
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

SARDE: A Framework for Continuous and Self-Adaptive
Resource Demand Estimation

JOHANNES GROHMANN, University of Würzburg, Germany
SIMON EISMANN, University of Würzburg, Germany
ANDRÉ BAUER, University of Würzburg, Germany
SIMON SPINNER, IBM, Germany
JOHANNES BLUM, University of Konstanz, Germany
NIKOLAS HERBST, University of Würzburg, Germany
SAMUEL KOUNEV, University of Würzburg, Germany

Resource demands are crucial parameters for modeling and predicting the performance of software systems.
Currently, resource demand estimators are usually executed once for system analysis. However, the monitored
system, as well as the resource demand itself, are subject to constant change in run-time environments. These
changes additionally impact the applicability, the required parametrization as well as the resulting accuracy
of individual estimation approaches. Over time, this leads to invalid or outdated estimates, which in turn
negatively influence the decision-making of adaptive systems.

In this paper, we present SARDE, a framework for self-adaptive resource demand estimation in continuous
environments. SARDE dynamically and continuously tunes, selects, and executes an ensemble of resource
demand estimation approaches to adapt to changes in the environment. This creates an autonomous and
unsupervised ensemble estimation technique, providing reliable resource demand estimations in dynamic
environments. We evaluate SARDE using two realistic data sets. One set of different micro-benchmarks
reflecting different possible system states and one data set consisting of a continuously running application
in a changing environment. Our results show that by continuously applying online optimization, selection
and estimation, SARDE is able to efficiently adapt to the online trace and reduce the model error using the
resulting ensemble technique.

CCS Concepts: • Computing methodologies → Learning paradigms; Model development and analysis;
• Software and its engineering→ Software performance.

Additional Key Words and Phrases: self-adaptive systems; resource demand estimation; machine learning;
optimization; self-tuning algorithms

ACM Reference Format:
Johannes Grohmann, Simon Eismann, André Bauer, Simon Spinner, Johannes Blum, Nikolas Herbst, and Samuel
Kounev. 2021. SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation. ACM
Trans. Autonom. Adapt. Syst. 1, 1, Article 1 (January 2021), 32 pages. https://doi.org/10.1145/3463369

Authors’ addresses: Johannes Grohmann, johannes.grohmann@uni-wuerzburg.de, University of Würzburg, Würzburg,
Germany; Simon Eismann, simon.eismann@uni-wuerzburg.de, University of Würzburg, Würzburg, Germany; André Bauer,
andre.bauer@uni-wuerzburg.de, University of Würzburg, Würzburg, Germany; Simon Spinner, sspinner@de.ibm.com,
IBM, Boeblingen, Germany; Johannes Blum, johannes.blum@uni-konstanz.de, University of Konstanz, Konstanz, Germany;
Nikolas Herbst, nikolas.herbst@uni-wuerzburg.de, University of Würzburg, Würzburg, Germany; Samuel Kounev, samuel.
kounev@uni-wuerzburg.de, University of Würzburg, Würzburg, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1556-4665/2021/1-ART1 $15.00
https://doi.org/10.1145/3463369

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3463369
https://doi.org/10.1145/3463369

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Grohmann et al.

1 INTRODUCTION
Timely and precise resource demand estimates are a crucial input to auto-scaling mechanisms [2]
or performance modeling techniques [36, 69] used for elastic resource provisioning. Therefore, it
has been shown that statistical estimation of resource demands is a valid and useful tool to realize
precise elastic cloud resource management [2, 92]. A resource demand (or service demand [79])
is the average time a unit of work (e.g., request or transaction) spends obtaining service from a
resource (e.g., CPU or hard disk) in a system over all visits, excluding any waiting times [48, 59].
Unfortunately, measuring resource demands during system operation is not feasible in most realistic
systems [79] due to instrumentation overheads and possible measurement interference. Therefore,
a number of approaches for resource demand estimation have been proposed over the years, using
different statistical estimation techniques (e.g., linear regression [8, 72] or Kalman filters [88, 98])
and based on different modeling approaches from queueing theory.
When selecting an appropriate approach for a given scenario, a user has to consider different

characteristics of the estimation approach, such as the expected input parameters, configuration
settings, its accuracy and its robustness to measurement anomalies. The accuracy of the different
approaches is heavily dependent on factors like, including but not limited to, system load, workload
type, deployment structure, internal state, and monitoring granularity [79]. Additionally, Spinner
et al. [79] show that no single approach is optimal in all scenarios. This is in accordance with
the no-free-lunch theorems for machine learning [93] and optimization [94], stating that any two
algorithms are equivalent when their performance is averaged across all possible problems.

First steps towards solving the above issues focus on combining different estimation approaches
into a single usable tool [80], optimizing configuration parameters based on measurement data [27,
29], and recommending the most promising approach using machine learning [30]. However,
existing work focuses on one-time estimation and optimization, ignoring the impacts of system
change. As modern software paradigms like DevOps and elastic cloud operations become increas-
ingly popular, timely and precise resource demand estimations get increasingly complex as more
and more variables are continuously subject to change and estimates have to be continuously
updated. For example, any auto-scaler is constantly changing the deployment structure of the
considered software system. In addition, the applied workload is never truly constant in any online
application. In consequence, the considered environment is both unknown at design time, and
constantly evolving during operation time [10]. As the system and measurement data are changing,
the best-suited estimation approach is also subject to change. It is therefore impossible for any
human user to continuously select, parameterize and supervise resource demand estimators during
system operation.
Therefore, in this paper, we introduce SARDE, a framework for continuous, Self-Adaptive

Resource Demand Estimation. SARDE is able to operate, parameterize and select multiple dif-
ferent resource demand estimations in a continuous manner and adapts autonomously to changes
in its environment in form of the system under study. This work focuses on combining and interlac-
ing the different building blocks in order to create an adaptable and robust framework that can be
applied in any continuous environment without requiring expert knowledge. To that end, SARDE

(i) continuously estimates resource demands,
(ii) continuously selects the best-suited estimation approach,
(iii) continuously learns and adapts the selection strategy in order to adapt to changing environ-

ments, and
(iv) continuously tunes the parameters of individual approaches based on online observations.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:3

To summarize, SARDE works as a fully autonomous, situation-aware, and self-adaptive ensemble
resource demand estimation approach. SARDE utilizes the above techniques to improve the perfor-
mance of current state-of-the-art approaches without the need for human supervision or expert
knowledge. We already presented one application for SARDE in previous papers [55, 56], where we
integrate adaptive monitoring probes into continuous integration and deployment pipelines. Our
approach can be used to constantly update or improve a performance model of a running application.
Therefore, SARDE represents a significant step forward towards our vision of self-aware perfor-
mance models [28], but also towards the vision of autonomic and self-aware computing [41, 45, 82]
in general, as the techniques we introduce — although focused on the area of resource demand
estimation — can also be transferred to other areas of research. The source code of the proposed
approach is available online1. In addition, we published the code for constructing and analyzing
the experimentation data set2, and also published a replication package as a CodeOcean capsule3.
The remainder of this work is structured as follows. We discuss the progress of the area of

resource demand estimation in Section 2 and then motivate the idea behind SARDE in Section 3.
Following, we introduce the general overview of SARDE in Section 4 and explain the concepts
in more detail in Section 5. Section 6 presents our methodology for evaluating the framework,
while Section 7 presents the obtained results. We discuss these insights in Section 8, and analyze
the threats to validity in Section 9 and the limitations of our approach in Section 10. Finally, we
conclude the paper in Section 11.

2 RELATEDWORK
In this section, we will discuss the related work on the topics of resource demand estimation,
algorithm optimization, and algorithm selection in self-adaptive systems.

2.1 Resource Demand Estimation
As resource demands are a crucial parameter for many modeling approaches, the topic of estimating
resource demands received a lot of attention in recent years and many different authors proposed
respective approaches. Spinner et al. [79] present a literature survey covering the most promi-
nent approaches. However, concerning the evaluation of the different approaches, most works
unfortunately only cover a selected set of one or two approaches.
The first experiments are presented by Rolia and Vetland [72, 73] using linear regression tech-

niques. Pacifini et al. [64], Casale et al. [12, 13], and Stewart et al. [83] extend these works by
investigating limitations of linear regression in resource demand estimation and the impact of
different factors. The performance of Kalman Filters for resource demand estimation is researched
by Zheng et al. [98, 99] and Kumar et al. [47]. Kraft et al. [46] and Sharma et al. [74] both compare
least-squares regression with their maximum likelihood estimation and independent component
analysis approach, respectively.
The only works aiming at combining a set of different approaches are the Filling-the-Gap tool

by Wang et al. [90] and the LibReDE tool by Spinner et al. [81]. Filling-the-Gap [90] provides and
compares implementations of the complete information method [65], Gibbs sampling with queue
lengths [88], a maximum likelihood estimator based on a Markov chain representations [65], a
maximum likelihood estimator using a fluid approximation [65], a regression-based approach [65],
utilization-based regression [96], and utilization-based optimization [53].

1Available at https://github.com/jo102tz/LibReDE-SARDE
2Available at https://github.com/jo102tz/LibReDE-SARDE-data
3Available at https://doi.org/10.24433/CO.8429465.v2

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://github.com/jo102tz/LibReDE-SARDE
https://github.com/jo102tz/LibReDE-SARDE-data
https://doi.org/10.24433/CO.8429465.v2

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Grohmann et al.

Similarly, the publicly available tool LibReDE (Library for Resource Demand Estimation) [81]
offers open source implementations of currently eight different estimators:

• Service Demand Law (SD) [8]
• Approximation with response times (RT) [8]
• Least-squares regression using queue-lengths and response times (RR) [46]
• Least-squares regression using utilization law (UR) [72]
• Kalman Filtering using utilization law (WF) [88, 89]
• Kalman Filtering using response times and utilization (KF) [47, 98]
• Recursive optimization using response times (MO) [57]
• Recursive optimization using response times and utilization (LO) [53]

The results of Spinner are furthermore published in a respective study [79]. However, apart
from our previous works [27, 29, 30] incorporated into SARDE, there exists no work on automatic
and systematic evaluation targeting at performance optimization of resource demand estimation
approaches for a given target scenario, since previous approaches only do manual testing and
develop rules of thumb for a chosen small set of parameters (see the above-mentioned articles [12,
13, 47, 79, 98, 99]). Similarly, we are not aware of any techniques that use the acquired information
to develop automatic selection algorithms as we propose in this work.
As LibReDE4 is a publicly available ready-to-use implementation of different resource demand

estimation approaches, our implementation of SARDE builds upon the LibReDE tool and uses the
listed approaches as base estimators.

2.2 Algorithm Optimization in Self-adaptive Systems
Although no works with a focus on resource demand estimation have been proposed, the idea of
continuously adapting and optimizing a system in a changing environment is not new. For example,
the communities of self-aware, self-adaptive, self-organizing, or self-* systems tackle challenges
of monitoring, managing, and optimizing complex intelligent systems in continuously changing
environments [45].

As such, the ideas presented in this paper and incorporated into SARDE have been successfully
applied to other domains. For example, Porter et al. [67] present Rex, a development platform that
is also able to apply online learning and optimization based on a linear bandit model. Others define
self-organization or self-assembly to achieve a similar goal [22, 44, 71]. Fredericks et al. [23, 24]
present an overview of different optimization techniques in self-adaptive systems. They divide
works into techniques using probabilistic, combinatorial, evolutionary, stochastic, or mathematical
optimization. Additionally, D’Angelo et al. [17, 18] present a survey and a taxonomy for online
learning of collective self-adaptive systems. If we interpret our single estimators as individual
agents, SARDE’s estimators could classify as fully altruistic, non-autonomous agents with full
knowledge access. While the task of choosing the best estimator can be seen as a combinatorial
optimization problem [61, 66], the presented techniques for parameter optimization fall in the
category of mathematical optimization [11, 20, 51, 75]. The proposed hyper-parameter tuning is
also a common topic in machine learning. Therefore, a set of algorithm configuration approaches,
like Sequential Model-based Algorithm Configuration (SMAC) [37], or Stepwise Sampling Search
(S3) [62, 63] have been proposed, as well as analysis and visualization tools [3]. A sub-field is also
Neural architecture search (NAS) [21, 38], where the goal is to automatically find neural network
architectures; these techniques could also be applied in future work.
However, while all of the presented approaches demonstrate the feasibility of applying the

proposed techniques in practice, none of these works focuses on the area of resource demand
4LibReDE: Available for download at http://descartes.tools/librede.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://descartes.tools/librede

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:5

estimation. Therefore, our contribution in respect to this field is to demonstrate and verify the
applicability of continuous algorithm optimization in the specific domain of continuous resource
demand estimation.

