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Run-time Models for Online Performance and
Resource Management in Data Centers
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Abstract In this chapter, we introduce run-time models that a system may use for
self-aware performance and resource management during operation. We focus on
models that have been successfully used at run-time by a system itself or a sys-
tem controller to reason about resource allocations and performance management
in an online setting. The chapter provides an overview of existing classes of run-
time models, including statistical regression models, queueing networks, control-
theoretical models, and descriptive models. The chapter contributes to the state-of-
the-art, by creating a classification scheme, which we use to compare the different
run-time model types. The aim of the scheme is to deepen the knowledge about the
purpose, assumptions and structure of each model class. We describe in detail two
modeling case studies, chosen because they are considered to be representative for
a specific class of models. The description shows how these models can be used in
a self-aware system for performance and resource management.
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16.1 Introduction

Modern data centers provide advanced mechanisms to dynamically change the
amount of physical resources (compute, storage and network resources) allocated
to deployed applications. The allocation of resources has a strong influence on
the performance of an application (measured by the end-to-end response time and
throughput) as experienced by its end users. In order to achieve a certain level of
performance, e.g., specified in a Service-level Agreement (SLA), the application re-
quires a certain amount of physical resources. However, this resource requirement
depends on many performance influencing factors, including the current workload,
the application implementation, the configuration of underlying layers (such as mid-
dleware systems, operating systems, or virtualization), and external services invoked
by the application. As a result, the relationship between resource allocations and ap-
plication performance is highly non-linear for most practical systems and subject to
frequent changes (e.g., time-varying workloads, dynamic system reconfigurations).

Self-aware systems for online performance and resource management in data
centers need to learn models that capture the complex relationship between re-
source allocations and application performance, taking into account the various
performance-influencing factors. Based on these models, self-aware systems will
help to increase resource efficiency while ensuring a certain level of application
performance in data centers (see also the reference scenario on data center resource
management in Chapter 4, as they enable to reason and act based on models cap-
turing knowledge about the system’s performance behavior. All factors expected to
change over time should be explicit parameters of such models, so that a self-aware
system is able to evaluate the impact of changes in these factors on the applica-
tion performance in advance, and proactively reconfigure itself when necessary to
improve resource efficiency or avoid SLA violations.

In this chapter, we give an overview of different classes of models that have
been used at system run-time for online performance and resource management and
discuss their applicability for building self-aware systems, where self-awareness is
considered with respect to the system’s performance and resource management be-
havior. Furthermore, we present two candidate models in more detail showing how
these models can be used as abstractions of practical systems supporting allocation
decisions in data centers.

In the past, there has been comprehensive work on offline, design-time models
for comparing different design alternatives and for offline capacity planning pur-
poses (e.g., queueing models, petri nets). These models are also partially applicable
in online scenarios, as we will see later. On the other hand, we see fundamental
differences between design-time and run-time models [27]:

1. At design-time, we can use time-intensive, computationally expensive tech-
niques (e.g., discrete-event simulation) to analyze a model. At run-time, the
analysis is often time-critical and the analysis overhead is an important factor.
Therefore, it is often necessary to decide on a model abstraction level and an
analysis technique that provides a trade-off between accuracy and overhead.
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2. Design-time models are usually constructed manually based on experiments in
dedicated test environments or traces from a production system covering a lim-
ited period of time. Run-time models should be constructed automatically from
monitoring data of the production system. The system should be continuously
monitored and changes in the system should be automatically reflected in the
models.

3. At design-time, it is usually possible to explore a large space with many
degrees-of-freedom. In contrast, a run-time model should be specifically tar-
geted at the degrees-of-freedom that can be changed at system run-time in order
to limit the search space.

4. Run-time models should be able to reflect the layered architecture of applica-
tions in data-centers (virtualization, operating system, application) and support
to answer performance-related questions relevant to the different layers (e.g.,
the data center owner often has different goals from those of the application
owner). Design-time models are optimized for their usage in different phases of
the software lifecycle (e.g., design, development, or in production).

In this chapter, we focus on the different classes of run-time models and their
solution techniques that can be used to analyze such models. Chapter 17 will in-
troduce techniques to automatically extract models from running applications and
update these models when the system changes.

16.2 Run-time Models

This section provides an overview of existing classes of run-time models and shortly
introduces their main aspects. The different classes of models are compared along
the dimensions described in Section 16.2.1. The classes of run-time models are then
presented in Sections 16.2.2 to 16.2.6.

16.2.1 Dimensions for Classification

The classification of the run-time models is based on the following five dimensions:

• Abstraction level: We distinguish between the following abstraction levels for
describing a system: black-box, coarse-grained and fine-grained [27]. A black-
box model describes the functional relationship between the inputs and outputs
of a system without any knowledge of the system internals. A coarse-grained
model includes information on the internal architecture of a system (e.g., com-
ponents, resources, control flow between components). A fine-grained model
may include additional descriptions of the component-internal behavior (e.g.,
forks and synchronization, dependencies on input parameters). The abstraction
level can influence the analysis accuracy and the types of questions that can
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482 Spinner et al.

be answered by a model. For example, predicting the influence of deployment
changes on the performance requires a representation of the internal system
architecture in the model.
• Model structure: This describes the main elements of the modeling formalism.

