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Abstract—In this paper a task of resources allocation in
the complex system is considered. Novelty of the formulated
task consists of assumption that the applications assigned with
resources of one machine can be migrated to another machine
during system lifetime. The formulated task has been solved using
proposed heuristic optimization method. Due to non-convex set of
valid solutions the optimization procedure has been decomposed
into two stages and forms approach similar to the relax-and-
round approach. Proposed decomposition approach facilitates
fast algorithm convergence and guaranties that achieved solution
satisfies assumed constraints.

I. INTRODUCTION

In this paper we consider resource allocation task in a
distributed execution system. We assume that the system as
a whole is a complex system so the services offered to
a customer are in general complex services. The complex
services — also called in the literature composite service —
composed using many atomic services [8] in such a way that
user’s functional and quality requirements are met. An atomic
service is a set of applications which deliver exactly the same
atomic functionality but can be located in another location of
distributed complex system so the quality may vary.

We formulate a specific optimization task which includes
the migration of application from one virtualized computa-
tional node to another one [5], [16]. Such an operation is
possible due to resources virtualization — proper research
in applications migration scope has been investigated in the
literature, e.g. [3], [15], [2]. The goal of our research is
to optimize the quality of service delivered to the user by
means of efficient computational resources allocation taking
into consideration the migration possibility.

The motivation for such a problem formulation is non-
stationarity of users’ behaviour that leads to variable intensities
of requests streams incoming to the system. The system needs
to react to changes in environment by automatic optimization
of the resources allocation in order to keep the quality of
service at required level. The migration awareness of the
service-oriented system gives the system ability to relocate
the system’s services if only such an operation leads to
improvement the of quality of service.

II. SYSTEM MODEL AND TASK FORMULATION

The considered execution system is assumed to be complex
— contains many distinguishable parts called atomic services
— and distributed — system’s components are located on
various computational nodes connected with network. The
system model is presented in the subsection below.

A. Complex System Model

The considered system offers complex services which can
be composed dynamically satisfying all the requirements for-
mulated by user. The user formulates its requirement by speci-
fying its functional and nonfunctional requirements bound in a
contract. Denote system components — called formerly atomic
services — as asj . Each atomic service can be available in
the system in many versions asjk, where each version delivers
the same functionality but differs in nonfunctional parameters
values. The atomic service version is an software application
located in proper computational node of the system.

The atomic service versions are located on the computa-
tional nodes within the execution system which is modeled as
a graph. The execution system graph is denoted G = (V,E)
where V denotes a set of computational nodes and E is a set
of communication channels linking the computational nodes.
The quantity of computational resources is modeled as a vector
u = [u1, u2, ..., uN ]

T , N = |V |, where each element of u
vector represents computational abilities of respective node
— total amount of computational resources. The value of u is
constant over time. The assignment of computational resources
to the atomic services versions in t-th moment of time is done
with matrix P(t) defined in the following way:

P(t) := (pi,j)i=1,...,M ;j=1,...,N (1)

where N denotes the number of computational nodes present
in the system N = |V |, and M denotes the total versions
number of all atomic services (applications) M =

∏J
j Kj ,

where Kj denotes the number of versions of j-th atomic
service, and J is the number of all atomic services. The matrix
defines how much amount of computational resources of each
node is assigned to which application. The value 0 ≤ pi,j ≤ 1
means that i-th atomic service version has been assigned with
amount of pi,j · uj resources of j-th computational node. In



example pi,j = 0.5 means that half of resources of j-th node
is assigned to i-th application.

B. Complex Service Resources Consumption

The whole composition process of composing complex
service required by the user has been described in [6], [9]
and some QoS-aware composition optimization has been in-
vestigated in [8], [18]. In this paper we focus on resources
consumption modeling, which is mainly the effect of the
composition process.

