Workload Characterization of the
SPECjms2007 Benchmark

Kai Sachs', Samuel Kounev!?, Jean Bacon?, and Alejandro Buchmann'

! Databases and Distributed Systems Group, TU Darmstadt, Germany
2 Computer Laboratory, University of Cambridge, UK

Abstract. Message-oriented middleware (MOM) is at the core of a vast
number of financial services and telco applications, and is gaining increas-
ing traction in other industries, such as manufacturing, transportation,
health-care and supply chain management. There is a strong interest
in the end user and analyst communities for a standardized benchmark
suite for evaluating the performance and scalability of MOM. In this pa-
per, we present a workload characterization of the SPECjms2007 bench-
mark which is the world’s first industry-standard benchmark specialized
for MOM. In addition to providing standard workload and metrics for
MOM performance, the benchmark provides a flexible performance anal-
ysis framework that allows users to customize the workload according
to their requirements. The workload characterization presented in this
paper serves two purposes i) to help users understand the internal com-
ponents of the SPECjms2007 workload and the way they are scaled, ii)
to show how the workload can be customized to exercise and evaluate se-
lected aspects of MOM performance. We discuss how the various features
supported by the benchmark can be exploited for in-depth performance
analysis of MOM infrastructures.

1 Introduction

Message-oriented middleware (MOM) is increasingly adopted as an enabling
technology for modern event-driven applications like stock trading, event-based
supply chain management, air traffic control and online auctions to name just a
few. Novel messaging applications, however, pose some serious performance and
scalability challenges. For example, the next generation of event-driven supply
chain management based on RFID technology [6] (for instance SAP’s AutoID
infrastructure [3]) will be highly reliant on scalable and efficient backend systems
to support the processing of acquired real-time data and its integration with
enterprise applications and business processes [12]. Large retailers, like Wal-
Mart, Metro or Tesco, are expected to have throughput rates of about 60 billion
messages per annum [2]. The performance and scalability of the underlying MOM
platforms used to process these messages will be of crucial importance for the
successful adoption of such applications in the industry.

To guarantee that applications meet their Quality of Service (QoS) require-
ments, it is essential that the platforms on which they are built are tested using

benchmarks to measure and validate their performance and scalability. However,
if a benchmark is to be useful and reliable, it must fulfill several fundamental
requirements [9]. First of all, it must be designed to stress platforms in a manner
representative of real-world messaging applications. It must exercise all critical
services provided by platforms and must provide a level playing field for per-
formance comparisons. Finally, to be reliable, a benchmark must generate re-
producible results and must not have any inherent scalability limitations. While
a number of proprietary benchmarks for MOM servers (for example [14,7,1,
8]) have been developed and used in the industry for performance testing and
product comparisons (see [5,11,4]), these benchmarks do not meet the above
requirements. The reason is that most of them use artificial workloads that do
not reflect any real-world application scenario. Furthermore, they typically con-
centrate on stressing individual MOM features in isolation and do not provide
a comprehensive and representative workload for evaluating the overall MOM
server performance. To address these concerns, in September 2005 we launched a
project at the Standard Performance Evaluation Corporation (SPEC) with the
goal to develop a standard benchmark for evaluating the performance and scal-
ability of MOM products. The new benchmark was called SPECjms2007 and it
was developed at SPEC’s OSG-Java Subcommittee with the participation of TU-
Darmstadt, IBM, Sun, BEA, Sybase, Apache, Oracle and JBoss. SPECjms2007
exercises messaging products through the JMS (Java Message Service) [15] stan-
dard interface which is supported by all major MOM vendors.

In this paper, we introduce the SPECjms2007 benchmark and provide a com-
prehensive characterization of its workload. We start with a brief overview of the
benchmark goals and then present the business scenario it models and discuss
the way it was implemented. An important advantage of SPECjms2007 is that
it allows users to customize the workload to their needs by configuring it to
stress selected features of the MOM infrastructure in a way that resembles a
given target customer workload. However, in order to exploit this, users need
to understand the way the workload is decomposed into components and which
performance aspects are exercised by these components. To this end, after dis-
cussing the benchmark scenario and its implementation, we present a detailed
characterization of the benchmark workload. This characterization, on the one
hand, aims to help users gain an in-depth understanding of the SPECjms2007
workload, so that they can interpret the benchmark results correctly. On the
other hand, it provides the information needed to enable users to tailor the
workload to their own requirements.

The rest of the paper is organized as follows. In Section 2, we briefly dis-
cuss the goals of SPECjms2007 and then introduce the business scenario and
interactions it models. Following this, in Section 3, we present an in-depth char-
acterization of the SPECjms2007 workload in terms of the number and types of
destinations, the interaction mix, the message types, the message sizes and the
message delivery modes. We show how the workload can be customized to stress
selected performance aspects and discuss two standard strategies for scaling the
workload. The paper is wrapped up in Section 4.