In particular, we discuss which of these elements can be automatically deter-
mined at run-time (i.e., online) and which of them are specified manually at
design time (i.e., offline).

• Input and output parameters: A performance model can be seen as a generic
function y = f (x) that calculates a vector of output parameters y from a vector
of input parameters x. The output parameters are typically certain performance
metrics of the system (e.g., response time, throughput, or resource utilization).
The input parameters determine the types of questions that can be answered
by a performance model. Typical input parameters are, for instance, workload
intensity or number of replicated server instances. In case of dynamic models,
where the function also depends on previous outputs, f is a transfer function
that maps the input signal x (time-based or frequency-based) to an output signal
y. The function itself may not have a closed-form solution.
• Model inference: When learning models at run-time, certain techniques are re-

quired to determine the model structure and the values of internal model pa-
rameters (e.g., service demands of queueing networks). We list state-of-the-art
techniques for model inference here and refer the reader to Chapter 17 for de-
tails.
• Model analysis: Depending on the class of models different techniques for

model analysis are available. We distinguish between: analytical solution (ex-
act or approximate) and simulation. Given that the available time for model
analysis is often limited at run-time, fast closed-form or analytical solutions are
preferable. However, in certain situations simulations may also be feasible.

16.2.2 Regression Models

Regression techniques can be used both for model inference (e.g., for model identi-
fication or model parameter estimation), as well as for extracting a regression model
that can be applied directly for performance prediction (e.g., extra- and interpolating
measured data). In this section, we focus on the latter.

Abstraction level: Regression models are mainly used for black-box modeling
of a system, where no information (or very limited information) on the internal
behavior and the system structure is available.

Model structure: Different types of regression models are available. Linear
models are often insufficient to describe the performance of a system (e.g., the func-
tion between the incoming workload and the response time of a system is highly
non-linear). Non-parametric regression approaches (e.g., Multivariate Adaptive Re-
gression Splines (MARS) [17], Classification and Regression Trees (CART) [8], M5
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Trees [39], Cubist Forests [29]) do not require a decision on the model function to
be made a priori (linear vs. polynomial vs. exponential).

Input and output parameters: Regression models directly fit a function de-
scribing the relationship between one or several output parameters and multiple
input parameters. In theory, all measurable quantities can be used as input or out-
put parameters. Common candidates for output parameters in the context of per-
formance and resource management are response time, throughput, resource uti-
lization, or power consumption. Input parameters could be, for instance, workload
intensity, resource allocation, or resource utilization.

Model inference: Linear regression models are typically learned with least-
squares regression or robust regression schemes. Non-parametric regression models
require specialized model inference algorithms [8, 17, 29, 39].

Examples: Curtois and Woodside use regression splines to derive resource func-
tions for the CPU demand of TCP/IP communication [12]. Noorshams et al. [35]
use a similar approach to create black-box models of storage systems.

16.2.3 Queueing Network Models

Queueing networks (QNs) constitute a classical formalism for the performance anal-
ysis of computer systems. A QN consists of a set of interconnected queues. Each
queue consists of a waiting line and one or multiple servers. Incoming jobs to a
queue need to wait as long as all servers are occupied by other jobs. Each job con-
sumes a certain amount of service time at a server. While QNs are traditionally used
for predicting the performance of a system for offline capacity planning, they also
provide a powerful formalism for online performance and resource management.

Abstraction level: QNs are well suited to describe a system as a black-box (i.e.,
the complete system is represented by a single queue) or on a coarse-grained level
(i.e., individual servers or individual resources are modeled as separate queues).
While traditional QNs can describe the control flow between queues, they lack the
expressiveness to describe more fine-grained behavior, such as, software synchro-
nization aspects or the hierarchical layering of systems. Extended QN formalisms
have been proposed to overcome these limitations, e.g., Extended Queueing Net-
works or Layered Queueing Networks (LQNs). These extended formalisms also
support fine-grained models. It is possible to distinguish between different work-
load classes in order to obtain per-class performance measures.

Model structure: A QN definition consists of the workload description, the
queue descriptions and the service demands. The workload description defines a
set of workload classes. For each workload class, the type (open vs. closed) and the
workload intensity are specified. The workload intensity is either the arrival rate for
open workloads or the number of users and their think time for closed workloads.
Each queue description consists of a scheduling strategy (e.g., processor-sharing or
first-come-first-serve), a maximum capacity, and a number of servers (i.e., the level
of parallelism). The service demand D at a queue is defined as D = V · S, where V
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is the visit count of jobs of a workload class at the queue and S is the service time
consumed during each visit.