2.3 Algorithm Selection in Self-adaptive Systems
An orthogonal field in the context of continuous optimization is algorithm selection [4, 42]. Al-
gorithm selection [70] (closely related to the field of hyper-heuristic selection [9, 77] or meta-
learning [78, 84]) is defined as choosing from a set of algorithms the best for a specific problem
instance and has found many application areas in prior research [4, 26, 35, 52, 54, 68, 95].
However, the creation and selection of features for selection is a critical task influencing the

performance [4, 42]. Hence, by tailoring our features to the specific task at hand, we can provide
better results than generic optimization and selection frameworks. The application in SARDE is
different from most of the proposed techniques as it offers the possibility to perform selection on
continuously incoming data streams, which currently only a few works consider [42, 84, 85]. In
addition, SARDE provides an application for online algorithm selection [1, 19, 25]. Both areas have
been identified as specific research challenges by prior works [42].
Again, as no works concentrate on resource demand estimation, the focus of this work is to

demonstrate the feasibility of continuous algorithm selection in our specific domain. However,
similar to the previous section, many of the proposed techniques can be applied to our task as well
in order to further improve the results presented in this work.

0 2000 4000 6000 8000 10000
Time [s]

0

20

40

60

80

Es
tim

at
io

n
Er

ro
r [

%
]

ResponsetimeApproximation
UtilizationRegression

ServiceDemandLaw
WangKalmanFilter

KumarKalmanFilter
ResponsetimeRegression

Fig. 1. Motivating example showing the estimation error of different estimators over time.

3 MOTIVATING EXAMPLE
In order to illustrate and motivate the idea behind SARDE, Figure 1 shows the error (calculated as
described in Section 6.2) of the continuously updated estimation using all available approaches
over time. Details on the used system and workload are included in Section 6.1.2.

Envision that during estimation, continuous monitoring streams of throughputs, response times,
and resource utilizations are collected. For illustration purposes, imagine that during the first
interval, a CPU utilization of 80% is measured, while 20, 40, and 5 requests of the respective
workload classes are measured. In the second interval, the utilization drops to 60%, as 30, 20, and
10 requests were processed. The task of the resource demand estimators is now to calculate the
resource demand of each workload class, based on this set of coarse-grained measurements.
We observe that over the course of 3 hours, the performance of each estimator is massively

influenced by the type and amount of monitoring data available, as well as the underlying character-
istics of the system. As a result, service demand law (pink) starts as the best estimator, followed by

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Grohmann et al.

utilization regression (brown). However, the accuracy of utilization regression starts to decline after
a while, and in fact, continues to have the worst estimation performance of all available approaches.

In total, four of six available estimators exhibit to be the best estimator at least once during our
three hour experiment. Additionally, it is not clear in advance which estimator will perform how
well, especially as some estimators also have the tendency to be very unstable. Hence, SARDE acts
as an ensemble estimator able to combine the best from all estimators and compensate for the
weaknesses of the other approaches. In other words, the aim of SARDE is therefore to successfully
learn and adapt to the changing performance of the estimators in order to be able to always select
the best approach for each scenario. In addition to that, we observe that some approaches are very
susceptible to changes in their parameter settings [29]. Therefore, by adapting these parameters to
the applied scenario, SARDE could even improve the performance beyond the current best method
without the need for human supervision or expert knowledge.

Optimization Selection

estimates
Estimation

Monitoring Streams Resource Demands

configures configures

Input
Output

Fig. 2. High-level overview of the SARDE approach.

4 OVERVIEW
This section gives a high-level overview of SARDE as illustrated in Figure 2. More details on the
implementations and communication of the components can be found in Section 5.
First, SARDE comprises two running databases: One containing monitoring streams from the

system under study, another storing the sequence of resource demand estimations made over time.
Next to the databases, SARDE continuously runs the estimation engine, performing periodic re-
source demand estimations based on the continuously updated monitoring streams. The estimation
engine offers different configuration interfaces, like the specific approach to use or the parameter
settings of the individual approaches. The resulting estimations are then stored in the resource
demand database. From there, external processes (e.g., an auto-scaler [2] or a performance model
extractor [87]) can retrieve the latest resource demand estimations. On top of that, SARDE consists
of two interacting feedback loops: Optimization and Selection.
The optimization process deals with parameter tuning (e.g., the aggregation interval or the

monitoring window) of the individual approaches. To that end, monitoring data from the system
as well as the corresponding resulting estimations are utilized. The optimization then specifically
tailors the parameters of each available estimation approach to the specific system under study in
order to minimize the resource demand estimation error.
The selection process utilizes the same data as the optimization process. Instead of optimizing

the parameters for all approaches, however, the selection process fits a machine learning model

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:7

predicting which approach to select for a given situation. This is done based on specific features of
the monitoring data, like e.g., the average CPU utilization, or based on properties of the system,
like e.g., the number of servers or workload classes. Based on these features, the selection process
can then select the best-suited estimation approach for the given situation.

As the optimized parameter settings influence the performance of the individual approaches, these
settings have to be considered while training the machine learning model and are therefore directly
fed into the selection process. The selection itself interacts only indirectly with the optimization, as
the process has an impact on the resulting resource demand estimations in the resource demand
database, which is in turn an input to the optimization loop. In addition to utilizing the historical
data, both processes perform additional computations and resource demand estimations in order to
explore the space of all possible configurations.

Parameterization Selection Model Selected Approach Estimated Demand

Resource Demands

Optimization Training Selection Estimation

Monitoring DataSystem

Monitoring

Artifact

Process

Input

Output

Fig. 3. Conceptual flowchart of the different SARDE processes.

5 APPROACH
In this section, we describe the two feedback loops presented in Section 4 and how communication
between them is organized in more detail. As both the optimization process and the selection process
interact with the estimation engine as shown in Figure 2, synchronization and communication is
required. In order to keep all sub-systems of SARDE up-to-date, we introduce a set of semaphore
artifacts. These artifacts can only be written by one respective process but may be read by all other
processes. This way, it can be ensured that the different feedback loops do not block each other
during execution while using the most recent version.
Figure 3 depicts the five different activities running in parallel: (1) monitoring, (2) parameter

optimization, (3) selection model training, (4) approach selection, and finally (5) resource demand
estimation. In the following, we will discuss each of the individual processes in more detail.

5.1 Monitoring
As the required resource demand estimation approaches require both system- and application-level
monitoring, the monitoring engine has to monitor application-level metrics (like throughput and
response time per workload class) and system-level metrics (e.g., average CPU-utilization per
instance) live from the running system. These monitoring streams are then stored in a database

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Grohmann et al.

and each entry is assigned a corresponding time-stamp. The gathered data can then be fed into the
remaining four processes, each of which requires the information as input.

5.2 Optimization
As explained in Section 2, different resource demand estimation approaches offer several parameters
to be tuned. Additionally, some parameters like, e.g., the aggregation interval of the monitoring
data (step size) or the measurement window to consider (window size) can be tuned for all ap-
proaches. This is done by analyzing the estimation error of individual estimation approaches via
cross-validation on the monitoring data gathered on the system. A configurable search algorithm
then applies different parameter settings and searches for a (near-)optimal configuration of those
parameters for each of the available approaches. Although simple, the optimization still bears many
challenges, as the number of different possible configurations rises exponentially with the number
of parameters, and as the time available for optimization is limited. The challenge is therefore to
utilize an algorithm that is able to find a good parameter configuration using a small number of
exploration runs.
The applied self-tuning algorithm is generally abstract and works for any generic parameter

providing a minimum and a maximum value. The Stepwise Sampling Search (S3) (also referred to
as Iterative Parameter Optimization [63]) was developed by Noorshams et al. [62] in the context of
regression model optimization. Here, we utilize this algorithm in order to optimize the parameters
of our resource demand estimation techniques. This adaptation was already presented in our prior
work [29].

The S3 algorithm can be configured by three hyper-parameters: The number of splits per pa-
rameter 𝑘 , the number of exploration points considered per iteration 𝑛, and the maximum number
of iterations 𝑗𝑚𝑎𝑥 . Noorshams et al. [63] show that the total complexity of the algorithm is given
by O(𝑗𝑚𝑎𝑥 · 𝑛 · (𝑘 + 2)𝑙), where 𝑙 is the number of parameters that are optimized simultaneously.
Therefore, S3 offers good control over the trade-off between run-time and solution quality by tuning
its hyper-parameters. Additionally, it is possible to optimize an arbitrary number of parameters
simultaneously. This is important as inter-parameter influences, i.e., one parameter value influ-
encing the optimal value of the other can be taken into account. However, it has to be noted that
the number of parameters to be simultaneously optimized heavily influences the computational
complexity. Note that S3 is just one possible search algorithm. Technically, all algorithms focusing
on modeling or optimizing configurable software systems [31–33, 76, 97] are applicable as well.

Although this step can be executed offline using a large trace database, the optimization is usually
more effective when optimizing for a specific kind and type of system. Additionally, as the system
under study evolves and/or the amount of available monitoring data increases, the parameters need
to be adapted continuously. Therefore, the process is periodically re-triggered. However, depending
on the chosen algorithm, this process can be very time-consuming, running for multiple hours or
even days for huge systems. Therefore, the execution is triggered rather seldom.

5.3 Training
The third step is the process of training the estimation approach selector. The selection process
in Figure 2 is split into two activities as the selection itself is executed far more frequently than
the training of the selection model. During the training phase, a model is learned which is able to
predict the best suitable approach for the given estimation problem. This model is then stored as
the Selection Model, which is used by the actual selection process.

5.3.1 Problem Formalization. The problem of selecting the best algorithm for a specific problem
instance was also formulated by Rice [70] as the algorithm selection problem. Based on this work,

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:9

Smith-Miles [78] formalized the following four components for modeling a selection problem: (i)
the problem space, (ii) the feature space, (iii) the algorithm space, and the (iv) performance space. In
this work, we can translate this to the task of selecting the best-suited resource demand estimation
approach as follows:

• The problem space 𝑃 represents the measurement traces available for estimation,
• the feature space 𝐹 contains the characteristics of each trace, as described in Section 5.3.3,
• the algorithm space 𝐴 is the set of available resource demand estimators, and
• the performance space 𝑌 represents the mapping of each algorithm to the estimation error.

For a given measurement trace 𝑝 ∈ 𝑃 with characteristics 𝑓 (𝑝) ∈ 𝐹 , the objective is to find a
selection mapping 𝑆 (𝑓 (𝑝)) into the algorithm space 𝐴, such that the selected algorithm 𝛼 ∈ 𝐴

minimizes the performance mapping 𝑦 (𝛼 (𝑝)) ∈ 𝑌 . The task of the model learning is to find the
function 𝑆 , mapping each possible trace characteristic to the selected algorithm, while the actual
selection process (see Section 5.4) is executing 𝑆 (𝑓 (𝑝)).

5.3.2 Data set. Note that the training procedure itself can be done either online or offline. This
decision mainly influences what data is available during the training phase to extract knowledge
from.

Offline training. We refer to offline training as training that is performed once, using a variety
of systems and configurations. Based on this set, one can apply all available approaches to the
different training sets and use the feedback from those runs to determine which approach is
best suited for the specific problem instance. This information, together with a set of descriptive
features is then given to a machine learning algorithm, which learns a model from all training sets,
extrapolating the relationship between the different features and the best-suited approach. We call
this resulting model the selection model. This approach was proposed and partially evaluated in our
prior works [30]. Naturally, the accuracy of this approach highly benefits from an increasing amount
of training data and a high similarity of the training systems to the current problem instance.

Online training. Offline training has the disadvantage of being trained before being applied to
the system under study. Therefore, in online training, we continuously monitor the current system
and the performance of the different approaches, as these can also serve as training samples for
our selection model [42]. Furthermore, the performance of the individual approaches changes if
the optimization process described in Section 5.1 adapts the parameter settings of the respective
approaches. If so, the training must be repeated for the newly found parameterization, which can
be cost-intensive for the offline data set. However, online learning has the disadvantage that the
trained model is prone to over-fitting to a specific system and cannot adapt very well to changes in
the configuration or the structure of the system under study. This is due to the drastic reduction of
training data in comparison to the larger data set used in offline training.

Hybrid training. As a consequence, we introduce hybrid training, a combination of both offline
and online training in this work. The idea of hybrid training is to utilize the training data sets as
applied in offline training, but iteratively adding online data from the system under study to the
data set and periodically re-triggering the training process. Therefore, the training process is able
to adapt to the feedback of the running system, while also maintaining robustness towards major
changes of the respective system.

5.3.3 Features. Another central aspect of all machine-learning-based approaches is the feature set
used for training. This section contains the list of features we extract from each monitoring trace.
These features capture certain characteristics of the input traces that we deem useful for judging
which algorithm would be most suitable for estimating that respective trace.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Grohmann et al.