2 The SPECjms2007 Benchmark

2.1 Requirements and Goals

The aim of the SPECjms2007 benchmark is to provide a standard workload and
metrics for measuring and evaluating the performance and scalability of MOM
platforms. To achieve this the SPECjms2007 workload must fulfill several im-
portant requirements. First of all, it must be based on a representative workload
scenario that reflects the way platform services are exercised in real-life systems.
The goal is to allow users to relate the observed behavior to their own applica-
tions and environments. Second, the workload should be comprehensive in that
it should exercise all platform features typically used in MOM applications in-
cluding both point-to-point (P2P) and publish/subscribe (pub/sub) messaging.
The features and services stressed should be weighted according to their usage in
real-life systems. The third requirement is that the workload should be focused
on measuring the performance and scalability of the MOM server’s software and
hardware components. It should minimize the impact of other components and
services that are typically used in the chosen application scenario. For example,
if a database would be used to store business data and manage the application
state, it could easily become the limiting factor of the benchmark as experience
with other benchmarks shows [10]. Finally, the SPECjms2007 workload must
not have any inherent scalability limitations. The user should be able to scale
the workload both by increasing the number of destinations (queues and topics)
as well as the message traffic pushed through a destination.

Producing and publishing standard results for marketing purposes will be just
one usage scenario for SPECjms2007. Many users will be interested in using the
benchmark to tune and optimize their platforms or to analyze the performance
of certain specific MOM features. Others could use the benchmark for research
purposes in academic environments where, for example, one might be interested
in evaluating the performance and scalability of novel methods and techniques for
building high-performance MOM servers. All these usage scenarios require that
the benchmark framework allows the user to precisely configure the workload
and transaction mix to be generated. Providing this configurability is a great
challenge because it requires that interactions are designed and implemented in
such a way that one could run them in different combinations depending on the
desired transaction mix.

2.2 Workload Scenario

The workload scenario chosen for SPECjms2007 models the supply chain of a su-
permarket company. The participants involved are the supermarket company, its
stores, its distribution centers and its suppliers. The scenario offers an excellent
basis for defining interactions that stress different subsets of the functionality
offered by MOM servers. Moreover, it offers a natural way to scale the workload.
The participants involved in the scenario can be grouped into the following four
roles:

Company Headquarters (HQ) The company’s corporate headquarters are
responsible for managing the accounting of the company, managing information
about the goods and products offered in the supermarket stores, managing selling
prices and monitoring the flow of goods and money in the supply chain.

Distribution Centers (DCs) The distribution centers supply the supermarket
stores. Every distribution center is responsible for a set of stores in a given
area. The distribution centers in turn are supplied by external suppliers. The
distribution centers are involved in the following activities: taking orders from
supermarkets, ordering goods from suppliers, delivering goods to supermarkets
and providing sales statistics to the HQ (e.g. for data mining).

Supermarkets (SMs) The supermarkets sell goods to end customers. The
scenario focuses on the management of the inventory of supermarkets including
their warehouses. Some supermarkets are smaller than others, so that they do not
have enough room for all products, others may be specialized for some product
groups like certain types of food. We assume that every supermarket is supplied
by exactly one of the distribution centers.

Suppliers (SPs) The suppliers deliver goods to the distribution centers of
the supermarket company. Different suppliers are specialized for different sets
of products and they deliver goods on demand, i.e. they must receive an order
from the supermarket company to send a shipment.

2.3 Modeled Interactions

SPECjms2007 implements seven interactions between the participants in the
supermarket supply chain.

Suppliers | Supermarket Company Suppliers | Supermarket Company
Company HQ Company HQ

— Y
——goods & Distributio g —=goods& || Distribution
info flow Centers ®‘ | info flow Centers

=only info =only info
Fig. 1. Interaction 1 - Communication Fig. 2. Interaction 2 - Communication
between SM and DC between SP and DC

Interaction 1: Order/Shipment Handling between SM and DC

This interaction exercises persistent P2P messaging between the SMs and
DCs. The interaction is triggered when goods in the warehouse of a SM are
depleted and the SM has to order from its DC to refill stock. The following steps
are followed as illustrated in Figure 1:

A SM sends an order to its DC.

The DC sends a confirmation to the SM and ships the ordered goods.
Goods are registered by RFID readers upon leaving the DC warehouse.
The DC sends information about the transaction to the HQ (sales statistics).
The shipment arrives at the SM and is registered by RFID readers upon
entering the SM warehouse.

6. A confirmation is sent to the DC.

CU o =

Interaction 2: Order/Shipment Handling between DC and SP

This interaction exercises persistent P2P and pub/sub (durable) messaging
between the DCs and SPs. The interaction is triggered when goods in a DC are
depleted and the DC has to order from a SP to refill stock. The following steps
are followed as illustrated in Figure 2:

1. A DC sends a call for offers to all SPs that supply the types of goods that
need to be ordered.

2. SPs that can deliver the goods send offers to the DC.

Based on the offers, the DC selects a SP and sends a purchase order to it.

