
This is the author’s version of the work. It is posted for your personal use. Not for
redistribution. The definitive version was published in Proceedings of the 16th EAI In-
ternational Conference on Performance Evaluation Methodologies and Tools (published
by Springer), 2023.

Kubernetes-in-the-Loop:
Enriching Microservice Simulation Through

Authentic Container Orchestration

Martin Straesser1, Patrick Haas1, Sebastian Frank2, Alireza Hakamian3,
André van Hoorn2, and Samuel Kounev1

1 University of Würzburg, Würzburg, Germany
{martin.straesser, samuel.kounev}@uni-wuerzburg.de,

patrick.haas@informatik.uni-wuerzburg.de
2 University of Hamburg, Hamburg, Germany

{sebastian.frank, andre.van.hoorn}@uni-hamburg.de
3 University of Stuttgart, Stuttgart, Germany

mir-alireza.hakamian@iste.uni-stuttgart.de

Abstract. Microservices deployed and managed by container orchestra-
tion frameworks like Kubernetes are the bases of modern cloud applica-
tions. In microservice performance modeling and prediction, simulations
provide a lightweight alternative to experimental analysis, which requires
dedicated infrastructure and a laborious setup. However, existing simula-
tors cannot run realistic scenarios, as performance-critical orchestration
mechanisms (like scheduling or autoscaling) are manually modeled and
can consequently not be represented in their full complexity and config-
uration space. This work combines a state-of-the-art simulation for mi-
croservice performance with Kubernetes container orchestration. Hereby,
we include the original implementation of Kubernetes artifacts enabling
realistic scenarios and testing of orchestration policies with low over-
head. In two experiments with Kubernetes’ kube-scheduler and cluster-
autoscaler, we demonstrate that our framework can correctly handle dif-
ferent configurations of these orchestration mechanisms boosting both
the simulation’s use cases and authenticity.

Keywords: Kubernetes · Microservices · Container Orchestration ·
Discrete Event Simulation · Cloud Computing · Software Performance

1 Introduction

Microservices are a modern architectural style for developing complex software
systems with a steadily increasing adoption in practice [20]. Containers are the
most popular deployment technology for microservices enabling improved elastic-
ity and faster start times compared to virtual machines [38,39,43,49]. As manual
management of hundreds to thousands of containers is impractical, container or-
chestration (CO) frameworks are widely used, with Kubernetes being the most
popular platform [13]. CO frameworks must maintain an acceptable quality of



2 M. Straesser et al.

Deploy new 
instance

Resources 
available?

Unused 
machines 
available?

Instance 
not 

schedulable

Instance 
scheduled

Node
provisioning

Horizontal Pod Autoscaler kube-scheduler

cluster-autoscaler

Assign instance 
to node

yes

no

no

yes
Service 

Overload / 
Performance 
Degradation

Fig. 1: Interactions between Kubernetes components.

service of the managed applications, fulfilling many performance-relevant tasks,
such as autoscaling, scheduling, or container networking [41]. As previous studies
have shown, CO frameworks can significantly influence performance metrics of
deployed applications, like response times or CPU usage [35,37,44,45].

Consequently, microservice performance models have to consider the CO
frameworks’ behavior for accurate performance prediction. However, several chal-
lenges arise here. First, the orchestration mechanisms to be simulated are highly
complex. For example, the Kubernetes scheduling algorithm has nine extension
points that can be individually configured for specific use cases [28]. Second,
there are dependencies between single orchestration mechanisms or application-
level patterns [40]. Figure 1 shows how Kubernetes’ Horizontal Pod Autoscaler,
kube-scheduler and cluster-autoscaler work together when new service instances
need to be deployed reacting to a performance degradation. Third, CO frame-
works are regularly updated, leading to a change in behavior and quickly causing
performance models to be outdated. Previous work in microservice performance
modeling and simulation integrates either no or only self-implemented, simplified
runtime orchestration mechanisms [8,17,22,46].