The machine learning algorithms are heavily dependent on those features and a careful selection,
as well as the right amount, is crucial for a satisfactory outcome. Since machine learning algorithms
try to distinguish between different classes of traces, too many features can actually be harmful.
A trace refers to one training example of our data set. A trace usually consists of a set of a time
series, e.g., of the CPU utilization of each resource, the response time, and the arrival rate of each
request of the respective workload classes. The CPU-utilization measures the average utilization
of the CPU for a certain interval, the response time contains the response time of each request
and the arrival rate holds the number of incoming requests for a certain interval. These traces are
then given to the estimation approaches for their estimations. For each trace, we want to create a
feature representation 𝑦 that captures the characteristics of this trace.

Next to the time series itself, we have some general meta-information about the traces, including
the number of resources (e.g., number of CPUs and/or CPU cores) and the number of different
workload classes. For example, Spinner et al. [79] showed that the number of workload classes
has a direct impact on the performance of the estimators. This meta-information is therefore also
added to the feature set.
Another big impact on the performance of estimators is the utilization of the system [79]. It is

therefore useful to include information about the average utilization of the available resources as
well as the minimum and the maximum utilization. Therefore, it seems reasonable also to extract
statistical information about the time series of each trace.

However, it does not seem useful to average this information over all resources. Especially, since
different workload classes are known for stressing each resource differently. We, therefore, define a
set of statistical features to extract utilization information for each individual resource, together
with information about the arrival rate and response times of each workload class, and concatenate
them to one feature vector 𝑦.

The extracted statistical features for a time series 𝑇 = (𝑑1, . . . , 𝑑𝑛) consisting of an ordered set of
data points are as follows:

• The number of data points: 𝑛 = |𝑇 |
• The arithmetic average: 𝑇 = 1

𝑛

∑𝑛
𝑖=1 𝑑𝑖 .

• The geometric average: 𝑇 =
(∏𝑛

𝑖=1 𝑑𝑖
) 1
𝑛 .

• The standard deviation: 𝜎 =

√
1
𝑛

∑𝑛
𝑖=1 (𝑑𝑖 −𝑇)2.

• The quadratic average or root mean square: 𝑥rms =
√

1
𝑛

∑𝑛
𝑖=1 𝑑

2
𝑖
.

• The minimum value: 𝑇𝑚𝑖𝑛 = min𝑇
• The maximum value : 𝑇𝑚𝑎𝑥 = max𝑇

• The kurtosis, a measure for the tailedness of the graph of𝑇 (see [91]): 𝑘 =

1
𝑛

∑𝑛
𝑖=1 (𝑑𝑖−𝑇)4(1

𝑛

∑𝑛
𝑖=1 (𝑑𝑖−𝑇)2

)2 − 3.

• The skewness, a measure for asymmetry (see [40]): 𝑠 =
1
𝑛

∑𝑛
𝑖=1 (𝑑𝑖−𝑇)3[1

𝑛−1
∑𝑛

𝑖=1 (𝑑𝑖−𝑇)2
]3/2 .

• The 10th percentile: 𝑙 = 𝑃10 (𝑇)
• The 90th percentile: 𝑢 = 𝑃90 (𝑇)

This results in a total of eleven statistical measures. Given that these are calculated for each
resource and twice for each workload class (for arrival rates and response times), and add in the
meta-information about the number of resources and workload classes available, the total number
of features amounts to |𝑦 | = 2 + 11 · 𝑟 + 22 ·𝑤 , with 𝑟 being the number of resources and𝑤 being
the number of workload classes in the training set.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:11

One advantage of the selected features is that they are fairly easy and fast to compute. In addition,
most of the features are standard statistical measures that are easy to comprehend as a user.
Exceptions might be the kurtosis and the skewness metrics; however, those are common metrics
in time series analysis [40, 91] and are therefore included, because all traces are time series. In
previous works, we also experimented with other and more features [30], including the correlations
and the co-variances between the traces, the variance inflation factor, and information about the
statistical distributions. While it might seem useful to include further features into the training,
these features are costly to calculate and therefore greatly increased the required selection time [30].
As the respective features did not significantly impact the prediction accuracy, we decided to settle
on the final feature list presented above. We also excluded any feature probing techniques [39, 43]
as we consider the performance impact too high. Additionally, removing any more features from the
above list negatively influenced the selection results, while offering only an insignificant run-time
advantage.

5.3.4 Labels. After acquiring the feature vector per trace, one can execute all resource demand
estimators on the given trace and then use the resulting estimation error as labels in order to train
a machine learning algorithm. A selection engine can then be built by training different regression
models, each predicting the error of individual estimators and then choose the one with the best
expected error [4]. However, in the following, we work with a classifier-based approach. In order
to do so, we compare the error values of each estimator in order to label each feature set with the
value of the best algorithm. During the selection, the predicted label of the classifier can be viewed
as the approach expected to perform best. This way, only one classifier model needs to be trained
and executed, which saves computation time during online execution.
What remains is the determination of the estimation error of each approach during training.

If available, the real estimation error can be used, if the training set contains a set of artificial
or specifically monitored traces. However, this will not be feasible for many traces, for example,
during online training. As the real resource demand is per definition unknown to SARDE, we have
to rely on the internal error calculation based on cross-validation. The validation error used in this
work is explained in more detail in Section 6.3.

5.4 Selection
After the training process produced an accurate selection model, the selection process analyses the
type and structure of the monitoring streams and uses the provided selection model to make an
informed decision about which approach to use for estimation. Simply put, the acquired machine
learning model is utilized and its prediction for the best-suited estimator is applied. This process
was deliberately split from the training process, as this process can use the same selection model
multiple times in order to update the selected approach based on changes in the system or the
monitoring streams.
Figure 4 illustrates an exemplified timeline, visualizing the five processes running in parallel.

While monitoring is a continuous process, the estimation is executed quite frequently, with the more
computationally expensive procedures running slower and fewer iterations. Note that this is just an
exemplary configuration, the actual intervals of SARDE can be tuned by the user. Furthermore, the
arrows of the respective colors show, how the results of the particular process influence the other
running processes. We observe that for example, a finished training process updates the selection
model used for the next selection process that has not started yet. This model is then used until it
gets updated by a subsequent training iteration. Similarly, the output of the selection process, the
selected approach to use for estimation, is applied for all subsequent estimation runs as long as the
selection is not updated. It is furthermore shown, how the optimization results influence the next

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Grohmann et al.

Time

Optimization
duration of process

Training
Selection
Estimation
Monitoring

Fig. 4. Exemplified timeline visualization.

training process. After a successful optimization, the optimization results take a while to come into
effect at the actual estimation, as the estimation uses the old parameterization until the training
with the new parameterization is finished and the newly parameterized approaches are selected for
estimation. This has the advantage of protecting the continuous estimation from negative effects
by a disadvantageous optimization run, as the training process is able to double-check and filter
the respective approaches if necessary. However, the cost of this approach is the delay between a
finished optimization and its parameterization coming into effect.

5.5 Estimation
The most frequent process is the actual estimation process. Its frequency mainly depends on the
variability of the system and the monitored traces, as well as the quality of the estimated resource
demands itself. Upon execution, the estimation process loads the approach selected by the selection
process and updates it with the optimized parametrization by the optimization process, if available.
Then, the estimation is executed on the newest monitoring data. Note that, as depicted in Figure 4,
multiple subsequent estimation executions might be performed using the same approach. This
is on purpose, as the monitoring data is updated between those executions, which impacts the
estimation result. To that end, all process executions always utilize the most recent monitoring
data available at the start of each process.

6 EVALUATION
In this section, we evaluate and analyze the performance of SARDE concerning various aspects. To
this end, we pose ourselves the following research questions:
RQ1 What is the gain of continuously repeating the estimation?
RQ2 What is the impact of applying optimization, selection, and both combined to the repeated

estimation?
RQ3 What is the overhead of applying these techniques?

In the following, we will describe and analyze the experiment series we conducted in order to
answer these questions.

6.1 Experiment Setup
We designed two different experiments to validate the accuracy of our approach. First, we applied
a common data set in Section 6.1.1 consisting of a set of micro-benchmarks executed on a system
and already applied in a variety of previous studies [27, 29, 30, 79]. Second, we extend this analysis

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:13

by adding a long-term measurement trace from a realistic application, described in more detail in
Section 6.1.2.

6.1.1 Micro-benchmark data sets. This data set consists of a set of measurements obtained by
executing micro-benchmarks on a real system. A set of 210 traces, each with approximately one hour
run-time, was collected. The micro-benchmarks generate a closed workload with exponentially
distributed think times and resource demands. The think times themselves were set to fit the
targeted load level of each specific experiment. As mean values for the resource demands, we
selected 14 different subsets of the base set [0.02s; 0.25s; 0.5s; 0.125s; 0.13s] with a varying number
of workload classes 𝐶 = {1; 2; 3} and target load levels 𝑈 = {20%; 50%; 80%}. The subsets were
arbitrarily chosen from the base set. This way, we can ensure that the resource demands are not
linearly growing across workload classes. Additionally, the subsets intentionally contained cases
where two or three workload classes had the same mean resource demand.

6.1.2 Realistic Application. In addition to the micro-benchmark data sets, we conducted a long-
term study of a realistic, containerized application measured on a real system. However, in order to
evaluate the accuracy of the approach, it is necessary that we know the exact resource demands to
be estimated. Therefore, we developed a synthetic application that offers three different services
via a REST API that perform a prior defined load for each service call. For the following of this
section, the first workload class (WC1) performs an exponentially distributed load with a mean of
0.01s, the second workload class (WC2) performs an exponentially distributed load with a mean of
0.03s, and the third workload class (WC3) performs a normally distributed load with a mean of
0.005s and a standard deviation of 0.001.

In order to evaluate the adaptability of the individual approaches in comparison to SARDE with
respect to different influence factors, we varied both the load intensity and the distributions of the
individual workload classes. Figure 5 depicts the load intensity, i.e., the number of requests per
second of each workload class as a stacked line chart. The load is intentionally noisy and strongly
varies over time. Additionally, the relative share of the different workload classes changes. As the
different workload classes each have different resource demands, the resulting utilization curve is
non-obvious.
In order to reflect a realistic cloud setup, we deployed the application inside an Ubuntu 18.04

Virtual Machine (VM) associated with 1 pinned CPU core and 4 GB RAM running on an HPE
ProLiant DL160 Gen9 server equipped with an Intel® Xeon® CPU E5-2640 v3 @ 2.60GHz and 32
GB RAM total RAM, using a KVM hypervisor. The load driver generating the REST requests was
situated on another host in the same cloud in order to isolate the performance behavior and also
include the network overhead per request.

6.2 Evaluation Metrics
In this section, we describe the metrics we use during our evaluation of SARDE. We focus mainly
on execution time and estimation accuracy. All execution times were measured using the publicly
available Java implementation of SARDE1 and version 1.1 of the underlying LibReDE engine5 by
relying on the internal time measurement. All reported experiment times were conducted on a
Windows 10 machine using an Intel® Core® i7-6600U CPU @ 2.60 GHz and 16 GB RAM.

For accuracy, we evaluate the estimation error 𝜖𝐸 per approach by averaging the relative estima-
tion error of each workload class:

5This is also the version endorsed by SPEC research. Available at https://research.spec.org/tools/overview/librede.html

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://research.spec.org/tools/overview/librede.html

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Grohmann et al.

0 2000 4000 6000 8000 10000
Time [s]

0

10

20

30

40

50

Re

qu
es

ts
 p

er
 se

co
nd

0

20

40

60

80

100

Ut
iliz

at
io

n
[%

]

WC1
WC2
WC3
Utilization

Fig. 5. Server utilization and throughput of the different workload classes of our monitored application over
time.

𝜖𝐸 =
1
𝐶

𝐶∑
𝑐=1

���� �̃�𝑐 − 𝐷𝑐

𝐷𝑐

���� , (1)

where 𝐶 is the number of workload classes, �̃�𝑐 is the resource demand estimate for workload
class 𝑐 , and 𝐷𝑐 is the real resource demand of class 𝑐 .