When using QNs at run-time, usually a hybrid approach is chosen where some of
the model elements are determined offline and others are updated online. In exist-
ing appproaches, the workload classes, scheduling strategies, maximum capacities
and service time/inter-arrival distributions are mostly set offline at design time. The
number of queues and the number of servers at each queue may be derived easily
online from structural information about the system. Workload intensities, service
demands and visit counts are ideally updated online based on monitoring data be-
cause their values often change during system operation.

Input and output parameters: In theory, all parameters of the workload de-
scription (e.g., workload intensity and transaction mix), the queue descriptions (e.g.,
scheduling strategies) and the service demands are potential input parameters. How-
ever, when using QNs for performance and resource management at run-time, most
of these parameters are kept fixed, and only a small subset is varied at a given point
in time. Typical examples for variable input parameters are the workload intensity,
which is varied to predict the impact of changes in the workload, or the number
of queues, typically varied to predict the effect of a horizontal scaling action. The
output parameters of a QN are performance measures for the complete system as
well as for individual queues. These measures are response time, throughput, uti-
lization, average number of users in the system, and queue length. Depending on
the employed analysis technique, the results may include mean values, percentiles
or complete distributions of relevant metrics such as response time.

Model inference: A key parameter of QNs is the service demand of a request/job
at a queue (also referred to as resource demand). In practical systems, service de-
mands often cannot be observed directly. Therefore, extensive research has been
done to estimate service demands using statistical techniques (e.g., least-squares
regression, Kalman filters, and optimization techniques) based on indirect measure-
ments (for an overview see the survey by Spinner et al. [41]). Other work uses Inde-
pendent Component Analysis to automatically group requests into workload classes
based on their service demands [40]. Complete frameworks for model inference
have been proposed for QNs in [31] and for LQNs in [21].

Model analysis: A broad set of techniques for solving QNs are available with dif-
ferent degrees of accuracy and computational complexity. Operational analysis and
bounds analysis provide closed-form equations to quickly calculate average perfor-
mance measures of individual queues [5]. Mean Value Analysis [5] can be used to
obtain accurate or approximate average measures for QNs with closed workloads.
Assuming certain distributions and scheduling strategies, analytical solvers based
on Markov chain analysis [5] can provide fast and accurate results (including per-
centile measures). However, they often suffer from a state space explosion. Fluid
analysis [6] can overcome these limitations, however, it is only an approximative
technique. With discrete-event simulation it is possible to analyze any type of QN,
however, its computational complexity is prohibitive in many run-time scenarios.

Examples: Menascé et al. [32] propose an SLA controller based on a QN to
optimize a system configuration periodically. Chen et al., [11] use QNs to optimize
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the allocation of applications to servers. Bennani and Menascé [4] use the results of
an analytically solved QN to improve the deployment of applications in data centers.
Pacifici et al. use QNs for performance management of cluster web services [38].
Zhang et al. [46] model multi-tier applications with QNs for resource allocation
purposes. Urgaonkar et al. [43] also use QNs and predict the response times of a
multi-tier application at run-time using approximative mean value analysis. Li et
al. [30] use LQNs for the run-time management of cloud applications. Mistral [23]
is a resource management framework for virtualized environments that is based on
LQNs.

16.2.4 Petri-Net Models

Petri nets are a mathematical formalism to describe the behavior of distributed and
parallel systems. A basic Petri net consists of a set of places, transitions and tokens.
Each transition is connected to a number of input places and a number of output
places. A transition requires a certain number of tokens in each input place. When
this condition is met, a transition is enabled and may fire. When firing, the transition
consumes the required tokens and produces new ones in the output places. The firing
order of enabled transitions is by default non-deterministic.

In order to capture timing aspects of systems, Stochastic Petri nets have been
proposed introducing transitions with a probabilistic firing delay. In this section, we
focus on Queueing Petri nets (QPNs) [2] as an extension of the Stochastic Petri nets
including so-called queueing places to model scheduling aspects.

Abstraction level: QPNs support black-box, coarse-grained and fine-grained
models. QPNs can be used to model the fine-grained control flow within individ-
ual components including synchronization aspects in parallel systems. QPNs also
support different token colors to distinguish between different types of requests.

Model structure: A QPN is an 8-tuple where (P,T,C, I−, I+,M0,Q,W ) [2]. P
is a set of places and T a set of transitions. The color function C assigns a set of
supported colors to each place and each transition. I− and I+ are the backward
and forward incidence functions defining the firing of transitions. M0 is the initial
marking of tokens to places. Q contains a queue description similar to that of QNs
for each queueing place. W assigns firing weights to each transition. Existing uses
of QPNs at run-time are focusing on online updates of the service time parameters
of queueing places (contained in Q) and the initial marking of the QPN (e.g., to
specify the number of concurrent users). In [36], also the structure of the QPN is
updated at run-time as well to reflect changes in the system architecture (horizontal
scaling). Based on an initial offline model all parameters of the QPN are updated
online in this case.