This work aims to establish a link between microservice performance simula-
tion and modern CO frameworks. We present an approach that enables connect-
ing a discrete event simulation and an event-based system. We use this approach
to extend the microservice simulator MiSim [17] with Kubernetes orchestration
mechanisms using their original code artifacts. By this, orchestration mechanisms
can be integrated with simulation in their full complexity without requiring ab-
stract models, making the simulation more authentic. Our implementation uses
an adapter that translates events from the simulation to Kubernetes events and
vice versa. Actions of the Kubernetes components directly modify simulated en-
tities. We validate our approach in experiments with Kubernetes’ kube-scheduler
and cluster-autoscaler. We show that different complex scheduling and autoscal-
ing configurations can be tested in the simulation with low overhead.



Kubernetes-in-the-Loop 3

Microservice application designers can use our framework to evaluate real-
istic scenarios with impact factors present at runtime early in the development
process. Furthermore, performance engineers could use the developed framework
to study the performance of a microservice application in what-if scenarios in
conjunction with different workloads and Kubernetes component configurations.
Container orchestration researchers can use the framework to design new or-
chestration mechanisms and evaluate their behavior with different applications.
Combining a microservice simulation with original Kubernetes components al-
lows the use of the full complexity of the orchestration mechanisms in each of
these use cases, leading to a more expressive and realistic simulation. All in all,
the contribution of this paper is twofold:

– We present an approach to connect a discrete-event simulation with the
event-based system of Kubernetes and use it to extend the state-of-the-art
microservice performance simulator MiSim [17].

– We analyze the usability and overhead of our approach in two detailed case
studies on (i) container scheduling and (ii) cluster autoscaling.

The remainder of this paper is structured as follows. In the next section,
we present the foundations of this work: the microservice simulator MiSim, as
well as information about the architecture of Kubernetes. Section 3 discusses
related works and the differences to this paper. Section 4 explains our approach
in detail, while Section 5 presents our case studies with the kube-scheduler and
cluster-autoscaler as examples of integrated Kubernetes components. Section 6
discusses the advantages, disadvantages, and limitations of our approach, while
Section 7 concludes the work.

2 Foundations

2.1 MiSim: A Discrete Event Simulator for Microservice
Performance and Resilience

Frank et al. [17] propose MiSim, a simulator for microservice performance and
resilience. Technically, MiSim utilizes a discrete-event simulation (DES) realized
through the DES framework DESMO-J [32]. As an input, a lightweight archi-
tectural description with microservice descriptions and active resilience mech-
anisms is required. Microservice properties include instance numbers, available
operations and their dependencies, CPU demands, and more. These elements are
simulated together with dynamic aspects, like user requests. Notably, MiSim sup-
ports the simulation of common mechanisms relevant to request behavior and
thus performance, i.e., circuit breakers, connection limiters, retries, load bal-
ancers, and autoscalers. MiSim can process time-varying workloads and outputs
several performance metrics, such as response times and CPU utilization. MiSim
is conceptually and technically developed to be extensible. In particular, it uses
the Strategy design pattern for many components, allowing to substitute their
behavior easily. For example, four CPU scheduling policies are implemented. By



4 M. Straesser et al.

default, MiSim uses Multi-Level Feedback Queues and the SARR algorithm pro-
posed by Matarneh [34] that schedules computation time based on the median
of the remaining burst time of all scheduled processes.