Assume, that the required complex service is composed
e.g. with the graph-fold algorithm [10] in order to satisfy
user’s functional and nonfunctional requirements. Moreover,
we assume that all users of the system have been grouped
in order to distinguish a user class (e.g.: bronze, silver, gold,
platinum) which depends on e.g. how much the user pays for
the service. It is obvious, that the system should offer services
of higher quality to users who pay more. In order to model the
atomic services versions usage we propose a matrix defined
in the following way:

R(t) := (ri,j)i=1,...,M ;j=1,...,L. (2)

The R matrix has dimensions M ×L, where L denotes the
number of user classes, and the ri,j value means that the i-th
atomic service version is used by the users from j-th class ri,j
times in the t-th period of time. The user classes have weights
assigned in order to valuate importance of services chosen
by them. The weights are represented by the vector denoted
v = [v1, v2, ..., vL]

T . Each atomic service version used by the
user from l-th class is vl times more important than in the
situation when all users are treated equal. We obtain weighted
atomic services versions usage vector vD by multiplying the
R matrix by v vector:

vD(t) = R(t)v (3)

C. Problem Formulation

The task considered in this paper focuses on finding such
an allocation of computational resources, that utility function
value is maximized. Higher utility value means higher quality
of service. The constraints have been formulated in such a
way that the migration operation is possible — each atomic
service version can be moved from one machine to another.
Moreover, formulated task’s solution points out, that some
atomic services versions should be disabled (resources will
not be assigned).

In order to find optimal computational resources allocation,
such that the quality of service is maximized, the following
task should be solved:

Given:
• Current resource assignment matrix P(t)
• Current weighted atomic services versions usage vector

vD(t)
• Amount of computational resources vector u

• Marginal utility function fu =
N∑
j=1

(
1− e−α·uTPj

)
Find: such a resources assignment matrix P(t + 1) which
maximizes the following utility function (eq. 4):

U(P(t+ 1)) = fu(u
T P(t+ 1))vD(t), (4)

with subject to the following constraints:

∀
1≤i≤M

∀
1≤j≤N

: pi,j ≥ 0, (5)

∀
1≤i≤M

:

N∑
j=1

pi,j ≤ 1, (6)

∀
1≤j≤N

:

M∑
i=1

pi,j = max
i
{pi,j} (7)

In the equation 4, the fu(uTP(t + 1)) function has been
used. This function models atomic service version perfor-
mance with respect to assigned amount of computational
resources. In general, a linear function can be used but more
realistic would be for example the function given with equation
8:

fu(u
TP(t+ 1)) =

N∑
j=1

fu,j , (8)

fu,j = 1− e−α·u
TPj , (9)

where Pj denotes j-th column in matrix P(t + 1). Function
9 involves the law of diminishing marginal utility [12]. The α
parameter models the shape of the function fu and in case of
this problem formulation, α should be chosen as 0 ≤ α ≤ 1.

The formulated constraints should be interpreted as follows.
Each resource assignment ratio should be no less than 0 and
no more that maximum available resource quantity (eq. 5);
All assigned resources of proper computational node should
be no less than 0 and no more than maximum available
resource quantity (eq. 6); Single atomic service version should
be assigned with resources of at most one computational node
(eq. 7). The last constraint given with equation 7 can be
understood also as a demand of at most one element with
value > 0 in the each column vector of matrix P(t).

Such a formulated task is an optimization problem of non-
linear, monotonically increasing utility function with nonlinear
constraint given as an equality and linear constraints given as
inequalities.

Noteworthy is the fact, that constraint given with equality
7 reduces the valid solution set only to segments (within the
range 〈0, 1〉) placed on axes of (M · N)-dimensional space.
Such a solution set is non-convex, so there is no guarantee
to achieve global optimum using standard optimization tech-
niques. In the section III we propose a two-stage method of
solving this problem.



D. Related Works

The problem formulated in our work is a transformation
of resources allocation problem [17]. We have transformed
the constraints set in such a way that migration operation is
possible. The resource allocation algorithms has been investi-
gated widely in the literature, e.g. [11], [13], [14], [17] but the
modification allowing migration of services has not been found
in the literature. The original resource allocation problem
has been solved using classic approaches using convex op-
timization, dynamic programming (centralized global decision
making) and using such methods like e.g. auction mechanisms
or multiagent systems (distributed and local decision making).
To valuate the quality of service the utility function has been
used in most related works.

We would like to emphasise that the problem stated in
section II-C is the modification of distributed resource allo-
cation problem. The modification consists of introducing the
migration operation what causes that the original problem
is non-convex. The migration allows to change the appli-
cation physical location within the system with virtualized
computational resources. The consequence of migration is a
modified set of constraints in the task formulation, so the
classic methods can behave in the different way.