Input and output parameters: All elements of the QPN 8-tuple can be con-
sidered as input parameters. However, typical questions for online performance and
resource management (e.g., horizontal scaling of servers) require adaptations to only
a few of those parameters. Therefore, it may be beneficial to define specific input
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parameters for the available reconfiguration options (e.g., number of replicated in-
stances) of a system and define a mapping to the respective QPN elements. QPNs
support the same output parameters as QNs on a system of a per-place level, namely
response time, throughput, utilization, number of users in the system, and queue
length. In addition, it is also possible to determine the usage of software resources
(e.g., thread or connection pools).

Model inference: The same techniques used for QNs to estimate service de-
mands can be applied to QPNs.

Model analysis: While QPNs support a range of qualitative analyses, these are
irrelevant for online performance and resource management. Quantitative analysis
can be done based on Markov Chain analysis [2]. However, for many practical ap-
plications one has to resort to simulation [42] due to a state space explosion.

Examples: In [36], QPNs are used to schedule jobs in the context of the Globus
Grid computing framework such that performance requirements are satisfied.

16.2.5 Control-theoretical Models

Control theory offers a principled approach and a set of guidelines for how to cre-
ate a control system. Its applications spread in many engineering domains most of
which interact with the physical world, such as an industrial plant and chemical
processes. In general terms, a controller takes inputs form the sensors that mea-
sure the environment, determines a sequence of actions that drive the plant toward
its intended behavior, and executes these actions through the actuators. The major
advantage of using control theory is the access to a broad set of mathematically
grounded techniques that can provide formal guarantees on the effectiveness and
robustness of the controlled system [14, 16]. Examples of such guarantees are sta-
bility (i.e., the ability of reaching an area close to the desired goal and not leaving
that area if the conditions are unchanged), quantified settling time, and the absence
of overshoots (possibly corresponding to costly overprovisioning).

Despite the potential benefits of control theoretical solutions for software adapta-
tion and resource management, their usage in practice is challenged by the difficulty
of abstracting software behaviors through convenient mathematical formalisms [16].
This challenge is twofold: on the one hand, classic software design models are of-
ten inadequate to capture the relevant time dynamics for control; on the other hand,
control theory was originally developed around the physical world, whose dynamics
are subject to the laws of physics, while software behavior can be arbitrarily more
complex in general.

Abstraction level: Finding the right level of abstraction and identifying the
proper set of sensors and actuators is in general challenging [16]. A number of ad-
hoc solutions for specific problems or architectures have been proposed in literature
(see related work surveyed by Filieri et al. [16]), as well as some attempts towards
the automatic synthesis of controllers [14, 15].

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!



Title Suppressed Due to Excessive Length 487

In the following, we briefly review the two most common classes of models en-
abling the application of control theoretical techniques: Dynamical and hybrid sys-
tem models.

16.2.5.1 Dynamical System Models

Dynamical system models consist of equations that describe the dynamic behav-
ior of objects in a system. Objects are assumed to have input variables and output
variables and a certain internal behavior.

Model structure: A dynamical system can be modeled in two different ways,
depending on the physical nature of the model. Continuous-time models are repre-
sented in the form of Ordinary Differential Equations (ODEs), while Discrete-time
models in the form of Difference Equations. In the control of computing entities, we
are usually interested in discrete-time models (since in a computer there is usually
no continuous-time physics).

Input and output parameters: A discrete-time dynamical system is described
by the equations {

x(k+1) = f (x(k),u(k),dx(k))
y(k) = g(x(k),u(k),dy(k))

(16.1)

where x ∈ ℜnx , u ∈ ℜnu and y ∈ ℜny are referred to as the state, input and out-
put vectors respectively, dx ∈ ℜnx and dy ∈ ℜny the state and output disturbance
vectors respectively. The two functions f (·, ·, ·) and g(·, ·, ·) are real-valued vector
functions of proper dimensions. The number k is an integer index counting the time
instants – not necessarily evenly spaced in time. In a more general form, f (·, ·, ·)
and g(·, ·, ·) could depend on an arbitrary number of real-valued parameters, possi-
bly time-varying. The term “step k” denotes the time span between the k-th and the
(k+1)-th instants.

The first equation in (16.1) is called the state equation, and dictates what the
system state will be in the end of step k given what it is at the beginning, and what
happens to the system input. The system inputs are assumed to be captured by the
values of u and dx at the beginning of the time step. The state equation represents
the dynamic system’s character as difference equations, i.e., owing to the contextual
presence of two subsequent index values. In other words, the state equation gives
the system “memory of the past”, and explains why the same action generally yields
different effects depending on the system condition when it is applied. The input
vector u represents manipulated variables that can be used to influence the system’s
behavior, while the state disturbance dx accounts for any input other than u, i.e., for
any external entity that actually influences the system state, and that in some cases
can possibly be measured, but never manipulated.