6.3 Configuration
There are several generic and configurable parts of the SARDE approach described in Section 5. In
this section, we describe the specific configurations that we applied for the presented evaluation.
First, we concentrate on the estimation of the resource demand error. As all evaluations and

optimizations performed by SARDE rely on the internal estimated error, it is crucial that the applied
error validation closely resembles the actual resource demand error. Recall, that SARDE does not
have the real resource demands available for validation as they are naturally unknown to SARDE
during operation. Therefore, SARDE calculates the estimated validation error 𝜖𝑉 using the estimated
relative response time error 𝜖𝑅 and the estimated absolute utilization error 𝜖𝑈 . This error is then
used for all internal validation processes. The two error functions are defined as follows:

𝜖𝑅 =
1
𝐶

𝐶∑
𝑐=1

���� �̃�𝑐 − 𝑅𝑐

𝑅𝑐

���� ,
𝜖𝑈 =

����� 𝐶∑
𝑐=1

(𝑋𝑐 · �̃�𝑐) −𝑈

����� ,
(2)

with 𝐶 being the number of workload classes, 𝑅𝑐 the average measured response time of workload
class 𝑐 over all resources, �̃�𝑐 the predicted average response time using Mean Value Analysis [5]
based on the estimated resource demands, 𝑋𝑐 the measured throughput of workload class 𝑐 , �̃�𝑐 the
estimated resource demand of workload class 𝑐 , and𝑈 the average measured utilization over all
resources.
Using both errors, we can compute the compound validation error 𝜖𝑉 as a weighted sum of 𝜖𝑅

and 𝜖𝑈 :
𝜖𝑉 =

1
2
min(1, 𝜖𝑈) +

1
2
min(3, 𝜖𝑅). (3)

Note that we bound the utilization error at 1 and the response time error at 3. This is necessary,
since both errors are effectively unbounded, and therefore might dominate the other error during
the validation. The values are chosen, as during capacity planning response time errors are usually

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:15

acceptable to be higher than utilization errors [58, 60]. Apart from that, both 𝜖𝑈 and 𝜖𝑅 are currently
weighted 1:1. However, this configuration could be adapted if a user is more interested in minimizing
the respective error value.

For the online analysis of the realistic application, we use an estimation interval of 70 seconds, a
selection interval of 170 seconds, a training interval of 700 seconds, and an optimization interval
of 1000 seconds in order to keep a reasonable amount of repetitions for each activity during the
experiment. Based on our results in Section 7.1.1 we applied a random forest classifier as the
selection algorithm. Concerning the S3 optimization algorithm, we use 5 splits, 4 exploration points,
and 5 iterations for single parameter optimizations. For multi-parameter optimizations, we need
to rely on 1 split, with 2 exploration points, and 2 iterations in order to reduce the algorithmic
complexity.

7 RESULTS
In this section, we present the results obtained from the experiments outlined in the previous
section. First, Section 7.1 focuses on the analysis of the selection process, while Section 7.2 analyses
the performance of the optimization algorithm. Finally, we put both aspects together and analyze
the performance in Section 7.3.

7.1 Selection
This section presents results concerning the selection of the best-suited estimation approach.
The first section compares different selection algorithms with each other using our set of micro-
benchmark experiments. Then, we analyze the performance of continuous training and selection
over time in our realistic application.

7.1.1 Micro-benchmarks. To compare the different selection algorithms with each other, we uti-
lize the set of micro-benchmarks as they represent a wide variety of different scenarios in their
characteristics. Therefore, we can get a holistic analysis of the performance of each selection
algorithm.

We include a Decision Tree (DT) [7], AdaBoost [34], Random Forest (RF) [6], Logistic Regression
(LogReg) [15], Support Vector Machine (SVM) [14], and Neural Network (NN) algorithm. The neural
network is a sigmoid perceptron consisting of two fully connected inner layers, an input layer,
as well as an output layer for the selection. We used 100 neurons in total and applied the back-
propagation algorithm based on the least-squares error for learning. For all algorithms, we relied on
the implementations provided by the SMILE [50] library. For a fair comparison, all algorithms were
used in their default parameterization. Furthermore, we add a random classifier always choosing
a random approach as a baseline. We split the 210 available scenarios into 168 training and 42
validation traces. The machine learning algorithms were trained with the 168 training sets and
Table 1 shows their performance on the 42 remaining validation sets.

Table 1. Comparison of different selection approaches using the micro-benchmark set.

Algorithm Random DT AdaBoost RF LogReg SVM NN

Avg. estimation error 43.5% 22.5% 19.8% 17.9% 25.0% 18.0% 18.0%
Hit-rate 16.7% 52.4% 66.7% 71.4% 42.9% 59.5% 59.5%
Train time – 211.1s 241.1s 533.0s 305.6s 262.3s 243.2s
Avg. estimation time 1.4s 1.1s 2.0s 2.1s 1.5s 1.5s 13.4s

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Grohmann et al.

The first line of Table 1 shows the average resource demand estimation error on the 42 remaining
traces when applying the respective selected approach. We observe that—as expected—the random
classifier has the worst performance; the decision tree and logistic regression algorithm also fall
behind. However, AdaBoost, Random Forest, SVM, and NN all perform comparatively. Random
Forest has the best accuracy, with an average estimation error of 17.9%. This is impressive if you
consider that the average minimum error of all approaches (and therefore the de-facto perfect
result) is 17.6%. Therefore, the performance of the approaches chosen by random forest is just 0.3%
worse than the theoretical optimum. These results are in line with the hit rate, i.e., the relative share
of scenarios in which the algorithm selects the best approach. Again, Random Forest outperforms
all other approaches with a hit rate of almost 72%, while a random classifier baseline achieves only
16.7%.

When analyzing the training time, we observe that all approaches take between 4 and 10 minutes
for completing the trainingwith a training corpus of 168 traces. Here, random forest takes the longest
time for training (almost 10 minutes), while all other approaches terminate within 4 - 5 minutes.
However, considering the large amount of the training set (168 measurement hours), we find a
training time of 10 minutes more than acceptable for online use. Similarly, the average estimation
time (including feature extraction, selection, and the estimation process itself) is sufficiently fast.
Most approaches finish between 1 and 2.5 seconds, only the NN approach requires up to 15 seconds
of estimation time. As typical estimation windows are usually in the range of several minutes,
these time scales are more than sufficient. One interesting observation is that the random baseline,
despite the lack of an actual selection, is not the fastest of the approaches. This undermines our
observation that the most dominant time factor for the average estimation time is in fact not the
selection algorithm itself (excluding NN), but the estimation time of the selected approach.
Based on our results, for the remainder of this paper, we concentrate on the Random Forest

algorithm with a parameterization of five trees (ntrees), two features per node decision (mtry), a
maximum leaf node size of one (nodeSize), applying the Gini splitting criterion (rule) and using
feature sampling with replacement (subsample).

7.1.2 Realistic application. Following the broad analysis of multiple validation scenarios, we now
analyze the performance of the random forest selection for our realistic application. For this, we look
at the continuous training and selection of the algorithm over time. Figure 6 shows the estimation
error for every approach over time. The activities are depicted in the time diagram in the top
of Figure 6. The red bars indicate time and duration of training phases, the orange bars indicate
selections accompanied by an abbreviation of the chosen approach and the blue bars indicate the
regularly repeated estimations of all approaches.

In each training phase, the chosen selector algorithm (Random Forest in this case), was trained
on all available offline traces from the previous section, plus the additional experience from the
currently running trace (hybrid training). Therefore, the first trained model only has the micro-
benchmark data set available as training data set. The second one has the micro-benchmark set,
plus the first 700 seconds of experiment time, and so on. As we had a maximum of three different
workload classes (𝑟 = 3) and one resource (𝑤 = 1) in the training set, the feature vector 𝑦 had a
length |𝑦 | of 57 for training (compare Section 5.3.3.

We observe that the estimates, as well as the corresponding accuracy of each individual approach,
are massively changing during the experiment. There is therefore a good rationale for continuously
repeating the resource demand estimations, and simultaneously for changing the applied approach
(see Section 3). This also answers our first research question (RQ 1).

Additionally, we observe that the SARDE approach (blue) jumps between different respective
approaches. While SARDE needs a while to learn and adapt to the current trace (before 2000), it

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:17

Est
Sel
Tra

Opt

SD SD WF KF UR UR UR UR KF KF KF KF UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR UR KF KF KF KF UR UR UR UR UR UR UR UR UR UR UR UR WF WF WF WF RR RR RR RR SD SD SD SD WF WF WF WF WF UR

0 2000 4000 6000 8000 10000
Time [s]

0

20

40

60

80

Es
tim

at
io

n
Er

ro
r [

%
]

ResponsetimeApproximation
UtilizationRegression

ServiceDemandLaw
WangKalmanFilter

KumarKalmanFilter
ResponsetimeRegression

SARDE

Fig. 6. Results showing the real error of running the selection over time.

then is able to predict and select among the best performing approaches until the environment
changes and the approach decreases in accuracy (starting at 6000). In reaction to this development,
another approach is chosen at around 8000 until its performance decreases as well.

Table 2. Overview on the quality of selected approaches using the realistic application.

Approach Average Rank Accuracy (%) Accuracy Loss (%)

ServiceDemandLaw 2.02 11.52 3.11
ResponseTimeApproximation 5.47 35.04 26.63
ResponseTimeRegression 3.69 27.94 19.53
WangKalmanFilter 2.94 18.74 10.33
UtilizationRegression 3.64 23.84 15.43
KumarKalmanFilter 3.21 15.17 6.91

SARDE 2.82 16.88 8.64
Random 3.08 18.49 10.15

In the following, we will analyze Table 2 for more detail on the selection results. Table 2 shows
the average rank of each selection approach, together with its average total accuracy loss, i.e., the
average difference of the relative estimation error of the given approach in comparison with the
current best approach. We observe that Kumar Kalman Filter and Service Demand Law both have
relatively low ranks and a small accuracy loss in comparison to other approaches. The response
time approximation has a particularly high accuracy loss, as its performance is consistently worse
than any of the other approaches.
SARDE is able to achieve an average rank of 2.82 with only 8.6% of accuracy loss towards

the theoretical optimum. Compare this with a baseline approach of the random classifier, which
achieves an average rank of 3.08 together with an accuracy loss of 10.2%. Note that it is not possible
to simply choose service demand law as the best approach for example, as the knowledge about the
performance of the individual approaches is not known prior to execution. Instead, the self-adaptive
features of the selection approach of SARDE enable it to constantly monitor the performance of
the individual approaches and switch between the most promising approaches. Therefore, SARDE
is able to learn from and adapt to a scenario without any prior knowledge or training for that
environment.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Grohmann et al.

7.2 Optimization
After analyzing the selection process in detail, this section now focuses on the optimization. Similar
to the previous section, we first analyze the set of different micro-benchmarks representing a
wide variety of test applications and then concentrate on a more in-depth analysis of our realistic
application.

7.2.1 Micro-benchmarks. The focus on this section is to show the potential benefit of parameter
optimization on our trace data set. Naturally, not all estimation approaches have the same set of
parameters available. For example, the two Kalman-Filter-based approaches Kumar Kalman Filter
(KF) and Wang Kalman Filter (WF) have five approach-specific parameters that can be tuned. On
the other side, other approaches, like Service Demand Law (SD) or Response Time Approximation
(RT) do not have any parameters to fine-tune the respective approach. Table 3 shows the available
optimization parameters for SARDE as well as the respective lower and upper bounds.

Table 3. Overview over available optimization parameters.

Parameter name Lower bound Upper bound Supported approaches

Step size 10 360 SD, RT, UR, RR, WF, KF
Window size 1 60 SD, RT, UR, RR, WF, KF

Initial bounds distance 0.0 0.1 WF, KF
Bounds factor 0.0 1.0 WF, KF
State noise covariance 0.0 2.0 WF, KF
Observe noise covariance 0.0 0.1 WF, KF
State noise coupling 0.0 2.0 WF, KF

The only two parameters that are common to all approaches are concerned with the input
processing of monitoring data. The step size describes the aggregation interval, i.e., the interval
for which all monitoring measurements are aggregated, and serves as the minimal time unit for
each estimation approach. Additionally, the window size defines the memory of each approach, i.e.,
the number of steps that are considered for each estimation approach. For example, if the step size
is 60 seconds, and the window size is 60, then only the last 60𝑠 · 60 = 3600𝑠 of measurements are
considered for the estimation. Hence, the specific tuning of both parameters is more dependent on
the individual trace than to the specific approaches, as it is more a configuration parameter (i.e., a
parameter that needs to be set based on external requirements), than an optimization parameter
(i.e., a parameter that can be freely chosen to optimize performance). We observe this effect also in
Figure 7.

Therefore, Table 4 focuses on the parameters of the two Kalman-Filter-based approaches Kumar
Filter (KF) and Wang Filter (WF). Table 4 shows the performance of our optimization tuning the
five tunable parameters initial bounds distance, bounds factor, state noise covariance, observe noise
covariance, and state noise coupling using the bounds defined in Table 3. In order to evaluate the
results on the micro-benchmarking training sets, we split the 210 traces into 168 training traces
and 42 validation traces. The training algorithm optimized the parameter of the training traces,
while Table 4 shows the performance of the remaining 42 validation traces.

We observe that the default parameterizations (as proposed by the default configuration of
the implementations) are sub-optimal for both Kalman filter scenarios. Both estimators could
significantly improve the estimated error on the validation set. However, it is interesting that the
KF, which performs already significantly better than WF in its default configuration, also profits

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:19

Table 4. Estimation error and chosen configuration parameters of our validation benchmarks before and after
optimization.