2.2 Kubernetes Architecture and Communication Patterns

In this work, we exploit the internal architecture and communication of Ku-
bernetes [27] to connect to MiSim. The Kubernetes control plane consists of
four essential components: an etcd database, the kube-controller-manager, the
kube-scheduler, and the kube-apiserver. The etcd database persists the states of
the cluster resources. The controller manager runs a series of processes that,
for example, monitor nodes or jobs. The scheduler assigns containers, organized
in so-called pods, to worker nodes for execution. The central component is the
kube-apiserver, which handles every communication between the control plane
and worker nodes. It is based on the Kubernetes API [25] and serves endpoints
for every resource type in the cluster (e.g., nodes, pods). When a consumer
(e.g., the kube-scheduler) requests information about a resource type in the
cluster (e.g., nodes), it queries the corresponding endpoint. Kubernetes uses a
“list-then-watch” principle to distribute information to all interested consumers.
After starting a Kubernetes component, it requests the latest list of selected
resources with a list request. This list contains a resource version, which is later
used as a reference to this list. The consumer stores this list in an internal cache.
Then the consumer sends a watch request with the resource version of its cached
list as a query parameter. This request sets up an HTTP streaming connec-
tion between the kube-apiserver and the consumer. If a change to subscribed
resources happens (e.g., a new node is added to the cluster), a watch event is
emitted. The watch event has a type (added, modified, or deleted) and a repre-
sentation of the affected resource. The consumer receives this event, modifies its
cache, and performs an action if necessary. We refer to the official documentation
for more information about the Kubernetes API [25].

3 Related Work

There are different ways to evaluate the performance of container orchestra-
tion (CO) frameworks. COFFEE [41] is a benchmarking framework for CO
frameworks that allows the characterization of the performance of an orches-
trator (configuration) with different metrics. Other works use benchmarking ap-
proaches, primarily focusing on Kubernetes [11,21,37,47]. While benchmarking
can provide the most accurate results and realistic scenarios, it requires an ex-
tensive infrastructure. Simulations usually give less precise results but are much
more cost-efficient. There are several simulations for component-based systems
that cover models of selected CO mechanisms, e.g., load balancing [9,50], au-
toscaling [7] or networking [46]. In contrast to these works, we aim to combine
microservice simulation with multiple CO tasks and mechanisms using their
original implementation, i.e., without hand-crafted models.



Kubernetes-in-the-Loop 5

Previous works have already dealt with the connection between simulations
and real code. Software-in-the-Loop [14] is a term in this area that describes this
connection, inspired by Hardware-in-the-Loop simulations. Such approaches fo-
cus primarily on testing control software in autonomous systems [10,19]. Erb and
Kargl [16] note general analogies between discrete-event simulations and event-
driven architectures. In the area of software performance simulations, a similar
concept has been used by Von Massow et al. [33], combining a simulation and
an adaptation controller. In this work, we apply a similar concept to microser-
vice simulation and Kubernetes using scheduling and cluster autoscaling as ex-
emplary CO mechanisms. In general, both Kubernetes scheduling and cluster
autoscaling are active research areas, as confirmed by recent articles [12,42,48].
For Kubernetes scheduling, there is a community project called kube-scheduler-
simulator [30] where different scheduling policies can be tested similarly to our
experiment in Section 5.1 but without evaluating their impact on the perfor-
mance of deployed services.

4 Approach

In this section, we explain our concept to integrate Kubernetes orchestration
mechanisms in the microservice simulation MiSim. First, some entities and basic
CO models need to be integrated into MiSim. Section 4.2 presents our approach
to combine discrete event simulation and event-based systems, while Section 4.3
shows how we handle incompatible models and events. We conclude this section
with a detailed look at Kubernetes scheduling and cluster autoscaling. Our im-
plementation [1] is to be seen as a wrapper that is 100% compatible with the
MiSim core and builds on its extension points.

4.1 Integration of Basic Container Orchestration Models

The MiSim core does not have any deployment models but only models for mi-
croservice architectures and resilience patterns. CPU resources are considered
independently from nodes. For this reason, we add some basic entities and asso-
ciated events relevant at deployment time in the simulation: A node is modeled
as a bunch of resources. A cluster is a graph with a set of nodes connected with
edges indicating network latencies between individual nodes. A container has a
1:1 relationship to a microservice instance from the MiSim core and is deployed
on exactly one node. Next, we need to define which aspects of container orches-
tration should be considered in our simulation. We build on the work of Straesser
et al. [41] in which eight performance-relevant tasks of container orchestration
frameworks are identified: container deployment, scheduling, resource allocation,
availability, health monitoring, scaling, load balancing, and networking. We add
support for all of these tasks in the simulation and implement simple orchestra-
tion mechanisms directly.