4. The SP sends a confirmation to the DC and an invoice to the HQ. It then
ships the ordered goods.

5. The shipment arrives at the DC and is registered by RFID readers upon
entering the DC’s warehouse.

6. The DC sends a delivery confirmation to the SP.

7. The DC sends transaction statistics to the HQ.

©w

Interaction 3: Price Updates

This interaction exercises persistent, durable pub/sub messaging between the
HQ and the SMs. The interaction is triggered when selling prices are changed
by the company administration. To communicate this, the company HQ sends
messages with pricing information to the SMs.

Interaction 4: SM Inventory Management

This interaction exercises persistent P2P messaging inside the SMs. The in-
teraction is triggered when goods leave the warehouse of a SM (to refill a shelf).
Goods are registered by RFID readers and the local warehouse application is
notified so that inventory can be updated.

Interaction 5: Sales Statistics Collection

This interaction exercises non-persistent P2P messaging between the SMs
and the HQ. The interaction is triggered when a SM sends sales statistics to the
HQ. HQ can use this data as a basis for data mining in order to study customer
behavior and provide useful information to marketing.

Interaction 6: New Product Announcements

This interaction exercises non-persistent, non-durable pub/sub messaging be-
tween the HQ and the SMs. The interaction is triggered when new products are
announced by the company administration. To communicate this, the HQ sends
messages with product information to the SMs selling the respective product

types.

Interaction 7: Credit Card Hot Lists

This interaction exercises non-persistent, non-durable pub/sub messaging be-
tween the HQ and the SMs. The interaction is triggered when the HQ sends
credit card hot lists to the SMs (complete list once every hour and incremental
updates as required).

2.4 Benchmark Implementation

Event Handlers and Agents SPECjms2007 is implemented as a Java appli-
cation comprising multiple JVMs and threads distributed across a set of client
nodes. For every destination (queue or topic), there is a separate Java class called
Event Handler (EH) that encapsulates the application logic executed to process
messages sent to that destination. Event handlers register as listeners for the
queue/topic and receive call backs from the messaging infrastructure as new
messages arrive. For maximal performance and scalability, multiple instances of
each event handler executed in separate threads can exist and they can be dis-
tributed over multiple physical nodes. Event handlers can be grouped according
to the physical location (e.g. HQ, SM, DC or SP) they pertain to in the busi-
ness scenario. In addition to the event handlers, for every physical location, a
set of threads is launched to drive the benchmark interactions that are logically
started at that location. These are called driver threads. The set of all event
handlers and driver threads pertaining to a given physical location is referred to
as agent. For example, each DC agent is comprised of a set of event handlers for
the various destinations inside the DC and a set of driver threads used to drive
Interaction 2, which is the only interaction with logical starting point at DCs.

‘Workload Configurability An important goal of SPECjms2007 that we dis-
cussed in Section 2.1 was to provide a flexible framework for performance analysis
of MOM servers that allows users to configure and customize the workload ac-
cording to their requirements. To achieve this goal, the interactions have been
implemented in such a way that one could run them in different combinations
depending on the desired transaction mix. SPECjms2007 offers three different
ways of structuring the workload: horizontal, vertical and freeform. The latter
are referred to as workload topologies and they correspond to three different
modes of running the benchmark offering different level of configurability. The
horizontal topology is meant to exercise the ability of the system to handle in-
creasing number of destinations. To this end, the workload is scaled by increasing
the number of physical locations (SMs, DCs, etc.) while keeping the traffic per
location constant. The vertical topology, on the other hand, is meant to exercise
the ability of the system to handle increasing message traffic through a fixed
set of destinations. Therefore, a fixed set of physical locations is used and the
workload is scaled by increasing the rate at which interactions are run. Finally,
the freeform topology allows the user to use the seven SPECjms2007 interactions
as building blocks to design his own workload scenario which can be scaled in

an arbitrary manner by increasing the number of physical locations and/or the
rates at which interactions are run. The user can configure the number of phys-
ical locations emulated, the number of message producers and consumers, the
message size disributions, the message delivery modes, etc. Most importantly,
the user can selectively turn off interactions or change the rate at which they
are run to shape the workload according to his requirements. At the same time,
when running the horizontal or vertical topology, the benchmark behaves as if
the interactions were interrelated according to their dependencies in the real-life
application scenario. For further details on the benchmark implementation, the
reader is referred to [13].

3 SPECjms2007 Workload Characterization

3.1 Message Traffic Analysis

We start with a detailed analysis of the message traffic produced by the bench-
mark workload in terms of the number and type of messages generated and their
sizes. We consider the workload parameters that can be configured in the most
general freeform topology and show how they affect the resulting message traffic.
The different types of messages and destinations used in the various interactions
are detailed in Table 1.