The second equation in (16.1) is called the output equation. It is not dynamic, as
shown by the presence of a single index value k, while the state equation highlights
the relationship between what the values at time k+1 and the values at time k are. In
most problems of interest, the output equation describes what one measures (vector
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y) to represent the system’s behavior. The disturbance vector dy represents possible
alterations of the measurements, e.g., due to noise, but not of the actual evolution of
the system state.

Model inference: Dynamical system models can either be derived from first
principles, yielding so called white-box models, where all parameters are given by
already known constants, or models where there is a need to identify or estimate
(possibly online) parameters and structure. Grey-box models are those that contain
structural information like, e.g., known nonlinearities such as saturation elements,
and have parameters that need to be identified empirically to make the model com-
plete, whereas black-box-models do not have any a priori structure imposed. Sev-
eral different system identification methods in both time and frequency domain can
be used; either indirectly via so-called nonparametric identification methods like
transient response, correlation methods, and spectral analysis, or directly with pa-
rameter estimation methods from linear regression and time-series analysis, like
(N)ARMAX, instrument variable and prediction error (PE) methods [22]. From
input-output data mixed deterministic-stochastic systems can be found, capturing
both the (deterministic) process model dynamics as such and the influence of e.g.,
(stochastic) disturbances. Linear system models can be represented in several differ-
ent but equivalent forms, like e.g., characterized by their impulse or step responses,
by their transfer function or written in a state-space model form. For the latter, effi-
cient numerical algorithms for subspace state-space system identification (so called
N4SID-algorithms) have been derived [20, 45]. The well-known Kalman / Kalman-
Bucy filtering [24] can be used for both state estimation and parameter estimation
and several of the parameter estimation methods mentioned above can be formu-
lated in recursive algorithms, allowing online estimation of model parameters, for
instance, in adaptive control algorithms and observers.

Model analysis: In synthesis, dynamical system models are descriptive. They
can be used for reasoning (in the sense that you can use them to build an under-
standing of the current situation and to predict what is going to happen in the fu-
ture). The abstraction level can (theoretically) be chosen arbitrarily, but the models
should describe phenomena that can be quantified, which means that for example it
might not be possible to detail the behavior of the system at a specific granularity
level because it is impossible to find the correct equations for it. In general, higher
abstraction levels are easy to solve while for more detailed ones, the number of state
variables increases significantly. The mathematical foundations including differen-
tial and difference equations, control theory, identification theory and also machine
learning could be used to fine-tune the model parameters. These models are quan-
titative, in the sense that they only describe things that can be turned into numbers,
but they cannot for example describe the difference in two software architectures.
They are mainly used to: (a) build an understanding of the systems (for example,
using system identification can give insight on how the system behaves), (b) control
the system to ensure that it has the desired behavior. The models are mainly online
ones, but the structure can be prescribed offline (for example, determining that there
is a linear relationship between the value of the states at time k+ 1 and the same
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values at time k). Coefficients can be identified online, or the entire structure itself
can be identified online.

16.2.5.2 Hybrid System Models

Model structure: In contrast to the pure discrete-event systems of the types de-
scribed in Sections 16.2.3–16.2.4, where all evolutions of states are caused by dis-
crete events in time, event-based systems in general may be formulated within the
hybrid automaton framework [1, 19]. The latter supports both discrete events, for
instantaneous transitions between a set of steps, and time-driven dynamics, com-
prising continuous- and/or discrete-time dynamics, evolving within each step. As
special cases, they can therefore describe the models in previous chapters where
either the evolution within each step is trivial/non-changing or the system can be
satisfactorily modeled and described as difference or differential equations without
any transitions to other steps.

This modeling framework can be used to model a large class of systems and
has appeared in slightly different forms in various domains, however, often with
different foci. In automatic control the focus is often on the continuous behavior,
whereas in computer science the emphasis often concerns the discrete aspects.

By being able to accurately capture system behavior comprising both sequencing
and events, like turning on and off computers in large server farms, and the dynamic
evolution, like approximate fluid models at high load, within the same framework,
this model class has large potential to both describe and predict system behavior
relevant for resource allocation and accurate performance monitoring.

However, in general, it is very hard to find analytical solutions to a hybrid sys-
tem consisting of mixed discrete events and continuous dynamics. A restricted (but
still powerful and useful) subclass is linear piecewise hybrid systems [7, 33]. As a
note of warning, using hybrid automata for modeling a system may easily introduce
undesired or false behavior, even if it may seem reasonable from a physical point of
view. After a transition to a new step (caused, e.g., by an event triggering a guard
function or governed by high-level sequencing), the dynamics of the new active step
may be re-initialized. This switching may thus cause a discontinuous right-hand side
of an ordinary differential equation which then typically results in lack of existence
or lack of uniqueness of solutions [25].

Input and output parameters: Usually, parameters are the transition probabil-
ities from one state to another or follow a deterministic scheduling based, e.g., on
timing.

Model inference: Due to the higher complexity these issues may be difficult to
discover in the modeling phase. However, hybrid systems are sometimes intention-
ally modeled without uniqueness to incorporate uncertainty.