Performance overheads due to the deployment of containers are taken into
account in the simulation by startup times. Each container has a certain resource



6 M. Straesser et al.

requirement, which has to be considered during scheduling. When the scheduler
assigns a container to a node, a certain amount of resources are reserved and
unavailable for other containers on the same node. The scheduler has to check if
enough resources are available on the node. We implement two standard schedul-
ing algorithms: random and round-robin. Health monitoring is represented in the
simulation by periodic events that check the status of all deployed containers.
Restarts can be simulated if a container has been crashed (e.g., by MiSim’s chaos
monkey function). Networking is determined by the cluster network graph in-
dicating the mean latency and standard deviation between nodes. Furthermore,
we have adapted one autoscaling and several load balancing strategies already
available in MiSim to work with the new container and node models.

4.2 Connecting a Discrete Event Simulation and an Event-Driven
System

General Concept. This section presents our abstract concept for combining a
discrete event simulation (DES) with an event-driven system (EDS). Our goal
is to extend the authenticity and use cases of the DES by including mecha-
nisms/algorithms used in the EDS. A discrete-event simulation [31] is a sequence
of events where each event e ∈ E is associated with a time point t in the simula-
tion time. Here, E denotes the set of all possible types of events. Each event e is
associated with a function F (e), which is executed as soon as e occurs. This func-
tion can, for example, change modeled entities in the simulation. An event-driven
system [36] is a popular architectural style for developing component-based soft-
ware. Two components communicate with each other by the sender (producer)
emitting an event e′ and sending it via a proxy and middleware (channel) to the
receiver (consumer). In the following, we denote the set of defined event types
in the EDS as E′.

Consider a set of special event types Θ ⊆ E in the DES. We modify all
functions F (e) for all events e ∈ Θ such that these events are passed to the
EDS. If such an event e occurs at simulation time t in the simulation, two more
steps are needed to make the event processable by the EDS. First, we need a
transformation τ that maps the event e to an event or a sequence of events
e′ ∈ E′, as usually not all events in the DES are represented in the EDS and
vice versa. Second, passing a representation of the simulation state S(t) at time
t may be necessary. This is especially necessary if not all events e ∈ E are passed
to the EDS. S(t) should contain the states of all simulated entities relevant to
the EDS. If the interface of the EDS allows only event-based communication,
the simulation state S(t) must be transformed into a sequence of events from E′.
When sending e′ and S(t), the DES acts as an event producer from the EDS’
point of view. The EDS forwards all received events to consuming components.
The consumers now execute a black-box logic and generate responses r ∈ E′

as reactions to received events. The responses are passed back to the DES and
processed by F (e). As a consequence, entities or states in the simulation might
be modified.



Kubernetes-in-the-Loop 7

Adapter

MiSim

K8s Components

Event 
Scheduler

Event e Event Function F(e)

Entities & States

Black-Box Information Repository

Orchestration 
Mechanism

①schedules 
at time t ②triggers

③query b(e)

④collect S(t)

⑤send e, 
S(t), b(e) 

⑨send response r

⑩send translated response

⑪modify

Configuration
Communication 

Interface

Condensed 
Kubernetes API 

Event & State 
Translator

Communication 
Interface

⑦send event stream

⑧triggers

Kubernetes
Configuration 

Files

populate

modifies

creates

creates

User

Transformation τ
⑥use

Fig. 2: Overview of our approach and component interactions.

