCI uCI avg lCI uCI

Scenario #5A (no flow C13b → C13a)

SW41 • → SW00 1834 1888 1848 0.7 1879 1924 2.2

SW00 • → SW41 171 196 192 4.9 163 232 7.9

SW41 • → C12 152 174 176 7.8 154 208 11.0

SW41 • → C13 18 22 16 19.6 14 19 17.4

SW00 • → SW40 920 941 924 0.7 940 962 2.2

SW00 → • SW43 917 944 924 0.7 938 961 2.1

SW43 • → C38 917 942 924 0.6 945 954 2.2

Scenario #5B (flow C13b → C13a with iperf )

C13b → • C13 11052 11149 17040 54 16823 17987 57

C13 • → C13a 11052 11149 10878 2.0 9999 10256 8.8

the path SW00 → SW41 → C12 and C13 consumed less network resources
than predicted by the models. The total consumption of capacity on the link
SW00 → SW41 is expected in theory as maximally 192Mbps. Despite the ideal
prediction of SimQPN, the reference measurements provided larger confidence
intervals and thus the average is reported below the expected 192Mbps. OM-
NeT++generic, however, predicted a higher variation of the average consumed
capacity and thus the prediction is provided with higher accuracy error. This
phenomenon propagates further to the links SW41 → C12 and SW41 → C13,
so higher prediction errors are observed. Note that the absolute prediction er-
rors are low and do not exceed 25Mbps and 5Mbps for links SW41 → C12
and SW41 → C13, respectively. Despite the challenging calibration procedure,
the performance predictions for the flow C13b → C13a that are measured using
iperf return accurate results with 2% and 8.8% prediction error for SimQPN and
OMNeT++generic respectively. The flow C13b → C13, however, is affected by
the TCP-UDP modeling gap, that is, the predictive models analyze the traffic in
an UDP-fashion, whereas the reference communication runs over TCP and the
throughput of the flow is limited by congestion control algorithms according to
the bandwidth of a bottleneck resource.

4.4 Software Flow Tables

In this experiment, we reconfigure the SDN switches to forward the incoming
traffic based on MAC addresses instead of IP addresses. This forces the SW35
switch to install the rules into the software flow table. The rest of the switches
install the new rules in the hardware tables. Thus, for the switch SW35, we
investigate the offered network capacity in the SDN software mode. The other
switches contain only hardware flow tables, so their performance in SDN soft-
ware mode cannot be analyzed.
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Fig. 8: Network throughput of SW35→C39 using SDN software tables.

Modelling The software SDN forwarding mode is modeled in DNI by dis-
abling the processing of the flow rules in the hardware table and thereby force
usage of the software flow tables. The switching capacity for software switching is
set to 10.000 packets per second in DNI. This represents the maximal switching
capacity offered by the switch operating system. We experimentally estimated
the forwarding in SDN software mode to 90µs. Additionally, we also evaluate a
forwarding delay of 76µs (as estimated using the method presented in [22]).

Results Setting the SDN forwarding mode to software switching causes a dras-
tic drop in the offered throughput. The switch SW35 is able to deliver maximally
62 Mbps of throughput, which corresponds to 6.5% of the maximal throughput
in the SDN hardware mode. There are two main factors that contribute to the
observed performance drop. First, the switch operating system limits the maxi-
mum switching capacity to 10.000 packets per second. This limit is configurable
and can be set to lower values, however for the maximum setting, the switch con-
sumes already almost 90% of its CPU resources (as presented in [24]). Second,
the software flow table is usually implemented using general-purpose SDRAM,
so the lookup procedure consumes additional time to find a matching rule in the
flow table. This incurs additional forwarding delay that needs to be estimated
empirically. The measured and predicted throughputs are depicted in Figure 8a,
whereas the relative prediction errors in Figure 8b. Both predictive models pre-
dict the drastic performance degradation and provide accurate estimates of the
maximal network capacity. The OMNeT++generic simulation with forwarding
delay 90µs predicts the average throughput accurately with a prediction error
below 4%. SimQPN performed similarly, however the prediction error reaches
about 6% for a single user. The alternative method for calibrating the forward-
ing delay results in higher inaccuracies and the prediction error for OMNeT++
reaches 11%. This can still be considered an acceptable prediction accuracy un-
der the assumption that the forwarding delay was calculated a priori using an
analytical formula.
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4.5 SDN Controller