Model analysis: As shown in a simple example from [18], a hybrid model of
a bouncing ball, where each contact between the ball and the ground cause an im-
pulse according to the Newtonian law of change of momentum, will create an in-
finite number of mode switches in finite time, called Zeno behavior. It is therefore
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important to incorporate inherent delays in, e.g., context switching to avoid similar,
but erroneous analysis as above, caused by too idealistic scenarios in the modeling.

16.2.6 Descriptive Meta-Models

The previously described model classes are based on rigorous mathematical founda-
tions, whereas the focus of this class of models lies in greater model expressiveness
and interpretability. Two representatives of this class of models are SLAstic [44]
and the Descartes Modeling Language (DML) [28].

Abstraction level: Descriptive modeling languages may be defined at different
abstraction levels allowing to model a system at a black-box, coarse-grained or fine-
grained level of detail. They may also support hybrid models with mixed abstraction
levels (e.g., DML [28]).

Model structure: The model structure is described in a meta-model. The meta-
model describes the available model elements (i.e., classes and their attributes) and
the relationships between them (i.e., containment and association). Meta-models
based on OMG’s Meta-Object Facility (MOF) standard [37] are most commonly
used (e.g., UML is an example of a modeling language defined using a MOF-based
meta-model). Compared to mathematical formalisms (e.g., QNs or QPNs), descrip-
tive meta-models typically introduce a more extensive set of different model ele-
ments with richer semantics. The model elements should be direct abstractions of
real-world hardware or software entities (e.g., servers, software components, pro-
gram loops, branches, etc.) in order to support the understandability of the model.

The improved model interpretability is beneficial in both offline and online sce-
narios: There is a large number of tools for creating graphical and textual editors for
MOF-based modeling languages, simplifying the creation of a model of a system
and lowering the barrier for less experienced users. In the online case, the additional
meta-information provided through different model elements helps to create richer
visualization of the learned model enabling self-expressiveness of the system. Fur-
thermore, meta-models allow to enforce additional constraints on the structure of
the models avoiding errors when creating models manually or programmatically.

Input and output parameters: The input parameters are usually not defined
by the employed meta-model itself, but are rather highly dependent on the used
model analysis method. The meta-model may provide high-level goal descriptions
from which low-level input parameters are derived (e.g., DML comes with a special
query language [28]). The available output parameters also depend on the model
analysis method.

Model inference: It is possible to extract meta-model based performance mod-
els from monitoring data. As shown in [10] even very fine-grained architecture-level
performance models can be extracted using practical monitoring tools with an ac-
ceptable overhead. However, this requires fine-grained instrumentation capabilities
in the system.
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Model analysis: The model analysis is typically supported either through model-
to-model transformations into one of the previous mathematical formalisms (e.g.,
QNs or QPNs) or by direct simulation. The benefit of using a descriptive modeling
language is the flexibility to use different mathematical solution techniques depend-
ing on the analysis goal without the need to maintain different models.

16.3 Modeling Case Studies

16.3.1 Control-theoretical Models

In this subsection, we present a control theoretical model that captures the maxi-
mum response time of a cloud application. The model is primitive, yet useful, and
has been applied to develop control strategies to keep the maximum response time
bounded [26].

Cloud applications serve multiple users through the Internet. Their computations
are generally separated into independent and stateless user requests processed by the
system [13]. An essential requirement of these applications is that requests should
be processed in a time-sensitive way, otherwise unsatisfied users may abandon the
service [34]. Therefore, having a model for the maximum time consumed to gener-
ate a response is quite useful.

We assume that the maximum response time of a web application, measured at
regular time intervals, follows the equation:{

x(k+1) = α(k) ·u(k)+δ t(k)
y(k) = x(k)

(16.2)

i.e., the maximum response time y(k) of all the requests that are served between time
index k and time instant k+1 depends on a time varying unknown parameter α(k)
and can have some disturbance δ t(k) that is a priori unmeasurable. α(k) takes into
account all the variations that can happen in a controlled way, u(k). These include
for example booting of a new machine or a resource upgrade. In Equation (16.2),
δ t(k) is an additive correction term that models variations that do not depend on
something that can be changed by the user. These include, for example, variation
in retrieval time of data due to cache hit or miss. If α(k) is considered as a time-
invariant parameter α , and its time-dependency is not present, the state equation of
the proposed model is linear and so is the output equation. Otherwise, the equation
can be seen as a Linear Parameter Varying (LPV) one and treated accordingly.