Application to MiSim and Kubernetes. In our use case, we connect the DES
MiSim with event-based orchestration mechanisms of Kubernetes. Figure 2 shows
an overview of our developed framework. To bridge the gap between MiSim and
Kubernetes, we decided to use an adapter [2]. This has the advantage that the
simulation remains slim, and if no Kubernetes components are to be used, no
unnecessary code must be loaded and executed. We select a set of events Θ
from MiSim, that are relevant for Kubernetes components. Θ includes all events
affecting containers and nodes, while several other MiSim events, e.g., related
to CPUs or logging, are excluded. The simulation sends selected events and
the state of the simulated entities to the adapter. The adapter is responsible
for the event transformation τ and the processing and transformation of the
components’ responses r. It implements relevant parts of the Kubernetes API,
especially endpoints for pods and nodes. Hence, it acts like the kube-apiserver
from the Kubernetes components’ point of view. Because the kube-apiserver han-
dles all communication in the Kubernetes control plane, we only need this one
adapter for different components. The adapter and Kubernetes components are
started prior to the simulation. We initialize the component caches with empty
lists for all resource types. When the simulation is started, events for modeled
resource types (like pods or nodes) are forwarded to the Kubernetes components.

4.3 Handling Incompatible Events and Models

General Concept. In the following, we consider cases where the DES and the
EDS use different models or entities that cannot be transformed into each other.
In the following, let MD be the set of models and entities which appear in the
DES but have no equivalent in the EDS. Similarly, let ME be the set of models



8 M. Straesser et al.

and entities that exist in EDS but have no equivalent in the DES. Let MD+E

be the set of models and entities with equivalences in DES and EDS. First, we
consider elements from MD. Since, in our case, we are only interested in the
results of the DES, these do not pose a problem. We simply exclude all events
concerning entities MD from the set Θ. We just have to ensure that we correctly
model interactions between entities from MD and entities from MD+E .

We can divide elements from ME into two groups. We ignore the group of
models or entities from ME that have no interaction with elements from MD+E

or whose interactions should not be considered in the DES. The second group of
elements from ME that have relevant interactions with elements from MD+E has
to be considered in our approach. These can, for example, influence the response
r to an event e from the DES and thus influence the simulation run. To solve this
problem, we propose to use a black-box information repository (BIR). The DES
receives a set of additional EDS-specific information B before starting a run,
as well as information about which events e ∈ Θ should use which information
b ∈ B. The simulation does not interpret or change elements in B but stores
them in the repository. The function F (e) passes them to the EDS for specific
events e together with the simulation state S(t). This way, entities not modeled
in the DES can still be considered in simulation runs and in the black-box logic
of the EDS components.

Application to MiSim and Kubernetes. In this paper, we choose scheduling
and cluster autoscaling as two Kubernetes orchestration mechanisms to inte-
grate into MiSim. The scheduling algorithm comprises nine extension points
where user-defined plugins can be attached [28]. As these plugins contain arbi-
trary logic, it is impossible to integrate this configuration space in the simulation
using traditional models. Similarly, the cluster-autoscaler has more than 30 con-
figuration options [18]. Simulative evaluation is especially beneficial since cluster
autoscaling can only be performed with special infrastructure where nodes can
be added or deleted on demand. Both mechanisms use entities that are not
present in MiSim (like node affinities, labels, or machine set definitions). Ku-
bernetes uses YAML files to define these entities. Our framework stores these
user-created files in the BIR and forwards the contents on specific events. In the
following, we look deeper into how the kube-scheduler and cluster-autoscaler are
integrated into MiSim using the aforementioned concepts.

4.4 A Detailed Look at Scheduling and Cluster Autoscaling

The kube-scheduler receives a request from the adapter whenever an event in
MiSim is triggered that creates a new container. This request contains informa-
tion about the container to be deployed (e.g., its resource requirements) and all
other currently deployed containers (the simulation state). The selected node or
an error (e.g., if all resources in the cluster are reserved) is expected as a response.
The adapter converts this request into a series of Kubernetes watch events and
sends them to the scheduler. The kube-scheduler determines nodes with enough
resources and selects a node for the container according to its scheduling policy.
This policy is set as a configuration [28] at the start, like in a real cluster. If



Kubernetes-in-the-Loop 9

no node is available, the kube-scheduler returns an error to the adapter, which
passes it on to the simulation.