In this scenario, we assume that an error in the SDN flow rule configuration
causes all switches to misinterpret the rules located in the flow tables and for-
ward all traffic via the SDN controller. This way, we indirectly examine the
performance of the SDN controller in handling excessive packet-in traffic. The
switches are configured to forward to the controller if no rule in the flow tables
can be matched. Additionally, the SDN controller application returns the flow-
mod messages that do not install any rules in the flow tables. Instead, the switch
is instructed to forward each packet directly to the proper outgoing port. In this
scenario, two servers are communicating via a network path containing three
SDN switches, as shown in Figure 9. Next, we enable SDN on switch SW41,
whereas the other switches work in native mode. The Ryu SDN controller is
connected directly to SW41 over a dedicated network link. Node C38 represents
a single user requesting a 20 MB resource from C12 every five seconds. Unfortu-
nately, L7sdntest could not establish a stable connection between the client and
the server. Note that in each of 30 experiment repetitions, the software handles
100 consecutive file transfers and reports an experiment failure if any of the ex-
periment repetition fails. Therefore, we use Iperf to emulate the user behavior
for this scenario.

Modelling In this scenario, we build the DNI model similarly as in the previ-
ously presented SDN scenario. The modeling consists of defining a flow between
nodes C10 and C38 with respective SDN flow rules. But instead of processing
flows in hardware or software tables within the data plane, the SDN devices are
modeled to forward them to the controller by default. The modeling of an SDN
controller faces similar challenges to the calibration of forwarding delay of the
SDN switch working in SDN software mode. Therefore, we empirically estimate
the per-packet processing delay by the SDN controller application to 8ms.

Results The reference measurements shown in Table 2 originate from three
Iperf settings. First, we use the default Iperf command that measures the maxi-
mal capacity of the network connection. In this scenario, the average bandwidth
of the path connecting node C10 and C38 is low and does not exceed 1.3 Mbps
of stable traffic throughput. Both SimQPN and OMNeT++generic overestimate
the throughput on link C12 → SW41 due to the previously discussed differences
between TCP and UDP. For the link SW43 → C38, the high relative errors cor-
respond to an acceptable absolute error of 0.15 Mbps and 1.18 Mbps respectively.
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Table 2: Measured and predicted throughput in the SDN controller scenario.
Reference QPN Relative OMNeT Relative

Measured port Mbps Mbps error % Mbps error %
avg avg lCI uCI

Reference: default TCP iperf

C12 → • SW41 1.24 32.00 2481 27.12 38.60 2550

SW43 • → C38 1.24 1.39 12 2.14 2.70 95

Reference: default UDP “iperf –udp”

C12 → • SW41 1.03 32.00 3007 27.12 38.60 3090

SW43 • → C38 1.03 1.39 35 2.14 2.70 135

Reference: modified UDP “iperf –udp -b 32000000”