This model is quite trivial, but it captures the application behavior enough for a
control action to be useful [26]. A controller should aim at canceling the disturbance
δ t(k) and selecting the value of u(k) so that the maximum response time would be
equal to the desired value.
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16.3.2 Descartes Modeling Language

The Descartes Modeling Language (DML) [28] is a descriptive modeling language
for online performance and resource management formalized by a set of meta-
models based on OMG’s Meta Object Facility (MOF). The goal of the modeling
language is to provide common abstractions for describing performance and re-
source management related aspects of modern dynamic IT systems, infrastructures
and services. DML was designed from the beginning to support the design of sys-
tems exhibiting self-awareness with respect to performance and resource manage-
ment aspects. As such, the formalism is intended to build reflective models (see
Chapter 6) capturing knowledge about the static structure and dynamic behavior of
a self-aware system. In the following, we focus on this part of DML. On top of that,
DML also provides means to model the high-level goals specified in Service-Level
Agreements (SLAs) and the processes to derive intermediate and low-level goals
from the high-level ones (for details see Chapter 17).

16.3.2.1 BlueYonder System

Figure 17.4 depicts an excerpt of a DML model in a UML-like notation. The model
was created in the context of an industrial case study in cooperation with Blue Yon-
der GmbH & Co. KG, a leading service provider in the field of predictive analytics
and big data. The modeled system (called Blue Yonder system) provides forecasting
services used by customers for predicting, e.g., sales, costs, churn rates, etc. These
services are based on compute-intensive machine-learning techniques and subject
to customer SLAs. In this case study, the DML models were used to predict the re-
source requirements for a given usage scenario and optimize the resource allocation
to reduce Blue Yonder’s operating costs.

Application Architecture: The application architecture of the adapted system
is modeled after the principles of component-based software systems. A software
component is defined as a unit of composition with explicitly defined provided
and required interfaces. For convenience, we also use the term service to refer to
a signature of a software component’s interface. A typical Blue Yonder system
(depicted in Figure 17.4) consists of three main software component types: the
Gateway Server (GW), the Prediction Server (PS), and a third party component, the
database (DB). The GW is the communication endpoint to the Blue Yonder system.
Users can invoke a set of different services via HTTP (train, predict, and
results). The GW receives historical data for training a prediction model, parses
it, and generates a job, which is put into the GW’s queue and scheduled for process-
ing. Then, an active PS takes the job from the queue, processes it and stores the
results in the database. After training, a user can invoke the predict service to
calculate a forecast based on the trained prediction model. The user sends the data
for which the forecast should be made to the GW. The GW reads the data and gener-
ates one or several jobs—depending on the size of the data—which are scheduled
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Specfication="(0.04015 + (2.628 * 10^(-8) * recordsize)) * 2700 
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<<ExternalCallAction>>

predict_write
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verify_results

<<ParametricResourceDemand>>

ResourceType="CPU"
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<<implements>>

<<ModelEntity

ConfigRange>>
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<<InternalAction>>

writeData

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="recordsize"

Fig. 16.1: Resource landscape, application architecture, deployment and adaptation
points of the Blue Yonder system.

for processing. These jobs are again processed by one or several PS and the results
are stored in the database for retrieval by the user (results service).

The control flow within the components is modeled in Figure 17.4 using a fine-
grained behavior abstraction level specifying the sequence of performance-relevant
actions (e.g., internal actions, external calls, branches, loops, etc.). For instance, the
predict service of the GW first executes two internal actions (parsePredicti
onJobs and schedulePredictionJobs) requiring a certain amount of CPU
cycles, which depends on the record size. The record size is an input parameter
of the system. The load-balancing behavior is modeled using a probabilistic branch
with external call actions to the corresponding PS instances. DML supports multiple
(possibly co-existing) behavior abstraction levels: fine-grained, coarse-grained (i.e.,
the service behavior as observed at the component boundaries) and black-box (i.e.,
a probabilistic representation of the service response time behavior).
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Resource Landscape: The resource landscape meta-model is used to describe
the structure and properties of the environment shared by the deployed applica-
tions. It includes a description of both the physical and the logical resources of the
system environment. The example resource landscape in Figure 17.4 consists of a
data center with four different servers (represented by computing infrastructure).
Each computing infrastructure is associated with a configuration specification de-
scribing the available resources. As the system is compute-intensive, only CPUs are
modeled. However, it is also possible to specify other types of resources, such as
storage, network and software resources. Additionally, the container hierarchy (e.g.,
hypervisor, virtual machine, middleware services) including configuration informa-
tion (e.g., memory, bandwidth, and so on) may be specified.

Deployment: To capture the interactions of the resource landscape and the appli-
cation architecture, one must model the connection between hardware and software.
Each component instance in the system is assigned to a computing infrastructure
instance.

Usage Profile: To model user interactions with the system (i.e., the usage pro-
file), DML provides a usage profile meta-model. The usage profile of the train
service describes a closed workload specifying a user population and think time.
In addition to this, the usage profile also specifies the sequence of system calls and
values for system parameters used in the system (e.g., record size).

Adaptation Points: The adaptation points model marks the elements of the re-
source landscape and the application architecture that can be adapted (i.e., reconfig-
ured) at run-time. Adaptation points can be either associated with model parameters
(e.g., number of CPU cores) or with model entities (e.g., a software component).
In the example model, the adaptation point ModelEntityConfigRange is associated
with a component specifying the minimum and maximum number of instances of
this component that are allowed. In the example, the PS component is instantiated
twice (PredictionServerA and PredictionServerB).