Messages Sizes The sizes of the messages generated as part of each interaction
can be configured by setting an interaction-specific message sizing parameter
(for example, “number of order lines sent to DC” for Interaction 1). Each sizing
parameter can be assigned three possible values with respective probabilities
(discrete probability distribution). The message sizing parameters used for the
different interactions are listed in Table 2, along with some data that can be
used to compute the resulting message sizes in KBytes. This data is based on
measurements we took using a deployment of SPECjms2007 on a major JMS
server platform®. The exact message sizes may be slightly different on different
platforms, as MOM servers add their own platform-specific message headers. The
measurements provided here were compared against measurements on a second
popular JMS server and the differences were negligible. Based on the data in
Table 2, the message sizes in KBytes for Interactions 1, 2, 4, 6 and 7 can be
computed as ¥ = m; -x+b where x is the interaction’s message sizing parameter
and my and b are set to their respective values from Table 2. The priceUpdate
messages of Interaction 3 have constant size that cannot be changed by the user.
The size of the statInfoSM messages used in Interaction 5 is configured using
two sizing parameters as follows ¥ = z - (m; + mgy - y) + b where z and y are
the two sizing parameters (i.e. “number of SM cash desks” and “number of sales
lines”) and mq, ms and b are set to their respective values from Table 2. Based
on the above two formulas and the data in Table 2, the user can configure the
benchmark to use message sizes that match the user’s own target workload.

3 Due to product license restrictions, the specific configuration used cannot be dis-
closed.

[Intr.[Message [Destination [Type [Prop. [Description |

order Queue (DC) [ObjectMsg P, T Order sent from SM to DC.
orderConf Queue (SM) [ObjectMsg P, T Order confirmation sent from DC to
SM.
shipDep Queue (DC) [TextMsg P, T Shipment registered by RFID readers
1 upon leaving DC.
statInfo- Queue (HQ) [StreamMsg NP, NT [Sales statistics sent from DC to HQ.
OrderDC
shipInfo Queue (SM) [TextMsg P, T Shipment from DC registered by
RFID readers upon arrival at SM.
shipConf Queue (DC) [ObjectMsg P, T Shipment confirmation sent from SM
to DC.
callForOffers Topic (HQ) [TextMsg P, T, D [Call for offers sent from DC to SPs
(XML).
offer Queue (DC) [TextMsg P, T Offer sent from SP to DC (XML).
pOrder Queue (SP) [TextMsg P, T Order sent from DC to SP (XML).
pOrderConf Queue (DC) [TextMsg P, T Order confirmation sent from SP to
2 DC (XML).
invoice Queue (HQ) [TextMsg P, T Order invoice sent from SP to HQ
(XML).
pShipInfo Queue (DC) [TextMsg P, T Shipment from SP registered by RFID
readers upon arrival at DC.
pShipConf Queue (SP) [TextMsg P, T Shipment confirmation sent from DC
to SP (XML).
statInfo- Queue (HQ) [StreamMsg NP, NT [Purchase statistics sent from DC to
ShipDC HQ.
3 |priceUpdate Topic (HQ) [MapMsg P, T, D [Pricc update sent from HQ to SMs.

TextMsg
readers in the warehouse of SM.

[[l
4 ‘inventorylnfo ‘Queue (SM) Item movement registered by RFID‘
[[|

statInfoSM NP, NT [Sales statistics sent from SM to HQ.
6 |product- Topic (HQ) [StreamMsg NP, NT,|New product announcements sent
Announcement from HQ to SMs.
7 |creditCardHL NP, NT,|Credit card hotlist sent from HQ to

l
|
B
|
|

[
Queue (HQ) [ObjectMSg l
b
[xp

Topic (HQ) ‘StreamMsg

SMs.
Table 1. Message Types Used in The Interactions - (N)P=(Non-)Persistent;
(N)T=(Non-)Transactional; (N)D=(Non-)Durable

Message Throughput We now characterize the message throughput first on a
per interaction basis and then on a per location basis. The two most important
sets of workload parameters that determine the message throughput are the
number of locations of each type and the interaction rates. We denote the sets
of physical locations as follows:

Wsar = {SMy,SMy, ..., SMy., |} Wpe = {DCy, DCy, ..., DCluy .}
Usp ={SP1,SPs,...,SPygp|} Ung ={HQ1,HQ2,...,HQp |}

Note that although the modeled scenario has a single physical HQ location,
the benchmark allows multiple HQ instances to exist each with its own set of
queues. The goal is to avoid the HQ queues becoming a bottleneck when scaling
the number of SMs, DCs and SPs. It is assumed that messages sent to the
HQ are distributed evenly among the HQ instances. Multiple HQ instances are
considered as separate servers within the same physical location.