In order to migrate atomic service versions from one phys-
ical node to another one, we need to locate the application
on virtual machine. As the virtualization platform Xen is
assumed [1]. We have chosen Xen because it allows to migrate
virtual machines in distributed complex systems without the
need of central storage drive what is not possible in e.g.
Vmware. Decentralized storage has the advantage that there
is no problem with bottlenecks and virtual machines can be
migrated directly from the source to destination physical node.

III. PROPOSED SOLUTION

We propose a two-stage, heuristic method of optimization
in order to solve the stated task. Due to the non-convex set
of valid solutions we approximate this set by a convex one
in the first stage. Solving the optimization problem for such a
approximated constraint results in obtaining the proposition of
execution location for each atomic service version, but does
not assign the resources. In general, obtained solution is not
valid by means of constraints given by equations 6 and 7.
In the second stage, we propose to make the projection of
solution obtained in the first stage onto the feasible solution
space of the original problem. The projection causes the
method to be heuristic. Each set of feasible solutions in the
second stage is convex, so known numerical optimization
methods can be used to solve this problem, e.g. interior-point
method [4].

A. First Stage Optimization

In the first step we change the constraint given by equation
7 to the following one:

∀
1≤j≤N

:

M∑
i=1

pi,j ≤ 1. (10)

Noteworthy is the fact that the new set of constraints 5, 6,
10 is convex. Furthermore this set is the smallest convex set
bounding the set of constraints given by equations 5, 6, and 7.
Due to the fact that the function given with eq. 4 is concave, we
get convex optimization problem, which has a unique solution.
In order to solve the new convex optimization problem we
use the numerical optimization method (e.g. interior point
method). The solution obtained in this stage is denoted by
P+(t+ 1).

B. Second Stage Optimization

In the second stage of proposed optimization procedure we
project P+(t + 1) onto the set of constraints (eq. 7). The
projection Pp(t+ 1) has the following form:

∀
1≤j≤N

: ppi,j =

{
p+i,j p+i,j = max

k
{p+k,j}

0 p+i,j 6= max
k
{p+k,j}

(11)

The idea of the projection is to keep only the largest values
in every column j and the rest set to zero. Alternative to that
can be choosing the values for which we have obtained largest
Lagrange multiplier in the first optimization step. Choosing the
proper projection is crucial in this problem because it makes
the solution heuristic.

Next we formulate the following set of constraints:

∀
1≤j≤N

p
+
i,j
6=max

k
{p+

k,j
}

: pi,j = 0. (12)

Now we want to maximize the function (eq. 4) with subject
to constraints given by equations 5, 6 and 11. The new
optimization problem is also convex and has a unique solution.

Once again we can easily obtain the optimal solution
using interior-point method. Let P∗(t + 1) denotes the final
solution. Obviously, this solution satisfies the constraints given
by equations 5, 6 and 7. However, it is not necessarily the
optimal solution of the optimization task stated in section
II-C. Nevertheless, empirical study shows that the presented
optimization method gives very good results as shown in the
next section.

IV. RESULTS DISCUSSION

The two-stage heuristic optimization method proposed in
section III has been implemented and evaluated using MAT-
LAB. To evaluate the optimization quality of the proposed
method, we have set α = 0.1 and randomized the u and vD(t)
vectors values every experiment. The experiment consisted of
generating 1 million of random valid solutions and comparing
the best random solution with the one calculated by our
method. The starting point for the optimization method has
been chosen randomly every run. The relative (divided by
maximum) difference between the best randomized value and
the value obtained by our method is depicted in fig. 1.

Considering the large size problem (50 nodes and 80
services) our method returns better results than random search
maximum. For the medium size problem (10 nodes and 15
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Fig. 1. Relative difference of utility function value obtained in random search
and in optimization using the proposed optimization method. The solution is
verified for large (50 nodes, 80 services), medium (10 nodes, 15 services) and
small (3 nodes, 5 services) problem sizes.

services) solution is very close to optimal except the two
experiment runs when our method gave better results. For the
small size problem (3 nodes and 5 services) solution returned
by our method is almost alike to random search maximum
(but obtained in much shorter time).

Obtained results are very interesting. The disproportion
of obtained results for our method and random search are
caused by variable percentage numerical optimization of all
possible solutions size of set explored by random search.
This observations let us suspect that the proposed optimization
method returns the solution that is very close to the optimum.