16.3.2.2 Application in Self-Aware Systems

We now discuss learning and reasoning processes can be implemented using DML.
Learning: We distinguish between model structure extraction (e.g., components,

interfaces, or control flow) and model parameterization (e.g., resource demands, or
branching probabilities). The model structure may be extracted using techniques de-
scribed in Chapter 17. All model parameters (e.g., branching probabilities, resource
demands) can be flagged as either explicit or empirical in DML. Empirical model
parameters need to be learned based on monitoring data while explicit ones are
specified in advance. Thus, it is possible to specify some model parameters based
on expertise knowledge in advance while others are learned at system runtime.

Reasoning: DML can be used to predict the impact of changes in the workload
or in the system configuration on the performance and the resource usage of the
application. By intention, DML is a purely descriptive model optimized for high
expressiveness and good understandability. In order to enable performance predic-
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tions, DML relies on mathematical analysis techniques based on existing stochastic
modeling formalisms, such as (Layered) Queueing Networks (LQNs), and Queue-
ing Petri Nets (QPNs). In [9], three different model-to-model transformations are
defined providing different levels of prediction speed and accuracy: (a) bounds anal-
ysis uses operational analysis from queueing theory to determine asymptotic bounds
on the average throughput and response time, (b) an LQN solver enabling the fast
analytical solution of models, and (c) a QPN solver that allows to obtain predictions
based on simulation. The benefit of the transformation approach is that it provides
the flexibility to switch between different prediction techniques depending on the
prediction goals. The prediction goals comprise the requested performance metrics,
the required accuracy and time constraints.

16.4 Conclusions

16.4.1 Open Challenges

While the described classes of run-time models already provide a foundation for
self-aware performance and resource management, we still see several open chal-
lenges requiring further research:

• The analysis of models at run-time in a self-aware system is often subject to hard
constraints on the analysis time. If the solution from a model is not available in
time, it may be too late for a system to react to changes in its environment.
Furthermore, the decision-making may require the exploration of multiple al-
ternatives requiring multiple analyses of a model. Therefore, there is a need
for fast and flexible analysis techniques especially for coarse- and fine-grained
models (e.g., queueing network and Petri net models). This requires advances
in optimizing existing analysis algorithms (e.g., by pre-computing certain parts
of a model before an analysis request) as well as novel approaches to automate
the decision, which analysis algorithm to apply in a given prediction scenario.
• A model is always an abstraction of a real system capturing only a subset of

factors influencing the performance of the system. Many factors are often not
represented explicitly in the model in order to simplify the model solution or
because of being difficult to quantify. Therefore, the resulting performance pre-
dictions are always subject to a certain level of uncertainty. New techniques to
estimate the uncertainty of model solutions are necessary for a system to be able
to take uncertainty into account in its decisions.
• In addition to performance goals, a self-aware system may be subject to con-

straints and goals with respect to other properties (e.g., reliability, security, en-
ergy consumption, or costs). Further models of different types are needed to
evaluate and predict such properties under varying system workloads and con-
figurations. Thus, more work is necessary to integrate the different types of
models with each other and improve the support for trade-off decisions. De-
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scriptive architecture-level models are beneficial here as additional analyses for
different quality attributes can be supported using model-to-model transforma-
tions. This has been shown to be beneficial for design-time models (e.g., Palla-
dio Component Model [3]).
• Existing approaches to model-based performance and resource management of-

ten either assume the availability of a complete model of the system in advance
(e.g., created offline during design and implementation of a system) or at least a
model template with relevant parameters estimated at run-time. Only few works
consider also the inference of the model structure at run-time. Self-aware sys-
tems typically run in dynamic, constantly changing environments. In such envi-
ronments, learning and maintaining a model automatically at run-time is crucial.
Furthermore, it is often not safe to assume that a self-aware system has a global
view of its environment. The system may need to interact with other systems to
obtain the required information for building models of the environment.

16.4.2 Summary

In this chapter, we surveyed existing classes of run-time models for performance
and resource management can be used to support the design of systems with self-
aware performance and resource management mechanisms. In particular, we consid-
ered regression models, stochastic performance models (QNs and QPNs), control-
theoretical models and descriptive meta-models. These models vary in their ab-
straction level, their model structure, their input and output parameters, as well as.
supported model inference and analysis techniques. In general, one can distinguish
between predictive models (regression, stochastic performance models, or control-
theoretical models) and descriptive models. The prediction models have a rigorous
mathematical foundation optimized for fast and efficient model solution. They are
typically purpose-build for answering certain pre-defined questions using a certain
analysis technique. In contrast, descriptive models are optimized for greater model
expressiveness and interpretability. This class of models can help to abstract from
the details of model analysis techniques and thus support a greater variety of anal-
ysis techniques by using model-to-model transformations into different prediction
models. The decision which analysis technique to use can then be done at run-time
depending on the high-level goals of a self-aware system.
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