For each interaction, the interaction rate specifies the rate at which the in-
teraction is initiated by every physical instance of its initiating location, SM
for Interaction 1, DC for Interaction 2, etc. We denote the interaction rates as
Ai, 1 <4 < 7. Since multiple HQ instances are not considered as separate physical
locations, it follows that the rates of Interactions 3, 6 and 7 which are initiated

[Intr.[Message Sizing Parameters [Message [mi [mg [b]

orderConf 0.0565| na [1.7374

statInfoOrderDC 0.0153] na [0.1463

. shipInfo 0.0787| na [0.8912

1 |[No of order lines sent to DC shipDep 00787 na 107322
order 0.0565| mna [1.4534

shipConf 0.0202] na [0.7140

callForOffers 0.1785] mna [0.8094

offer 0.2489] na [0.9414

pOrder 0.2498] na [1.1076

. L pShipConf 0.0827] na [0.7612

2 |No of purchase order lines sent to SP statInfoShipDC 00831 na 107681
pOrderConf 0.2410] na [1.3494

invoice 0.1942] na [1.1211

pShipInfo 0.0827| na [0.7279

[8 [Message has fized size [priceUpdate [na [na]0.2310]
[4 [No of registered items leaving warehouse[inventoryInfo [0.0970] na [0.5137]
[5 [No of cash desks & sales lines [statInfoSM [0.0139]0.3650]0.9813]
[6 [No of new products announced [productAnnouncement10.0103[na 10.1754]
[7 [No of credit cards in hot list [creditCardHL 0.0166[na [0‘1846]

Table 2. Parameters for Message Size Calculation

by the HQ are interpreted as rates over all HQ instances as opposed to rates per
HQ instance. Interaction 2 uses a set of topics representing the different product
families offered by suppliers. These topics help to distribute the callForOffers
messages sent by DCs. Suppliers subscribe to all topics corresponding to groups
of products they offer so that they receive all relevant callForOffers messages.
We denote the set of product families as II = {PFy, PF, PF3, ..., PF}.
The probability that a SP offers products from a given product family PF; € IT

is a configurable workload parameter and will be denoted as p. Every SP sub-
scribes to p - |II]| product families and thus [Pgp| - p - |II| subscriptions exist
overall. The number of subscribers that subscribe to a given product family is
denoted as ¢ = |¥sp| - p.

Group a b c d

Type Pub/Sub |Pub/Sub|P2P P2P

Properties|NP NT ND/P TD |[NP NTPT
Table 3. Message Groups

In the following, we show how the message throughput, in terms of the num-
ber of messages sent and received per unit of time, can be broken down accord-
ing to the type of messaging (P2P vs. pub/sub) and the message delivery mode
(persistent vs. non-persistent, transactional vs. non-transactional, durable vs.
non-durable). To this end, we group messages as shown in Table 3. Further, we
define the following sets:

I' ={a,b,c,d}: Message groups as defined in Table 3.
2 = {se,re}: Messages sent vs. messages received.
A={SM,SP,DC,HQ}: Types of physical locations.
3.1a). Message Throughput per Interaction
We first analyze the message throughput on a per interaction basis. We will
use the following notation:
Jforje1<i<Tandkel
No of messages of group k sent/received per sec as part of Interaction i.

55 = Zkngg,k for1<i<7,j€
Total no of messages sent/received per sec as part of Interaction i.

&= Z:Zl 517 for j € 2

Total no of messages sent/received per sec over all interactions.

Based on the information provided in the previous sections and analysis of
the benchmark design, the following equations are derived characterizing the
message throughput of each interaction:

Interaction 1: &%, = &% = A1 - [Ysn] =8 =5 - [Pl

1.=0, VEe{a,b}Aje R

Interaction 2: f;a =0, Vjen 50 =&5% =2+ [¥pcl
&5 = A2 - [¥pe 5 =& =(C+5) - A2+ [¥pc
5% = (A2 [Wpc|

Interaction 3: 3b = A3 ;k =0, Vkellk£bNje R

£3% = A3+ [¥su|

Interaction 4: =S =M sn| &, =0, Ve k#dNjeR
Interaction 5: ==X [Wsu| &, =0, Vkek#dAjeR
Interaction 6: 6ia = A6 §é’k =0, Vkellk#aNnjeR

bia = A6+ [Wsnr]
Interaction 7: Ta = A7 gk:(), VkelLk#aNjeE S

7 = A [Ysu]

3.1b). Message Throughput per Location

We now analyze the message throughput on a per location basis. The follow-
ing notation will be used:

X{,k forjeleAkel
No of messages of group k sent/received per sec by a location of type I.

Xi = perélpforjeR,leA
Total no of messages sent/received per sec by a location of type .