Scheduling policies in Kubernetes can also be influenced by other factors
(e.g., pod affinities [24]). These are examples of critical elements from the set
ME , i.e., entities that exist in Kubernetes but do not exist in the simulation and
yet affect relevant tasks in the simulation. For the example mentioned above,
we create node definitions with labels and pod definitions with affinities in the
form of Kubernetes YAML files that populate the BIR at the simulation start.
The simulation and adapter forward them on events concerning nodes or pods,
respectively. The kube-scheduler uses this information for scheduling. With this
approach, we can cover the scheduling policies’ maximum complexity without
implementing new logic ourselves. We demonstrate the different usage of schedul-
ing policies in Section 5.1.

As a second Kubernetes component, we integrate the cluster-autoscaler (CA)
into the simulation. It becomes active whenever the kube-scheduler cannot de-
ploy a pod (upscaling, see Figure 1) or when the utilization of a node falls
below a certain threshold (downscaling). Hence, the CA subscribes events for
pods and nodes; our adapter forwards all decisions of the kube-scheduler di-
rectly to the CA. Furthermore, the CA needs endpoints to manage node groups.
Here, different implementations for cloud providers exist [26]. We use the generic
open-source Kubernetes Cluster API [29]. Note that the chosen cloud provider
implementation does not influence the autoscaling logic. By now, we support
the integration of MachineSets from the Cluster API. A MachineSet is a set
of machines with equal resources that can be scaled from a specified minimum
value (≥ 0) to a maximum value. The user can specify definitions of MachineSets
as part of the BIR at the simulation start. We compare two different upscaling
policies for the CA in Section 5.2.

5 Evaluation

In the following, we provide empirical evidence on the usefulness of our approach
for evaluating orchestration policies and validate the behavior of the included
Kubernetes components by conducting two experiments. First, we consider a
microservice application whose services are deployed in a global cluster. We
examine the interactions between different scheduling policies, the application,
and the cluster architecture. In the second experiment, we deploy an increasing
number of service instances in a heterogeneous cluster with two machine types.
We look at different expansion policies of the CA and show that our framework
can correctly capture the interactions between the CA and the kube-scheduler.
We provide a CodeOcean capsule [3] where all experiments can be reproduced.

5.1 Scheduling Policies in a Global Cluster

Overview. In this experiment, we model a cluster with nodes in different geo-
graphic regions. A microservice reference application is deployed in this cluster.



10 M. Straesser et al.

(a) Cluster nodes and location

User

webui-service

auth-service

image-service persistence-
service

db-service

startPage

webImages

isLoggedIn

listCategories listCategories

login login findUser findUser

cartAdd cartAdd findProduct findProduct

logout logout

(b) Workload dependency graph

Fig. 3: Modeled cluster environment and test application workload.

We simulate a constant load and analyze the response time of different user
operations. Three different scheduling policies are tested, causing services to be
deployed on different nodes and experiencing different network latencies. We
show that our framework can use the kube-scheduler in a way that it behaves
the same as in the real cluster and that the simulation can reflect the effects of
different scheduling policies on the simulated test application.

Cluster Environment. We use a cluster with five workers and one master in
the Google Cloud, as shown in Figure 3a. All machines are of type e2-standard-4
with four CPU cores. Two workers (eu1 and eu2) and the master are deployed in
Germany. The remaining workers run in Singapore, Brazil, and Iowa (USA). Ev-
ery node has its compute zone as a Kubernetes node label. Before the experiment,
we measure the network latency between all nodes using 100 ping packets. The
network latencies are given to the simulation as means and standard deviations.
We use Kubernetes YAML files to specify the five workers for the simulation. At
the simulation start, this information is forwarded to the kube-scheduler, which
extracts available resource capacities, node labels, and more. The master node
is not considered in the simulation.