C12 → • SW41 32.00 32.00 0 27.12 38.60 2.6

SW43 • → C38 2.19 1.39 57.5 2.14 2.70 10.5

Next, we switch the transport protocol to UDP and measure the available band-
width. This however, does not allow Iperf to send more data than 1 Mbps unless
the receiving side confirms successful receptions. The maximal non-interrupted
transfer measured by Iperf limited the throughput to 1.03 Mbps. Iperf tries to
transmit data with 2 Mbps but it returns to the throughput of 1 Mbps due to
high packet losses [8]. The relative and absolute prediction errors are high and
therefore opportunities for improvement in future work.
Finally, we force Iperf to send 32 Mbits of data without waiting for the con-
firmation of the receiving side. The switch SW41 forwards each packet to the
SDN controller. After approximately 8ms, the controller replies with a decision
regarding the packet forwarding, which is not stored in the flow table. There-
fore, each packet is delayed by at least 8ms (plus additional network interface
processing delays) and forwarded to the destination in C38. At the receiving
end-point, Iperf reported maximal throughput of 2.19Mbps with 130ms jitter
and packet loss rate of 92%. Iperf measures the performance at the receiver side
until the sender side notifies it that the experiment ends. However, the notifica-
tion is significantly delayed by the switch and the SDN controller, so it arrives
at the receiver later. Due to this additional delay, an additional part of the data-
grams queued at the SDN controller arrive at the receiver and are included in
the statistics. As the behavior in this scenario is closely related to the modeled
behavior, the utilized network capacity has been predicted exactly by SimQPN,
whereas OMNeT++generic mispredicted it with 2.6% relative error (0.86 Mbps
absolute error). While the relative prediction errors on link SW43 → C38 were
higher —57% for SimQPN and 10.5% for OMNeT++generic — the absolute
errors of 0.8 Mbps and 0.23 Mbps can be considered acceptable.

5 Related Work

We group the related work into two clusters. First, we describe all related works
modeling the performance of data center networks on an architecture level. Note
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that none of the approaches is able to capture SDN-based networks. Second, we
list performance modeling approaches capable of modeling SDN-based networks.
However, none of those include explicit architecture-level modeling like DNI does.

Architecture-Level Performance Modeling of Data Center Networks Several
approaches for modeling networks in data center networks have been proposed.
In [30], the authors propose to extend the SDL and UML languages with per-
formance annotations. In [6], the authors propose a modeling approach named
Syntony. A similar approach is presented in [18]. Similar to [30], all approaches
focus the modeling on the protocol-level. The authors of [13] present a stochastic
model for the window dynamics in TCP and investigate the throughput perfor-
mance of TCP-Tahoe. The I/O path model (IOPm) [17] was designed to model
the architecture of parallel file systems. However, none of the above works are
capable of modeling SDN networks.

Performance Modeling of SDN-based Networks The authors of [1] propose
an analytical performance model based on network calculus. In contrast to our
approach, the proposed model does not cover the computing infrastructure, the
software architecture, and the hosted applications. The authors of [11] propose a
performance model based on queueing theory to evaluate SDN-enabled switches.
The evaluation focuses only on OpenFlow-enabled switches and controllers; the
scope of the complete data center architecture is missing. Similarly, the authors
of [4] focus only on a selected part of SDN-based networks, i.e., the data plane
of a switch. The authors of [15] proposed an SDN extension to OMNeT++
simulation based on the INET library. Nevertheless, given the simulation at the
protocol-level, their approach focuses on the specific network protocols supported
by the INET library and misses the scope of the entire data center.

To the best of our knowledge, the only work considering modeling SDN-based
networks at the architecture level is our prior work [22]. However, the prior work
fails to exhaustively evaluate the performance of the modeling approach, which
is what we are targeting in this work.

6 Conclusion

In this paper, we present an extensive case study evaluating performance pre-
dictions of SimQPN and OMNet++ on SDN-based networks. Both simulation
models are created by model-to-model transformations based on the Descartes
Network Infrastructure (DNI) model. We present five different scenarios, cover-
ing non-SDN-based networking, SDN-based networking using hardware tables,
SDN-based networking using software tables, node virtualization, and routing
via the SDN controller. Our results show that both simulation frameworks deliver
comparable and sufficiently accurate predictions for most scenarios. However, we
also identify some remaining challenges and open issues. For example, we notice
the TCP-UDP-modeling gap. Here, if the predictive models simulate the traffic
in an UDP-fashion, while TCP operated by the reference application limits the
throughput of the flow using congestion control algorithms. Modeling of con-
gestion control algorithms for network protocols in DNI would close this gap,
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which is planned as follow-up work. Additionally, the manual calibration of the
forwarding delay parameter for SDN switches is cumbersome and error-prone.
In the future, fully automated calibration approaches could be investigated.
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