Due to heuristic nature of the proposed method we com-
pared our results to the results obtained with exhaustive search
method. We have implemented the exhaustive search method
in MATLAB and set the matrix value minimum step to 0.01 for
each variable. That corresponds to the 1% of physical machine
resources. This means that we have examined 100 values for
each value in matrix P(t + 1). Due to very large possible
solution space — in this case (100N)M — we have picked
N = 2 machines and M = 5 services for the testing purposes.
The solution space size in this example was about 32 · 1010.

In the experiment we used the following values:

• u = [2944, 3217]T

• vD(t) = [105.211, 315.737, 315.737, 411.937, 411.937]T

• α = 0.1

The values of the vD and u was taken from the simulation
environment in the random moment of simulation. The simu-
lator was used to model the distributed complex system and to
monitor the intensities of the requests streams [7]. However,
we do not focus on the simulation environment in this paper,
we just use is as a source of data.

In the exhaustive search we have obtained the following
results. The P∗

exhaust(t) matrix as in the equation 13:

P∗
exhaust(t+ 1) =

[
0 0.425 0 0.575 0

0.12 0 0.33 0 0.55

]
.

(13)
The utility value for such a matrix is presented in equation
14:

U
(
P∗
exhaust(t+ 1)

)
= 3205.4. (14)

Moreover, our method was examined on the same data. We
run the proposed optimization method 10 times and collected
the proper data. The results were the following:

Uavg
(
P∗
opt(t+ 1)

)
= 3198.9, (15)

Umax
(
P∗
opt(t+ 1)

)
= 3206.2, (16)

Umin
(
P∗
opt(t+ 1)

)
= 3177.2. (17)

For the 10 runs of our method we have noticed that the
standard deviation of the utility function value was equal to
9.6137. Noteworthy is the fact, that maximum utility function
value obtained for our algorithm is higher than the one
obtained in exhaustive search. This is the result of limiting
the resolution in the exhaustive search to 0.01 what makes the
domain of the function discrete. The P∗

opt(t+1) obtained for
the best utility function value (eq. 16) is presented in equation
18.

P∗
opt(t+1) =

[
0 0.4267 0 0 0.5733

0.1118 0 0.379 0.5093 0

]
.

(18)
Obtained results show that the solution proposed by our

method is near to optimal value. The exhaustive search ex-
periment results estimated the optimal value of the utility
function quite precise. However, the matrix P∗

opt(t + 1) is
slightly different than P∗

exhaust(t+1) — services 4 and 5 has
been switched and service 3 obtained 5% more resource than
in exhaustive search. This is caused by the fact, that services
4 and 5 were used with same intensity in this example (see
vD vector values) so replacement between machines would
not decrease the utility function value. Moreover, the fact that
service 3 obtained more resources is caused by the shape
of the marginal utility function (eq. 9) which is flattening
with increasing resources assignment ratio. This leads to the
observation, that there are a lot of suboptimal solutions for
this task and the effort to find the optimal one may be much
higher than the difference in quality of service of resulting
allocation.

Unfortunately we were unable to compare our method to the
related works because exactly such an problem formulation
was not examined before.

V. CONCLUSIONS AND FURTHER WORK

The disproportion of obtained results for our method and
random search are caused by keeping fixed sample for in-
creasing solution space size in random search approach. This
observations let us suspect that the proposed optimization



method returns the solutions that are very close to the opti-
mum. Moreover, this conclusion has been confirmed for small
sized problem by comparison to the exhaustive search results.

The formulated task along with the proposed solution al-
lows the system to self-optimize by means of computational
resources allocation with migration operation in order to
maximize the offered services quality. However, in the real
complex system (e.g. based on the service-oriented archi-
tecture paradigm) the communication should be taken into
account in order to optimize the quality properly. This can be
obtained assuming that the communication between system’s
components is also modeled as a service. The resources of
communication service can be also managed in the very
similar way — share the total channel capacity between the
data streams that are using the channel.

We emphasize that the proposed method is a heuristic so the
quality of optimization may decrease with increasing number
of computational nodes and services number. Moreover, the
migration operation consumes quite a lot of communication
resources, so the number of migrations should be taken into
account during the optimization process in order to minimize
the network’s load. Noteworthy is the fact, that the quality
profit obtained after the migration operation increases in time
during the system work but the migration itself is done only
once — it can be understood as an single investment for the
the future profits. This involves that the optimization time step
length should be investigated in order to maximize the quality
along with the number of migration operations minimization
what we plan to focus on in the near future.
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