SMs participate in all interactions apart from Interaction 2. The following
equations characterize the message throughput of each SM:

se o se __ . re . se _
XSM,a = XSMb = XSM,c — 0 XSM,c = As

XSM,a = A6 + A7 XSm,a = 2M1 + A
Xsmp = A3 Xsm,a = 2M\1 + M

SPs participate only in Interaction 2. Overall A2 - |[¥pc| callForOffers mes-
sages are sent by the DCs per sec. Therefore, every SP receives p - Ay - [¥pc|
messages and for each of them it sends an offer to the respective DC. The prob-
ability that an offer is accepted is % and hence the number of SP offers accepted
per sec is given by:

p-A2-|¥pc| A2 |¥pc|

¢ ¥sp|
The following equations characterize the message throughput of each SP:

se _ re — se _ se _ re —
XsP,a = XSP,a = XSPb = XSP,c — XSP,c = 0
Xspp =P A2 [¥pc|

se 3)‘2) ‘WDC|
Xspa =P A2 |[¥pc|+ W
e, = 22 ¥ool

SP,d |WSP|

DCs participate in Interactions 1 and 2 both as producers and consumers of
messages. The number of SMs supplied by each DC is given by § = Pl

~ |¥bpcl”
The following equations characterize the message throughput of each DC:
Xi)eC,a = XBec,a = XE)EC,b = XBec,c =0
XSDEC,b =X
XsDec,c =0+ X
X%C,d = 3)\1 -0+ 2)\2
XTDGC,d = 3A1 . 5 +)\2(C + 2)
The HQ participate in Interactions 1, 2, and 5 as message consumer and in In-

teractions 3, 6, and 7 as message producer. The following equations characterize
the message throughput of the HQ:

X?—;Q,a = X?;Q,b = X?—?Q,c = X?—;Q,d =0
Xfxf@}a =g + A7
XHQb = A3
XHo,e =AM s | + A2 - [Wpe| + As - [Psu|
X;IeQ,d = A2 WDC\
The detailed message throughput analysis presented above serves two main

purposes. First, using the throughput equations, the user can assemble a work-
load configuration (in terms of number of locations and interaction rates) that

stresses specific types of messaging under given scaling conditions. As a very
basic example, the user might be interested in evaluating the performance and
scalability of non-persistent pub/sub messaging under increasing number of sub-
scribers. In this case, a mix of Interactions 6 and 7 can be used with increasing
number of SMs. Second, the characterization of the message traffic on a per lo-
cation basis can help users to find optimal deployment topology of the agents
representing the different locations such that the load is evenly distributed among
client nodes and there are no client-side bottlenecks. This is especially important
for a messaging benchmark where the server acts as mediator in interactions and
significant amount of processing is executed on the client side.

3.2 Horizontal Topology

As mentioned earlier, the goal of the horizontal topology is to exercise the ability
of the system to handle increasing number of destinations. To achieve this, the
workload is scaled by increasing the number of physical locations (SMs, DCs,
etc) while keeping the traffic per location constant. A scaling parameter BASE is
introduced and the following rules are enforced:

1. |Wsnr| = BASE 5. |IT] = [Wsu]
2. @ _ rl¥sum| 6. p= 5
. | DC| = { 5] ’ |11
3. Wsp| =104 |Psnml] 7. A, 1 <@ <7 are fixed
_ r1¥sm|
4. |WHQ‘ - [20
180 Transactional B Non-Transactional
160 100%
2 140 rd 90%
o | o
52 WHQ 70%
© 100 - SM 60%
3 80 mspP 50% -+
. 60 - DC 40% E.
S 0] 30% -
=2 20% +——
20 10% +— t
0o+ 0%
5 15 25 35 45 55 65 75 85 95 p2P ‘Pub/Sub P2P ‘Pub/Sub
Base % Msg. % Kbytes
Fig. 3. # Locations for Horiz. Topology Fig. 4. Horiz. Topology Message Mix

Figure 3 shows how the number of locations of each type is scaled as the
BASE parameter is increased. The rates \; at which interactions are initiated by
participants are fixed so that the traffic per location (and therefore also per des-
tination) remains constant. The relative weights of the interactions are set based
on a detailed business model of the supermarket supply chain which captures
the interaction interdependencies. This model has several input parameters (e.g.
total number of product types, size of supermarkets, average number of items
sold per week) whose values are chosen in such a way that the following overall
target messaging mix is achieved as close as possible:

— 50% P2P messages and 50% pub/sub

— 50% of P2P messages persistent, 50% non-persistent
— 25% of pub/sub messages persistent, 75% non-persistent

a " a
Hb 3 Hb
by
c 8 c
d d
40 80 120 160 200 240 280 40 80 120 160 200 240 280
Base Base
Fig. 5. Horizontal Topology: # msg. Fig. 6. Message traffic in Kbytes

The goal is to put equal weight on P2P and pub/sub messaging. Within
each group the target relative weights of persistent vs. non-persistent messaging
have been set according to the relative usage of these messaging styles in real-
life applications. Table 4(a) shows the achieved message mix in the horizontal
topology. Figure 4 presents the same data in graphical form. Figures 5 and 6
show how the number of messages of each type and the bandwidth they use are
scaled as a function of the BASE parameter. As evident from the figure, when
scaling the workload the proportions of the different types of messages remain
constant. This is expected since the relative weights of the various messaging
styles used by the workload should not depend on the scaling factor.