Algorithm KF-Default KF-Optimized WF-Default WF-Optimized

Optimization time (s) – 6456 – 8878

Average estimated error 0.273 0.227 0.823 0.752
Relative improvement – 16.7 % – 8.6 %

Parameter values:
Initial bounds distance 0.0001 0.0 0.0001 0.1
Bounds factor 0.9 0.75 0.9 1.0
State noise covariance 1.0 0.0 1.0 1.0
Observe noise covariance 0.0001 0.1 0.0001 0.0
State noise coupling 1.0 2.0 1.0 1.0

more from the optimization. Although the absolute error reduction is greater for theWF, the relative
improvement for the KF (16%) is almost double the relative improvement for the WF. In addition,
we note that, although KF is slightly faster than WF, both optimizations take comparatively long to
optimize as they need to take all 168 training traces into account. To summarize, we can say that
the optimization finds effective parameter optimizations, even if the validation traces are unknown
to the algorithm.

7.2.2 Realistic application. After analyzing the performance of our optimization procedure on
the different micro-service benchmarks we now continue on our realistic application data set. As
already discussed in the previous section, most approaches are limited to only two configurable
parameters: the step size and the window size. Therefore, we configure the optimization used in
the previous section to optimize the Kalman filter parameters for the two Kalman filter approaches,
while focusing on step size and window size for all other approaches. (See Table 3.) As these two
parameters heavily influence each other, the optimization combines both into one parameter that
only changes the window size relative to the respective step size.

Est
Sel
Tra

Opt

0 2000 4000 6000 8000 10000
Time [s]

0

20

40

60

80

Es
tim

at
io

n
Er

ro
r [

%
]

ResponsetimeApproximation
UtilizationRegression

ServiceDemandLaw
WangKalmanFilter

KumarKalmanFilter
ResponsetimeRegression

Fig. 7. Results showing the real error of running the optimization. Drawn lines represent the original error,
dotted lines are the optimized versions.

Figure 7 depicts the estimation accuracy of the different approaches over time. In addition, the
dashed lines of each color represent the accuracy of the optimized approach. A new parameterization

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Grohmann et al.

Est
Sel
Tra

Opt

UR UR UR KF KF KF KF SD SD SD SD SD SD SD SD SD SD SD SD SD KF KF KF KF SD SD SD SD SD SD SD SD UR UR UR UR KF KF KF KF KF KF KF KF WF WF WF WF WF WF WF WF WF WF WF WF KF KF KF KF RR

0 2000 4000 6000 8000 10000
Time [s]

0

20

40

60

80

Es
tim

at
io

n
Er

ro
r [

%
]

ResponsetimeApproximation
UtilizationRegression

ServiceDemandLaw
WangKalmanFilter

KumarKalmanFilter
ResponsetimeRegression

SARDE

Fig. 8. Results showing the real error of running SARDE over time.

comes into effect at the first estimation interval (blue) after the end of each optimization interval
(green). Every optimization run is able to utilize more data, as all collected data from the previous
trace is used.

First, we observe that not all approaches (purple, turquoise) are able to profit from the parameter
optimization. This is due to the limitations of the optimizable parameter set as discussed above. On
the other hand, there are other approaches (green, pink) that can profit greatly from changing the
parameters. However, in summary, Figure 7 does unfortunately not conclusively prove or disprove
the applicability and the effect of the optimization process. It can certainly affect the performance
of the algorithms in both ways; it is therefore important to analyze the interplay between the
optimization and the selection component. If the correct approaches are chosen, the optimization
can help to improve the current approaches, while its negative effects are mitigated by the selection
process. We therefore analyze the interplay of both processes in the following section.

7.3 Combination
Finally, we now combine the two processes of optimization and selection in order to evaluate their
interplay as intended by the SARDE approach. For this, we focus solely on the realistic application
data set, as the optimization procedure and the selection interplay can only be analyzed over time
which is infeasible for the 210 available micro-benchmark traces.

Analogously to the previous sections, Figure 8 depicts the estimation errors of the individual
approaches over time. The individual approaches remain unchanged in comparison to the previous
experiments. However, we include the blue estimation line that represents the SARDE estimation.
We observe that SARDE is again efficiently able to choose between the different available selection
approaches as already seen in the analysis of Section 7.1. In addition to that, however, the blue
estimation line now deviates from the standard approach estimations as the parameter optimizations
change the performance of the estimations.
In the first half, SARDE shows some degrees of instability observable from frequent changes

in the selected approaches as well as sudden spikes in estimation error. However, as soon as a
spike occurs, the self-adaptation mechanisms counteract that behavior by changing the chosen
approach and/or the applied parameters. Therefore, towards the end of the trace, the stability
gradually increases. Additionally, we observe that at different points in time, the blue estimation
line exhibits a lower estimation error than any of the other approaches. This is possible, as the
parameter optimization process gradually adapts to the specific properties of the trace and learns
to fine-tune the estimation approaches towards that.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:21

Table 5. Summary on selected approaches executing SARDE .

Approach Number of selections

ServiceDemandLaw 23
UtilizationRegression 7
KumarKalmanFilter 20
WangKalmanFilter 12
ResponseTimeRegression 1

Table 5 summarizes the different selections also observable in the top of Figure 8. Similar to our
analysis in Section 7.1, we can confirm that the selection algorithm still chooses from almost all
estimation algorithms (except the poorly performing Response Time Approximation) in order to
adapt to the respective situations.

Generally, it can be said that SARDE is able to effectively combine the accuracy gain achieved by
optimization with a selection of the most suitable approach for a given situation on the evaluated
data set. This enables us to answer RQ 2.

7.4 Workload Analysis
The analysis in Section 7.3 helps us to understand the performance of SARDE during a continuous
estimation. However, another angle at analyzing the given workload is to section it into different
intervals. This enables us not only to analyze the performance of SARDE, but also to relate it to the
workload properties of the respective interval.

Therefore, Table 6 presents themain arrival rate properties of the three workload classes described
in Section 6.1.2 together with the performance of SARDE, split into ten different intervals. Recall
that workload class 1 (WC1) and workload class 2 (WC2) perform an exponentially distributed load
with a mean of 0.01s and 0.03s, respectively. In contrast, the third workload class (WC3) performs a
normally distributed load with a mean of 0.005s and a standard deviation of 0.001. Therefore, WC3
follows another intensity distribution and is comparatively light.

Table 6. Workload properties of different experiment intervals.

Mean Standard Deviation Index of Dispersion SARDE
WC1 WC2 WC3 WC1 WC2 WC3 WC1 WC2 WC3

1 0.00 21.26 16.59 0.00 9.11 14.67 – 3.90 12.98 0.52
2 10.21 6.88 30.22 7.76 3.08 7.32 5.90 1.38 1.77 0.23
3 24.25 4.42 17.02 3.58 2.40 3.75 0.53 1.30 0.83 0.18
4 24.41 2.36 9.57 3.61 1.88 2.84 0.53 1.50 0.84 0.18
5 13.76 5.35 3.74 6.64 4.69 2.80 3.21 4.11 2.10 0.15
6 0.13 8.66 1.55 0.48 3.55 1.21 1.77 1.46 0.94 0.09
7 0.00 2.17 1.46 0.00 1.32 1.04 – 0.81 0.74 0.13
8 0.00 2.34 2.75 0.00 1.38 1.69 – 0.82 1.04 0.07
9 0.00 4.49 9.87 0.04 1.86 3.58 1.00 0.77 1.30 0.09
10 2.73 5.23 19.87 2.92 2.09 3.06 3.13 0.84 0.47 0.17

Table 6 shows the mean, the standard deviation, and the index of dispersion [16] of each workload
class arrival rate in requests per second during the respective interval. The index of dispersion

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Grohmann et al.

is calculated by dividing the variance, i.e., the squared standard deviation, by the mean [16]. We
observe that all ten intervals show vastly different workload characteristics. For WC1, the intervals
vary between 0 and 25 requests per second, together with the standard deviation between 0 and
over almost 8. The respective index of dispersion is not defined for mean values of 0, in other cases,
the index rises up to almost 6 in interval 2. The other workload classes show similar behavior, with
mean arrival rates varying by a factor of 10, and index of dispersion values ranging from as low as
0.8 up to a maximum of almost 13 in interval 1.

In addition, we note that the variations of the three workload classes are independent and spread
along the different analyzed intervals. For example, in interval 1 WC3 has the highest Index of
Dispersion of almost 13, while WC2 also has a significant amount of dispersion and WC1 is absent.
In the following interval, the measured dispersion drops for WC2 and WC3, while in increased to
the trace maximum of 5.9 for WC1. Hence, we conclude that all intervals contain vastly different
workload patterns and intensity variations.

Therefore, we can now analyze the performance on SARDE on the different intervals, to see
how the estimator performs. We observe relatively high errors in the first two intervals, while
the performance stabilizes starting in interval 3. This can be either due to the massive dispersions
shown by WC3 and WC1 in the first two intervals, or due to the fact that SARDE has not yet
collected a sufficient amount of knowledge over the system. However, after these two critical
intervals, we observe that SARDE delivers relatively stable estimations, which are not influenced
by the distributions of the arrival data. One observation that we might draw is that the task at
hand becomes significantly easier if one workload class is removed from the trace, as the accuracy
improves for intervals 6–9, where WC1 is mostly absent. In summary, Table 6 shows that SARDE
shows a reliable and stable performance in our test evaluation.

7.5 Overhead Analysis
Lastly, we evaluate the overhead introduced by applying the SARDE approach. Naturally, all self-
adaptation and self-optimization processes we introduced in this paper increase the computation
effort for estimating the resource demands. Therefore, the question arises whether or not the
additional effort is worth spending and to weigh the achieved benefit with the required additional
costs.
The additional computation effort can already be seen by analyzing the top part of Figure 8.

However, for a more quantitative approach, we summarize the different execution times in Table 7.

Table 7. Overhead analysis of the individual activities.

Activity Executions Avg. execution time (s) Std. dev. (s) Total time spent (s)

Estimation 154 0.2 0.7 38.5
Optimization 11 113.1 23.4 1244.3
Selection 63 0.2 0.1 11.5
Training 16 96.8 33.4 1548.1

First, we notice that in total 154 resource demand estimations are conducted. On average, each
estimation takes around 200 ms to compute, resulting in roughly 39 seconds of computation time
spent for the continuous estimation. The second most executed process is the selection of an
estimation approach based on an already trained machine learning model. This selection process is
similarly cheap as the actual estimation process, resulting in additional 12 seconds of computation
effort spent on recommending.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:23

In contrast to executing the selection model, which is comparatively fast, each machine learning
training run takes about 97 seconds to complete. Therefore, the training is executed much more
sparsely, resulting in a total training time of just under 26 minutes. Finally, the optimization process
is as expected the most expensive technique of all self-adaptation processes. However, due to the
relatively low amount of 11 executions, just 21 minutes of computation power is spent, as each
optimization procedure takes slightly less than over 2 minutes on average.

In total, SARDE consumes 2844 seconds or 48 minutes of computation time over the full duration
of our three-hour experiment. Given that one is able to efficiently scale the required computation
power (as standard in modern-day cloud computing environments), one is expected to utilize well
under one CPU-core while running SARDE (27% in this experiment). Note that this number is
strongly dependent on the used configurations, mainly on the two most expensive processes of
optimization and training. Fewer executions or different parameterizations greatly influence the
perceived overhead.

In order to translate those execution times into costs, we could move the continuous estimation
process into a serverless cloud environment. For example, if we execute the four processes on AWS
Lambda (assuming server location in central Europe), we would need to pay for 244 invocations
consuming 2844 seconds of computation time. Even if we multiply the compute seconds with the
number of cores available on the test machine (4 cores) and choose to run the largest function size
allocation currently available (3 GB), this would currently cost us 0.57 $ for the whole experiment6.
Therefore, we can conclude that the current configuration would result in maximum a cost of $ 0.19
per hour. Given that the monitored applications are usually much larger in size and therefore in
operating cost, we assume the overhead costs of running SARDE are negligible. Hence, this answers
RQ 3.

8 DISCUSSION
After we viewed and analyzed the results in the previous section, we discuss our findings in this
section.

8.1 Continuous Updates
First, the question arises whether or not the continuously repeating activities, i.e., continuously
repeating estimation, optimization, training, and selection activities is really necessary.

Is continuously estimating necessary? We argue that based on the continuous changes in the actual
estimations, together with the respective error, and the comparatively low overhead of executing a
single estimation, the continuous estimation of resource demands is useful and necessary. This
question was already targeted by RQ 1 and the results are in line with the discussion in Section 3
and Section 7.5.

Is continuously selecting necessary? Similarly, as the properties of the incoming data flows con-
stantly change, the applicability of the different approaches changes as well. This is also observable
in Figure 1 and from all our results in Section 7 as this is the main reason for the constantly
changing error rates of each approach. Therefore, we strongly advocate the constant update of
the selection. Furthermore, we observe that almost all approaches have their justification and that
the selection process frequently makes use of the different available approaches. Especially, as the
results of Section 7.5 suggest that the selection using an already trained machine learning model
is unsurprisingly very fast. One could even consider increasing the frequency of the selection to
select a new estimation approach for every estimation interval.