Message Size 1 |Size 2(Size 3 |Avg.

Intr.| Probability 95 % 4 % 1 %| Size
orderConf 2.02| 7.39| 41.29| 2.63
statInfoOrderDC 0.22] 1.67| 10.83] 0.39

1 shipInfo 1.28] 8.76] 55.95] 2.13
shipDep 1.12 8.59| 55.79] 1.96
order 1.74 7.10 41.01| 2.34
shipConf 0.81 2.73| 14.83] 1.03
callForOffers 1.35| 7.06| 36.52| 1.93

offer 1.69] 9.65] 50.71] 2.50
pOrder 1.86 9.85 51.07] 2.67

2 pShipConf 1.01 3.65 17.29]| 1.28
statInfoShipDC 1.02 3.68| 17.38] 1.29
pOrderConf 2.07] 9.79] 49.56] 2.86
invoice 1.70] 7.92] 39.95] 2.33
pShipInfo 0.08] 3.62| 17.26] 1.24

[8 [priceUpdate [0.24] 0.24] 0.24] 0.24]
[4 [inventoryInfo [1.48] 10.22] 49.03] 2.31]
[5 [statInfoSM [na [5.27]
[6 [productAnnouncement[1.21[0.28[10.51[1.26]
[7 J[creditCardHL [1.01] 8.49] 50.00] 1.80]

Table 4. Message Sizes in KByte

The sizes of the messages used in the various interactions have been chosen
to reflect typical message sizes in real-life MOM applications. Pub/sub messages
are generally much smaller than P2P messages due to the decoupled nature

of the delivery mechanism. For every type of message, SPECjms2007 generates
messages with sizes chosen from a discrete distribution with three possible values
as shown in Table 4. There are two exceptions, the priceUpdate message used
in Interaction 4 and the statInfoSM message used in Interaction 5. The former
has a fixed size, while the latter has size between 4.7 and 24.78 KB with an
average of 5.27 KB. Since statInfoSM messages contain sales statistics, their
size is determined by the rate at which items are sold in supermarkets which
depends on the number of customers visiting a supermarket per day and the
average number of items sold per customer.

(a) Horizontal
Transactional M Non-Transactional

Message|Message Count|Bandwidth
Group | Target| Achieved Used 1382;"
a 37.50%| 37.46% 24.66% 80%
b 12.50%| 12.45% 2.41% 70%
c 25.00%| 24.55% 19.19% E 3
d 25.00%| 25.55% 23.74% 20% |
0/ —
(b) Vertical 200 —
10% — -

Message| Message Count|Bandwidth 0% —_—
Group | Target| Achieved Used pP2pP ‘Pub/Sub pP2pP ‘Pub/Sub
a 15.00%| 14.19% 7.19%
b 5.00%| 5.99% 2.25% % Msg % Kbytes
c 40.00%| 39.09% 61.03%
d 40.00%| 40.74% 29.52% Fig. 7. Vert. Topology Message Mix

Table 5. Topology Message Mix

3.3 Vertical Topology

The goal of the vertical topology is to exercise the ability of the system to handle
increasing message traffic through a fixed set of destinations. Therefore, a fixed
set of physical locations is used and the workload is scaled by increasing the
rate at which interactions are executed. Similar to the horizontal case, a single
parameter BASE is used as a scaling factor. The following rules are enforced:

1. |Zsar| = 10 5. |[II] = 100

2. [¥pc| =2 6. p=50%

3. |Wsp|=5 7. A\i = ¢; - BASE, where ¢; is a fixed
4. |Phol =1 factorand 1 < <7

Again, the relative weights of the interactions are set based on the business
model of the supply chain scenario. Unlike the horizontal topology, however,
the vertical topology places the emphasis on P2P messaging which accounts
for 80% of the total message traffic. The aim is to exercise the ability of the
system to handle increasing traffic through a destination by processing messages
in parallel. This aspect of MOM server performance is more relevant for P2P
messaging (queues) than for pub/sub messaging where the message throughput
is inherently limited by the speed at which subscribers can process incoming
messages.

Table 4(b) shows the achieved message mix in the vertical topology. Figure 7
presents the same data in graphical form. Figures 8 and 9 shows how the number

4500 + 16000 -

4000 14000
3500 12000
& 3000 a " 10000 a
2 2500 Hb £ 5000 4 Hb
- 2000 - c a c
Z 1500 - d ¥ 6000 - 5
1000 | 4000 +———
500 - 2000 ——
0 - 0 T ——
40 80 120 160 200 240 280 40 80 120 160 200 240 280
Base Base
Fig. 8. Vertical Topology: # msg. Fig. 9. Message traffic in Kbytes

of messages of each type and the bandwidth they use are scaled as a function of
the BASE parameter. Again, when scaling the workload the message mix remains
constant which is the expected behavior. The sizes of the messages used in the
various interactions are computed in the same way as for the horizontal topology
(see Table 4).