6Calculated by: https://aws.amazon.com/lambda/pricing

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://aws.amazon.com/lambda/pricing

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Grohmann et al.

Is continuously training necessary? In contrast, the results of Section 7 do not suggest that
continuously updating the selection strategy provides strong benefits. We observe from Sections 7.1
and 7.3 that the selection process indeed learns and adapts to the current trace and updating the
selection strategy is useful. However, this is more due to an increase in available information and
training data, than to the diligent repetition of the training process. Considering this and the fact
that the training procedure is relatively expensive, a lower training frequency might be justified.
We definitely see a benefit of repeating the training process; however, the costs of the training could
be significantly lowered with little to no effect on the adaptation abilities by increasing the training
interval. Two related interesting research questions towards that direction furthermore include
How much training data is enough?, i.e., the minimal amount of training data that justifies training
and using an estimator for selection and How much offline data do we need?, i.e., does it make sense
to ignore all offline training data and utilize only online data for method selection. Alternatively,
we could go ahead and simply replace the offline training data with the online data as it comes in.

Is continuously optimizing necessary? Similar results can be drawn for the optimization processes.
The optimization is equally expensive as the training process, and takes even longer, depending on
the parameterization of the used optimization algorithm. Although its positive influences can be
seen in the analysis (see Section 7.2), its cost is significant in comparison to the standard estimation
or selection procedure. As the accuracy gains take quite a while to come into effect, a lower
optimization frequency would make sense if one wants to reduce the computational costs.

Summary. We conclude that all activities show effects and improvements to the overall estimation
accuracy of SARDE. Therefore, continuous updates make sense for all of the proposed activities;
the remaining questions are concerned with the optimal activity intervals.

8.2 Adapting Learning Intervals
Following our reflections of the previous chapter, we observe that the repetition intervals need
to be updated as well. As we are currently tuning the adaptive processes of resource demand
estimation, the dynamic adaptation of these adaptive processes can be seen as an additional layer
of self-adaptation or meta-self-adaptation [49].

We can achieve these meta-adaptation capabilities by introducing an additional layer, tweaking
the anticipated activity pause intervals based on their expected gain. This can be achieved via
many possible functions. However, a straightforward solution is to utilize a function 𝑓𝑡𝑚𝑎𝑥

[0, 1] →
[0, 𝑡𝑚𝑎𝑥], defining the length of a pause before the next activity cycle starts in dependence on a
maximum pause time 𝑡𝑚𝑎𝑥 and a normalized expected gain 𝑔 ∈ [0, 1]. This gain value 𝑔 is based on
the benefits of the last executed activity cycle, for example, by evaluating the relative improvement
of a parameter optimization.
Using the calculated gain 𝑔, the optimal activity pause can be modeled using an exponential

function:

𝑓𝑡𝑚𝑎𝑥
(𝑔) = 𝑒 · 𝑡𝑚𝑎𝑥

𝑒 − 1

(
exp (−𝑔2) − 1

𝑒

)
. (4)

This version has the advantage of offering a smooth decay over the anticipated pause interval
time with increasing gain but suggesting comparatively long intervals for small increases of gain.
This makes sense, as a future gain is unlikely. However, with further increasing gain, the suggested
interval time falls almost linearly and reaches its zero at exactly 𝑔 = 1, the maximum available gain
value. If we also want to take the costs of an activity into account, we can modify the length of the
plateau, or the steepness of the interval decrease by modifying the exponent of 𝑔 in the exponential
term. Hence, we transform 𝑓 into a two-dimensional function:

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:25

𝑓𝑡𝑚𝑎𝑥
(𝑔,𝑦) = 𝑒 · 𝑡𝑚𝑎𝑥

𝑒 − 1

(
exp (−𝑔𝑦) − 1

𝑒

)
, (5)

where 𝑔 is the expected gain value, and 𝑦 ∈ [1,∞[is the anticipated cost. While it is mathemat-
ically sound to have 𝑦 unbounded, in practice, for most cases, we want to normalize 𝑦 in order
to limit its value (e.g., 𝑦 ∈ [1, 10]) and therefore its influence. A caveat of this approach is that
after SARDE has adapted reasonably well to a system, it consequentially chooses long adaptation
times in order to save cost. Then, SARDE takes longer to react to sudden changes of the underlying
system causes by, e.g., a deployment change or other large structural changes. The worst-case
impact of this problem can be addressed by lowering 𝑡𝑚𝑎𝑥 ; however, this in turn also reduces the
potential cost benefits for reduced intervals. As this opens another dimension of parameters to be
evaluated, we exclude evaluations on this in the scope for this paper. However, this might be an
interesting direction for future work.

8.3 Ensemble approaches
We observed that some classification algorithms responsible for selecting the best approach are
able to assign a score to each of the estimation approaches. Currently, the aim is simply to select
the approach assigned with the highest score as it has the highest probability of delivering the
best results estimations according to that classifier. However, one could also go one step further
in utilizing these scores as a weight function in order to produce a combined resource demand
estimate. Given the vector of resource demand estimations of each of the 𝑛 individual approaches
(�̃�𝑐,1, �̃�𝑐,2, . . . , �̃�𝑐,𝑛) for a set workload class 𝑐 , and vector of assigned scores (𝑤𝑖 ,𝑤2, . . . ,𝑤𝑛) calcu-
lated by a machine learning algorithm, we can compute the compound resource demand estimate
for workload class �̃�𝑐 as:

�̃�𝑐 =
1
𝑛

𝑛∑
𝑖=1

𝑤𝑖 · �̃�𝑐,𝑖 . (6)

Note that in this example we assume the sum of all scores to sum up to 1. If they do not, we can
normalize all scores in order to receive a valid weighting vector. If no classification algorithm seems
suitable for this task, one could also utilize regression algorithms in order to learn the expected
error and hence the resulting score of each estimator. However, similar to the previous chapter, this
is out of scope for this paper as applying such a compound estimation technique would require
further evaluations, parameter tuning, and deep analysis.

9 THREATS TO VALIDITY
Although we conducted the presented evaluations to the best of our knowledge, there might be
some remaining threats to validity.

9.1 Internal validity
Our evaluation of the online application is based on a synthetic application, written especially for
this analysis. This way, it is possible for us to exactly define and program the specific resource
demands into the application, which is crucial in order to calculate the respective estimation errors.
Therefore we are confident in the internal validity of the study. Unfortunately, the resource demands
of any real-world application are not known in advance and would need to be estimated as well.
Therefore, no meaningful evaluation about the accuracy of the used estimation techniques could
be conducted, if no gold standard was available.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Grohmann et al.

Finally, we note that all self-adaptation and optimization processes of SARDE are dependent on
the internal validation error. The internal error estimates the error of the respective estimation
based on the incoming measurements (as the gold standard is obviously unknown). Therefore,
this internal error function is of paramount importance for the performance of all self-adaptation
techniques of SARDE. Addressing these and other challenges discussed in the previous chapters
might be possible topics of future work.

9.2 External validity
Concerning external validity, all presented error measures and especially the measured computation
time of the realistic application reflect just the one repeatable estimation run. Different input data
streams from different applications or measured on different systems could possibly lead to different
results. Especially the overhead analysis must be viewed as an exemplary analysis, as its values
are heavily dependent on the chosen parameterization as well as the respective machine learning
algorithms or optimization techniques. As already discussed in the previous section, the repetition
intervals can be arbitrarily changed as well, therefore the results of the overhead analysis can not
be directly transferred to any arbitrary system.

In addition, our experiment results are limited to the evaluated workload patterns and resource
demands presented in Section 6 and analyzed in Section 7.4. While we did our best to spread and
diversify the analyzed scenarios, future work could aim at extending our analyses in order to verify
whether the results transfer other scenarios as well.

10 LIMITATIONS
Next to the discussed design decisions discussed in Section 8, SARDE currently faces the following
limitations.
The presented results only focus on six of the eight available approaches within LibReDE,

as the two techniques based on recursive optimization [53, 57] are based on an incompatible
optimization library and are therefore not usable for the presented study. However, the results
using the presented six methods already show the benefits of SARDE. Note that this represents a
strict technical limitation that does not affect the conceptual contribution of this work and could
be therefore addressed in future work to further improve the presented results.
Similarly, LibReDE currently does not support the notion of uncertainty in the monitoring

streams, being it due to missing values, low accuracy, or precision. Therefore, SARDE is also not
able to support uncertain monitoring streams. However, future versions might enable confidence
values or multiple measurement repetitions in order to remedy that problem.

While all activities are designed for continuous and online application, the current implementa-
tions are based on repeated batch learning. Therefore, while the data patterns offer the possibility
for online learning and online algorithm selection capabilities, this is currently not implemented.
However, it is expected that such techniques would mainly improve the computation times and
therefore further simplify the use of the SARDE.

Finally, our experiment explicitly did not focus on extrinsic changes in resource demands. Such
a resource demand change would for example occur if the running application is re-deployed or
changed using Continuous-Integration and Continuous-Deployment pipelines following a new
commit. This would of course invalidate all previous resource demand estimations and would
require a reset of the monitoring traces of the affected parts of the system. We focus specifically
on such incremental extraction approaches in another line of our research [56, 86]. However, as
SARDE is designed for continuous changes in the environment, we are confident that the approach
is able to work in such scenarios.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:27

11 CONCLUSION
In this paper, we presented SARDE, a framework for continuous self-adaptive resource demand
estimation. SARDE continuously (i) estimates resource demands, (ii) selects the most suitable esti-
mation approach from a set of available alternatives, and (iii) optimizes the parameterization of the
estimation approaches in order to minimize the estimation error. This is achieved by continuously
evaluating the performance of each estimator in the current and constantly changing scenario.
Based on the characteristics of the current situations, SARDE is able to adapt each estimator itself,
but also to select the most suitable approach as well as improving and hardening the overall esti-
mation error. This enables SARDE to serve as an ensemble resource demand estimator, capable of
delivering reliable estimations in unknown and constantly changing environments without expert
knowledge or human intervention.

We evaluate the selection of the estimator and the optimization using two different data sets: One
collection of many different short-lived scenarios, and one realistic web application. Additionally,
we analyze how the combination of both approaches inter-operates on the web application and
also analyze the overhead of each individual activity performed by SARDE. We conclude that on
our evaluated data sets the overhead is very limited in comparison to the achieved self-adaptive
properties SARDE offers. The source code of SARDE is available as open-source1, and a replication
package of the results is published on CodeOcean3.

ACKNOWLEDGMENTS
This work was co-funded by the German Research Foundation (DFG) under grant No. (KO 3445/11-
1) and by Google Inc. (Faculty Research Award). We thank all anonymous reviewers as their
suggestions significantly improved the quality of the paper throughout the review process.

REFERENCES
[1] Warren Armstrong, Peter Christen, Eric McCreath, and Alistair P Rendell. 2006. Dynamic algorithm selection using

reinforcement learning. In 2006 International Workshop on Integrating AI and Data Mining. IEEE, 18–25.
[2] André Bauer, Johannes Grohmann, Nikolas Herbst, and Samuel Kounev. 2018. On the Value of Service Demand

Estimation for Auto-Scaling. In 19th International GI/ITG Conference on Measurement, Modelling and Evaluation of
Computing Systems (MMB 2018) (Erlangen, Germany). Springer.

[3] A. Biedenkapp, J. Marben, M. Lindauer, and F. Hutter. 2018. CAVE: Configuration Assessment, Visualization and
Evaluation. In Proceedings of the International Conference on Learning and Intelligent Optimization (LION’18).

[4] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette, Holger Hoos, Frank
Hutter, Kevin Leyton-Brown, Kevin Tierney, and Joaquin Vanschoren. 2016. ASlib: A benchmark library for algorithm
selection. Artificial Intelligence 237 (2016), 41 – 58. https://doi.org/10.1016/j.artint.2016.04.003

[5] Gunter Bolch, Stefan Greiner, Hermann de Meer, and Kishor S. Trivedi. 1998. Queueing Networks and Markov Chains:
Modeling and Performance Evaluation with Computer Science Applications. Wiley-Interscience, New York.

[6] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[7] L. Breiman, J. Friedman, R. Olshen, and C. Stone. 1984. Classification and Regression Trees. Wadsworth and Brooks,

Monterey, CA.
[8] Fabian Brosig, Samuel Kounev, and Klaus Krogmann. 2009. Automated Extraction of Palladio Component Models

from Running Enterprise Java Applications. In VALUETOOLS ’09 (Pisa, Italy). Article 10, 10 pages.
[9] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall, Gabriela Ochoa, Ender Özcan, and Rong Qu.

2013. Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research Society 64, 12 (2013),
1695–1724. https://doi.org/10.1057/jors.2013.71

[10] Radu Calinescu, Carlo Ghezzi, Marta Kwiatkowska, and Raffaela Mirandola. 2012. Self-Adaptive Software Needs
Quantitative Verification at Runtime. Commun. ACM 55, 9 (Sept. 2012), 69–77. https://doi.org/10.1145/2330667.2330686

[11] Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Francesco Lo Presti, and Raffaela Mirandola. 2009. Qos-driven
Runtime Adaptation of Service Oriented Architectures. In Proceedings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(Amsterdam, The Netherlands) (ESEC/FSE ’09). ACM, New York, NY, USA, 131–140. https://doi.org/10.1145/1595696.
1595718

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1057/jors.2013.71
https://doi.org/10.1145/2330667.2330686
https://doi.org/10.1145/1595696.1595718
https://doi.org/10.1145/1595696.1595718

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Grohmann et al.

[12] Giuliano Casale, Paolo Cremonesi, and Roberto Turrin. 2007. How to select significant workloads in performance
models. In CMG Conference Proceedings. 58–108.

[13] Giuliano Casale, Paolo Cremonesi, and Roberto Turrin. 2008. Robust Workload Estimation in Queueing Network
Performance Models. In Proceedings of the 16th Euromicro Conference on Parallel, Distributed and Network-Based
Processing (PDP 2008) (PDP ’08). IEEE Computer Society, USA, 183–187. https://doi.org/10.1109/PDP.2008.80

[14] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.
[15] David R Cox. 1958. The regression analysis of binary sequences. Journal of the Royal Statistical Society: Series B

(Methodological) 20, 2 (1958), 215–232.
[16] David Roxbee Cox. 1966. The statistical analysis of series of events. Monographs on Applied Probability and Statistics

(1966).
[17] M. D’Angelo, S. Gerasimou, S. Ghahremani, J. Grohmann, I. Nunes, E. Pournaras, and S. Tomforde. 2019. On Learning

in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. In Proceedings of the 14th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS ’19). IEEE Press, 13–24.

[18] Mirko D’Angelo, Sona Ghahremani, Simos Gerasimou, Johannes Grohmann, Ingrid Nunes, Sven Tomforde, and
Evangelos Pournaras. 2020. Learning to Learn in Collective Adaptive Systems: Mining Design Pattern for Data-driven
Reasoning. In 2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems Companion
(ACSOS-C). IEEE, 121–126.

[19] Hans Degroote, Bernd Bischl, Lars Kotthoff, and Patrick De Causmaecker. 2016. Reinforcement learning for automatic
online algorithm selection-an empirical study. ITAT 2016 Proceedings 1649 (2016), 93–101.

[20] Ahmed Elkhodary, Naeem Esfahani, and Sam Malek. 2010. FUSION: A Framework for Engineering Self-tuning
Self-adaptive Software Systems. In Proceedings of the Eighteenth ACM SIGSOFT International Symposium on Foundations
of Software Engineering (Santa Fe, New Mexico, USA) (FSE ’10). ACM, New York, NY, USA, 7–16. https://doi.org/10.
1145/1882291.1882296

[21] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. 2019. Neural Architecture Search: A Survey. Journal of Machine
Learning Research 20, 55 (2019), 1–21. http://jmlr.org/papers/v20/18-598.html

[22] John M. Ewing and Daniel A. Menascé. 2014. A Meta-Controller Method for Improving Run-Time Self-Architecting
in SOA Systems. In Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering (Dublin,
Ireland) (ICPE ’14). Association for Computing Machinery, New York, NY, USA, 173–184. https://doi.org/10.1145/
2568088.2568098

[23] E. M. Fredericks, I. Gerostathopoulos, C. Krupitzer, and T. Vogel. 2019. Planning as Optimization: Dynamically
Discovering Optimal Configurations for Runtime Situations. In 2019 IEEE 13th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO). 1–10. https://doi.org/10.1109/SASO.2019.00010

[24] Erik M. Fredericks, Christian Krupitzer, Ilias Gerostathopoulos, and Thomas Vogel. 2019. Planning as Optimization:
Online Learning of Situations and Optimal Configurations - SASO 2019 - Accompanying material. https://doi.org/10.
5281/zenodo.2584266

[25] Matteo Gagliolo and Jürgen Schmidhuber. 2010. Algorithm selection as a bandit problem with unbounded losses. In
International Conference on Learning and Intelligent Optimization. Springer, 82–96.

[26] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Torsten Schaub, Marius Thomas Schneider, and Stefan Ziller.
2011. A portfolio solver for answer set programming: Preliminary report. In International Conference on Logic
Programming and Nonmonotonic Reasoning. Springer, 352–357.

[27] Johannes Grohmann, Simon Eismann, Andre Bauer, Marwin Zuefle, Nikolas Herbst, and Samuel Kounev. 2019.
Utilizing Clustering to Optimize Resource Demand Estimation Approaches. In 2019 IEEE 4th International Workshops
on Foundations and Applications of Self* Systems (FAS*W). 134–139.

[28] Johannes Grohmann, Simon Eismann, and Samuel Kounev. 2018. The Vision of Self-Aware Performance Models.
In 2018 IEEE International Conference on Software Architecture Companion (ICSA-C) (Seattle, USA). 60–63. https:
//doi.org/10.1109/ICSA-C.2018.00024

[29] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev. 2017. Self-Tuning Resource Demand
Estimation. In Proceedings of the 14th IEEE International Conference on Autonomic Computing (ICAC 2017) (Columbus,
OH). https://doi.org/10.1109/ICAC.2017.19

[30] Johannes Grohmann, Nikolas Herbst, Simon Spinner, and Samuel Kounev. 2018. Using Machine Learning for Recom-
mending Service Demand Estimation Approaches. In Proceedings of the 8th International Conference on Cloud Computing
and Services Science (CLOSER 2018). INSTICC, SciTePress, 473–480. https://doi.org/10.5220/0006761104730480

[31] Johannes Grohmann, Daniel Seybold, Simon Eismann, Mark Leznik, Samuel Kounev, and Jörg Domaschka. 2020.
Baloo: Measuring and Modeling the Performance Configurations of Distributed DBMS. In 2020 IEEE 28th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS) (MASCOTS
’20).

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1109/PDP.2008.80
https://doi.org/10.1145/1882291.1882296
https://doi.org/10.1145/1882291.1882296
http://jmlr.org/papers/v20/18-598.html
https://doi.org/10.1145/2568088.2568098
https://doi.org/10.1145/2568088.2568098
https://doi.org/10.1109/SASO.2019.00010
https://doi.org/10.5281/zenodo.2584266
https://doi.org/10.5281/zenodo.2584266
https://doi.org/10.1109/ICSA-C.2018.00024
https://doi.org/10.1109/ICSA-C.2018.00024
https://doi.org/10.1109/ICAC.2017.19
https://doi.org/10.5220/0006761104730480

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:29

[32] Jianmei Guo, Dingyu Yang, Norbert Siegmund, Sven Apel, Atrisha Sarkar, Pavel Valov, Krzysztof Czarnecki, Andrzej
Wasowski, and Huiqun Yu. 2018. Data-efficient performance learning for configurable systems. Empirical Software
Engineering 23, 3 (2018), 1826–1867.

[33] Huong Ha and Hongyu Zhang. 2019. DeepPerf: performance prediction for configurable software with deep sparse
neural network. In IEEE/ACM 41st International Conference on Software Engineering. 1095–1106.

[34] Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. 2009. Multi-class adaboost. Statistics and its Interface 2, 3 (2009),
349–360.

[35] Malte Helmert, Gabriele Röger, and Erez Karpas. 2011. Fast downward stone soup: A baseline for building planner
portfolios. In ICAPS 2011 Workshop on Planning and Learning. Citeseer, 28–35.

[36] Nikolaus Huber, Fabian Brosig, Simon Spinner, Samuel Kounev, and Manuel Bähr. 2017. Model-Based Self-Aware
Performance and Resource Management Using the Descartes Modeling Language. IEEE Transactions on Software
Engineering 43, 5 (2017), 432–452.

[37] Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential Model-Based Optimization for General
Algorithm Configuration. In Learning and Intelligent Optimization, Carlos A. Coello Coello (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 507–523.

[38] Frank Hutter, Manuel López-Ibáñez, Chris Fawcett, Marius Lindauer, Holger H. Hoos, Kevin Leyton-Brown, and Thomas
Stützle. 2014. AClib: A Benchmark Library for Algorithm Configuration. In Learning and Intelligent Optimization - 8th
International Conference, Lion 8, Gainesville, FL, USA, February 16-21, 2014. Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 8426), Panos M. Pardalos, Mauricio G. C. Resende, Chrysafis Vogiatzis, and Jose L. Walteros
(Eds.). Springer, 36–40. https://doi.org/10.1007/978-3-319-09584-4_4

[39] Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2014. Algorithm runtime prediction: Methods and
evaluation. Artificial Intelligence 206 (2014), 79 – 111. https://doi.org/10.1016/j.artint.2013.10.003

[40] D. N. Joanes and C. A. Gill. 1998. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical
Society: Series D (The Statistician) 47, 1 (1998), 183–189. https://doi.org/10.1111/1467-9884.00122

[41] Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic computing. Computer 36, 1 (Jan 2003), 41–50.
https://doi.org/10.1109/MC.2003.1160055

[42] Pascal Kerschke, Holger H Hoos, Frank Neumann, and Heike Trautmann. 2019. Automated algorithm selection: Survey
and perspectives. Evolutionary computation 27, 1 (2019), 3–45.

[43] Lars Kotthoff, Pascal Kerschke, Holger Hoos, and Heike Trautmann. 2015. Improving the State of the Art in Inexact
TSP Solving Using Per-Instance Algorithm Selection. In Learning and Intelligent Optimization, Clarisse Dhaenens,
Laetitia Jourdan, and Marie-Eléonore Marmion (Eds.). Springer International Publishing, Cham, 202–217.

[44] Olga Kouchnarenko and Jean-François Weber. 2014. Adapting Component-Based Systems at Runtime via Policies with
Temporal Patterns. In Formal Aspects of Component Software, José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue (Eds.).
Springer International Publishing, Cham, 234–253.

[45] Samuel Kounev, Peter Lewis, Kirstie Bellman, Nelly Bencomo, Javier Camara, Ada Diaconescu, Lukas Esterle, Kurt
Geihs, Holger Giese, Sebastian Götz, Paola Inverardi, Jeffrey Kephart, and Andrea Zisman. 2017. The Notion of
Self-Aware Computing. In Self-Aware Computing Systems, Samuel Kounev, Jeffrey O. Kephart, Aleksandar Milenkoski,
and Xiaoyun Zhu (Eds.). Springer Verlag, Berlin Heidelberg, Germany.

[46] Stephan Kraft, Sergio Pacheco-Sanchez, Giuliano Casale, and Stephen Dawson. 2009. Estimating service resource
consumption from response time measurements. In VALUETOOLS ’09 (Pisa, Italy). 1–10.

[47] Dinesh Kumar, Asser Tantawi, and Li Zhang. 2009. Real-time performance modeling for adaptive software systems. In
VALUETOOLS ’09 (Pisa, Italy). 1–10.

[48] Edward D. Lazowska, John Zahorjan, G. Scott Graham, and Kenneth C. Sevcik. 1984. Quantitative system performance:
computer system analysis using queueing network models. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[49] Peter Lewis, Kirstie L Bellman, Christopher Landauer, Lukas Esterle, Kyrre Glette, Ada Diaconescu, and Holger Giese.
2017. Towards a Framework for the Levels and Aspects of Self-aware Computing Systems. In Self-Aware Computing
Systems. Springer, 51–85.

[50] Haifeng Li. 2014. Smile. https://haifengl.github.io.
[51] Jim (Zhanwen) Li, John Chinneck, Murray Woodside, and Marin Litoiu. 2009. Fast Scalable Optimization to Configure

Service Systems Having Cost and Quality of Service Constraints. In Proceedings of the 6th International Conference on
Autonomic Computing (Barcelona, Spain) (ICAC ’09). ACM, 159–168. https://doi.org/10.1145/1555228.1555268

[52] Marius Lindauer, Holger H Hoos, Frank Hutter, and Torsten Schaub. 2015. Autofolio: An automatically configured
algorithm selector. Journal of Artificial Intelligence Research 53 (2015), 745–778.

[53] Zhen Liu, Laura Wynter, Cathy H. Xia, and Fan Zhang. 2006. Parameter inference of queueing models for IT systems
using end-to-end measurements. Perform. Evaluation 63, 1 (2006), 36–60.

[54] Yuri Malitsky. 2014. Evolving instance-specific algorithm configuration. In Instance-Specific Algorithm Configuration.
Springer, 93–105.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1007/978-3-319-09584-4_4
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1111/1467-9884.00122
https://doi.org/10.1109/MC.2003.1160055
https://haifengl.github.io
https://doi.org/10.1145/1555228.1555268

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Grohmann et al.