4 Concluding Remarks

We presented a comprehensive workload characterization of the new SPECjms2007
benchmark which is the world’s first industry standard benchmark specialized
for MOM. SPECjms2007 provides a flexible and robust tool that can be used
for in-depth performance evaluation of MOM servers. However, in order to take
advantage of this, users need to understand the way the workload is decom-
posed into components and which performance aspects are exercised by these
components. The workload characterization presented in this paper is meant to
help users gain an in-depth understanding of the SPECjms2007 workload and
how it can be configured and customized. Our extensive analysis of the mes-
sage traffic produced by the benchmark considered the following dimensions,
i) message types and destinations, ii) message sizes, iii) message throughput and
iv) message delivery modes. We characterized the message traffic both on a per
interaction and location basis. The results we presented can be used to define
a workload configuration that stresses selected features of the MOM infrastruc-
ture in a way that resembles a given target customer workload. Moreover, the
traffic equations are essential for finding an optimal deployment topology with
a uniform load distribution and no client-side bottlenecks. After considering the
general freeform topology, we looked at the more specific horizontal and verti-
cal topologies. We discussed their goals and characterized the interaction and
message mixes they are based on and the way they are scaled. Our analysis not
only helps to better understand and interpret official benchmark results, but
also provides an example of how to define a scalable workload configuration for
evaluating selected performance and scalability aspects of MOM.

5

Acknowledgments

This work was partially funded by the German Research Foundation. We ac-
knowledge the contributions of the members of the SPECjms Working Group
to the specification and development of SPECjms2007, in particular Marc Carter
and Tim Dunn from IBM, George Tharakan from Sun Microsystems, Tom Barnes
and Russell Raymundo from BEA, Evan Ireland from Sybase, and Adrian Co
from Apache. We are also especially thankful to Lawrence Cullen, Robert Berry,
Alan Adamson and John Stecher from IBM, Steve Realmuto from BEA and
Ricardo Morin from Intel for their continued support of the SPECjms project.

References

1.

2.

10.

11.

12.

13.

14.
15.

ActiveMQ. JMeter performance test. http://incubator.apache.org/
activemq/jmeter-performance-tests.html, 2006.

K. Alexander, T. Gillian, K. Gramling, M. Kindy, D. Moogimane, M. Schultz,
and M. Woods. IBM Business Consulting Services - Focus on the Supply Chain:
Applying Auto-ID within the Distribution Center. White paper IBM-AUTOID-
BC-002, 2003.

C. Bornhévd, T. Lin, S. Haller, and J. Schaper. Integrating Automatic Data Acqui-
sition with Business Processes - Experiences with SAP’s Auto-ID Infrastructure.
In Proceedings of VLDB’04, 2004.

M. Carter. JMS Performance with WebSphere MQ for Windows VG6.0.
http://www-1.ibm.com/support/docview.wss?rs=171& uid=swg24010028, 2005.
Crimson Consulting Group. High-Performance JMS Messaging - A Benchmark
Comparison of Sun Java System Message Queue and IBM WebSphere MQ, 2003.
K. Finkenzeller. RFID Handbook : Fundamentals and Applications in Contactless
Smart Cards and Identification. John Wiley & Sons, 2nd edition, may 2003.

IBM Hursley. Performance Harness for Java Message Service.
http://www.alphaworks.ibm.com/tech/perfharness, 2005.

JBoss. JBoss JMS New Performance Benchmark. http://wiki.jboss.org/
wiki/Wiki.jsp?page=JBossJMSNewPerformanceBenchmark, 2006.

S. Kounev. Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction. Shaker Verlag, Dec. 2005.
ISBN: 3832247130.

S. Kounev and A. Buchmann. Improving Data Access of J2EE Applications
by Exploiting Asynchronous Processing and Caching Services. In Proceedings of
VLDB’02, 2002.

Krissoft Solutions. JMS Performance Comparison. http://www.fiorano.com/comp-
analysis/jms_perf_report.htm, 2006.

K. Sachs. Evaluation of Performance Aspects of the SAP Auto-ID Infrastruc-
ture. Master’s thesis, Department of Computer Science, Darmstadt University of
Technology, 2004.

K. Sachs, S. Kounev, M. Carter, and A. Buchmann. Designing a Workload Scenario
for Benchmarking Message-Oriented Middleware. In Proceedings of the 2007 SPEC
Benchmark Workshop. SPEC, January 2007.

Sonic Software Corporation. SonicMQ Test Harness, 2005.

Sun Microsystems Inc. Java Message Service (JMS) Specification Version 1.1.
http://java.sun.com/products/jms/docs.html, 2002.