[55] Manar Mazkatli and Anne Koziolek. 2018. Continuous Integration of Performance Model. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering, ICPE 2018, Berlin, Germany, April 09-13, 2018, Katinka
Wolter, William J. Knottenbelt, André van Hoorn, and Manoj Nambiar (Eds.). ACM, 153–158. https://doi.org/10.1145/
3185768.3186285

[56] Manar Mazkatli, David Monschein, Johannes Grohmann, and Anne Koziolek. 2020. Incremental Calibration of
Architectural Performance Models with Parametric Dependencies. In 2020 IEEE International Conference on Software
Architecture (ICSA 2020). IEEE, 23–34.

[57] Daniel A. Menascé. 2008. Computing missing service demand parameters for performance models. In CMG Conference
Proceedings. 241–248.

[58] Daniel A. Menasce and Virgilio Almeida. 2001. Capacity Planning for Web Services: Metrics, Models, and Methods (1st
ed.). Prentice Hall PTR, USA.

[59] Daniel A. Menascé, Lawrence W. Dowdy, and Virgilio A. F. Almeida. 2004. Performance by Design: Computer Capacity
Planning By Example. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[60] Daniel A. Menasce and A. F. Almeida Virgilio. 2000. Scaling for E Business: Technologies, Models, Performance, and
Capacity Planning (1st ed.). PTR.

[61] G. A. Moreno, O. Strichman, S. Chaki, and R. Vaisman. 2017. Decision-Making with Cross-Entropy for Self-Adaptation.
In 2017 IEEE/ACM 12th International Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). 90–101. https://doi.org/10.1109/SEAMS.2017.7

[62] Qais Noorshams. 2015. Modeling and Prediction of I/O Performance in Virtualized Environments. Ph.D. Dissertation.
Karlsruhe Institute of Technology (KIT). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750

[63] Qais Noorshams, Dominik Bruhn, Samuel Kounev, and Ralf Reussner. 2013. Predictive Performance Modeling of
Virtualized Storage Systems Using Optimized Statistical Regression Techniques. In ACM/SPEC ICPE 2013 (Prague,
Czech Republic) (ICPE ’13). ACM, New York, NY, USA, 283–294.

[64] Giovanni Pacifici, Wolfgang Segmuller, Mike Spreitzer, and Asser Tantawi. 2008. CPU demand for web serving:
Measurement analysis and dynamic estimation. Perform. Evaluation 65, 6-7 (2008), 531–553.

[65] Juan F. Pérez, Giuliano Casale, and Sergio Pacheco-Sanchez. 2015. Estimating Computational Requirements in Multi-
Threaded Applications. IEEE Trans. Software Eng. 41, 3 (2015), 264–278. https://doi.org/10.1109/TSE.2014.2363472

[66] P. Pilgerstorfer and E. Pournaras. 2017. Self-Adaptive Learning in Decentralized Combinatorial Optimization - A
Design Paradigm for Sharing Economies. In 2017 IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS). 54–64. https://doi.org/10.1109/SEAMS.2017.8

[67] Barry Porter, Matthew Grieves, Roberto Rodrigues Filho, and David Leslie. 2016. {REX}: A Development Platform
and Online Learning Approach for Runtime Emergent Software Systems. In 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16). 333–348.

[68] Luca Pulina and Armando Tacchella. 2009. A self-adaptive multi-engine solver for quantified Boolean formulas.
Constraints 14, 1 (2009), 80–116.

[69] Ralf H. Reussner, Steffen Becker, Jens Happe, Robert Heinrich, Anne Koziolek, Heiko Koziolek, Max Kramer, and Klaus
Krogmann. 2016. Modeling and Simulating Software Architectures: The Palladio Approach. MIT Press.

[70] John R. Rice. 1976. The Algorithm Selection Problem**This work was partially supported by the National Science
Foundation through Grant GP-32940X. This chapter was presented as the George E. Forsythe Memorial Lecture at the
Computer Science Conference, February 19, 1975, Washington, D. C. Advances in Computers, Vol. 15. Elsevier, 65 –
118. https://doi.org/10.1016/S0065-2458(08)60520-3

[71] Roberto Rodrigues Filho and Barry Francis Porter. 2017. Defining emergent software using continuous self-assembly,
perception and learning. ACM Transactions on Autonomous and Adaptive Systems 12, 3 (Sept. 2017). https://doi.org/10.
1145/3092691

[72] Jerome Rolia and Vidar Vetland. 1995. Parameter estimation for performance models of distributed application systems.
In CASCON ’95 (Toronto, Ontario, Canada). IBM Press, 54.

[73] Jerome Rolia and Vidar Vetland. 1998. Correlating resource demand information with ARM data for application
services. In Proceedings of the 1st international workshop on Software and performance (Santa Fe, New Mexico, United
States). ACM, 219–230.

[74] Abhishek B. Sharma, Ranjita Bhagwan, Monojit Choudhury, Leana Golubchik, Ramesh Govindan, and Geoffrey M.
Voelker. 2008. Automatic request categorization in internet services. SIGMETRICS Perform. Eval. Rev. 36 (Aug. 2008),
16–25. Issue 2.

[75] Stepan Shevtsov and Danny Weyns. 2016. Keep It SIMPLEX: Satisfying Multiple Goals with Guarantees in Control-
based Self-adaptive Systems. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE 2016). ACM, 229–241.

[76] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kästner. 2015. Performance-influence models for
highly configurable systems. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1109/SEAMS.2017.7
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000046750
https://doi.org/10.1109/TSE.2014.2363472
https://doi.org/10.1109/SEAMS.2017.8
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1145/3092691
https://doi.org/10.1145/3092691

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

SARDE: A Framework for Continuous and Self-Adaptive Resource Demand Estimation 1:31

284–294.
[77] Kevin Sim, Emma Hart, and Ben Paechter. 2015. A Lifelong Learning Hyper-Heuristic Method for Bin Packing. Evol.

Comput. 23, 1 (March 2015), 37–67. https://doi.org/10.1162/EVCO_a_00121
[78] Kate A Smith-Miles. 2009. Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing

Surveys (CSUR) 41, 1 (2009), 1–25.
[79] Simon Spinner, Giuliano Casale, Fabian Brosig, and Samuel Kounev. 2015. Evaluating Approaches to Resource Demand

Estimation. Perform. Evaluation 92 (October 2015), 51 – 71. https://doi.org/10.1016/j.peva.2015.07.005
[80] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. 2014. LibReDE: A Library for Resource Demand

Estimation. In Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering (ICPE 2014)
(Dublin, Ireland). ACM Press, New York, NY, USA, 227–228. https://doi.org/10.1145/2568088.2576093

[81] Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. 2014. LibReDE: A Library for Resource Demand
Estimation. In ACM/SPEC ICPE 2014 (Dublin, Ireland) (ICPE ’14). ACM, New York, NY, USA, 227–228.

[82] Simon Spinner, Johannes Grohmann, Simon Eismann, and Samuel Kounev. 2019. Online model learning for self-aware
computing infrastructures. Journal of Systems and Software 147 (2019), 1 – 16.

[83] Christopher Stewart, Terence Kelly, and Alex Zhang. 2007. Exploiting nonstationarity for performance prediction.
SIGOPS Oper. Syst. Rev. 41 (March 2007), 31–44. Issue 3.

[84] Jan N. van Rijn, Geoffrey Holmes, Bernhard Pfahringer, and Joaquin Vanschoren. 2014. Algorithm Selection on
Data Streams. In Discovery Science, Sašo Džeroski, Panče Panov, Dragi Kocev, and Ljupčo Todorovski (Eds.). Springer
International Publishing, Cham, 325–336.

[85] Jan N van Rijn, Geoffrey Holmes, Bernhard Pfahringer, and Joaquin Vanschoren. 2018. The online performance
estimation framework: heterogeneous ensemble learning for data streams. Machine Learning 107, 1 (2018), 149–176.

[86] Sonya Voneva, Manar Mazkatli, Johannes Grohmann, and Anne Koziolek. 2020. Optimizing Parametric Dependencies
for Incremental Performance Model Extraction. In Companion of the 14th European Conference Software Architecture
(ECSA 2020) (Communications in Computer and Information Science, Vol. 1269), Henry Muccini, Paris Avgeriou, Barbora
Buhnova, Javier Cámara, Mauro Caporuscio, Mirco Franzago, Anne Koziolek, Patrizia Scandurra, Catia Trubiani,
Danny Weyns, and Uwe Zdun (Eds.). Springer, 228–240.

[87] Jürgen Walter, Christian Stier, Heiko Koziolek, and Samuel Kounev. 2017. An Expandable Extraction Framework
for Architectural Performance Models. In Proceedings of the 3rd International Workshop on Quality-Aware DevOps
(QUDOS’17) (l’Aquila, Italy). ACM, 6.

[88] Wei Wang, Xiang Huang, Xiulei Qin, Wenbo Zhang, Jun Wei, and Hua Zhong. 2012. Application-Level CPU Con-
sumption Estimation: Towards Performance Isolation of Multi-tenancy Web Applications. In IEEE CLOUD 2012. 439
–446.

[89] Wei Wang, Xiang Huang, Yunkui Song, Wenbo Zhang, Jun Wei, Hua Zhong, and Tao Huang. 2011. A statistical
approach for estimating CPU consumption in shared Java middleware server. In IEEE COMPSAC, 2011. IEEE, 541–546.

[90] Weikun Wang, Juan F. Pérez, and Giuliano Casale. 2015. Filling the Gap: A Tool to Automate Parameter Estimation for
Software Performance Models. In Proceedings of the 1st International Workshop on Quality-Aware DevOps (Bergamo,
Italy) (QUDOS 2015). Association for Computing Machinery, New York, NY, USA, 31–32. https://doi.org/10.1145/
2804371.2804379

[91] Peter H Westfall. 2014. Kurtosis as peakedness, 1905–2014. RIP. The American Statistician 68, 3 (2014), 191–195.
[92] Felix Willnecker, Markus Dlugi, Andreas Brunnert, Simon Spinner, Samuel Kounev, and Helmut Krcmar. 2015. Com-

paring the Accuracy of Resource Demand Measurement and Estimation Techniques. In EPEW 2015 (Madrid, Spain)
(Lecture Notes in Computer Science, Vol. 9272), Marta Beltrán, William Knottenbelt, and Jeremy Bradley (Eds.). Springer,
115–129.

[93] David H Wolpert. 1996. The lack of a priori distinctions between learning algorithms. Neural computation 8, 7 (1996),
1341–1390.

[94] David H Wolpert and William G Macready. 1997. No free lunch theorems for optimization. IEEE transactions on
evolutionary computation 1, 1 (1997), 67–82.

[95] Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2008. SATzilla: portfolio-based algorithm selection
for SAT. Journal of artificial intelligence research 32 (2008), 565–606.

[96] Qi Zhang, Ludmila Cherkasova, and Evgenia Smirni. 2007. A Regression-Based Analytic Model for Dynamic Resource
Provisioning of Multi-Tier Applications. In Fourth International Conference on Autonomic Computing (ICAC’07). 27–27.

[97] Yi Zhang, Jianmei Guo, Eric Blais, and Krzysztof Czarnecki. 2015. Performance prediction of configurable software
systems by fourier learning (t). In 2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE). 365–373.

[98] Tao Zheng, C.M. Woodside, and M. Litoiu. 2008. Performance Model Estimation and Tracking Using Optimal Filters.
IEEE TSE 34, 3 (May 2008), 391–406.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1162/EVCO_a_00121
https://doi.org/10.1016/j.peva.2015.07.005
https://doi.org/10.1145/2568088.2576093
https://doi.org/10.1145/2804371.2804379
https://doi.org/10.1145/2804371.2804379

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Grohmann et al.

[99] Tao Zheng, Jinmei Yang, Murray Woodside, Marin Litoiu, and Gabriel Iszlai. 2005. Tracking time-varying parameters
in software systems with extended Kalman filters. In CASCON ’05 (Toranto, Ontario, Canada). IBM Press, 334–345.

ACM Trans. Autonom. Adapt. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2021.

	Abstract
	1 Introduction
	2 Related work
	2.1 Resource Demand Estimation
	2.2 Algorithm Optimization in Self-adaptive Systems
	2.3 Algorithm Selection in Self-adaptive Systems

	3 Motivating Example
	4 Overview
	5 Approach
	5.1 Monitoring
	5.2 Optimization
	5.3 Training
	5.4 Selection
	5.5 Estimation

	6 Evaluation
	6.1 Experiment Setup
	6.2 Evaluation Metrics
	6.3 Configuration

	7 Results
	7.1 Selection
	7.2 Optimization
	7.3 Combination
	7.4 Workload Analysis
	7.5 Overhead Analysis

	8 Discussion
	8.1 Continuous Updates
	8.2 Adapting Learning Intervals
	8.3 Ensemble approaches

	9 Threats to validity
	9.1 Internal validity
	9.2 External validity

	10 Limitations
	11 Conclusion
	References