Microservice Test Application and Workload. We use the popular benchmark-
ing application TeaStore [23] with seven microservices in our experiments. All
microservices request 0.8 CPU cores per instance. In the real cluster, we use the
HTTP load generator [4] to generate a constant load of 20 requests per second
for five minutes. A user behavior consisting of four steps is simulated. First, a
user accesses the start page and then logs in with his account data. Afterward,
the user adds a random product from the store to his cart and then logs out
again. In the simulation, we build on the architecture model of the TeaStore
used by Frank et al. [17] and extend it with the database service. The defined
workload stimulates a total of five services and 15 endpoints. The dependency
graph of the operations for our workload is shown in Figure 3b.

Scheduling Policies. We deploy one instance of each TeaStore service in our
cluster. Hence, the total CPU core requirement is 5.6 cores, meaning that at
least two nodes are needed for the deployment. We evaluate three scheduling
policies: default, most-allocated, and europe-only. The default scheduling policy
deploys the pod to the node where the least resources have been reserved so



Kubernetes-in-the-Loop 11

far. This results in the services being distributed to all nodes. Kubernetes offers
two general options to influence scheduling. First, different configurations of the
kube-scheduler can be used, resulting in a different algorithm being used for all
pods. The most-allocated policy is an example of this. We use a profile of the
kube-scheduler [28], which causes the next pod to be deployed to the node with
the most resources reserved but still enough resources to run the pod. This policy
requires two nodes to run the services. The scheduling policy is set at the start of
the kube-scheduler. The second option to influence the scheduling in Kubernetes
is to set special properties of the pods. These will influence the scheduling only
for selected pods. For our europe-only policy, we use node affinities. Precisely, we
specify that our services can only be deployed on nodes with a label indicating
that they belong to the compute zone Europe. This causes the services to be
distributed to the nodes eu1 and eu2. Both in the simulation and the real cluster,
we use Kubernetes deployment files to specify the affinities.

Start State. Before deploying the services, all nodes have no reserved re-
sources. Therefore, the nodes are equally suitable for selection. Furthermore, the
order in which the containers are to be deployed plays a role in the scheduling
since the kube-scheduler processes the pods one after the other. In initial tests,
both factors led to different placements occurring during repeated simulation and
real cluster runs. We made two adjustments to ensure the experiment’s compara-
bility and repeatability. First, we fixed the order in which the containers should
be deployed to the recommended deployment order of the TeaStore [5]. Further-
more, we deployed other containers on four of the five worker nodes that occupy
different resources at the nodes: Singapore (0.05 cores), Brazil (0.1 cores), eu2
(0.15 cores), and USA (0.2 cores). This setup leads to the scheduling decisions
not being random and the experiment being repeatable.

Results. Figure 4a gives an overview of the scheduling for different policies.
These scheduling decisions are the same in the real cluster and the simulation.
This shows that our approach can correctly represent different scheduling poli-
cies in the simulation without implementing them. The second question to be
answered is whether the effects of different scheduling policies on the performance
of the modeled microservice application can be simulated. Figure 4b shows the
simulated and measured response times with the standard deviation for all four
considered request types. We see that the scheduling policies significantly impact
the response times. The default policy that distributes the services worldwide
has the highest response times, while the europe-only policy has the lowest. This
is visible in both the measured and simulated results. Furthermore, using the
logout operation as an example, we see an interaction between application ar-
chitecture and scheduling. As shown in Figure 3b, the logout operation depends
only on one operation of the auth service. According to Figure 4a, the default
policy causes webui and auth to be deployed in Europe. In contrast, in the most-
allocated policy, the auth service is deployed in the USA, and the webui service
is in Europe. This explains the higher response time for this operation in the
most-allocated policy compared to the default policy.



12 M. Straesser et al.

Scheduling Policies

Service default most-allocated europe-only

auth eu2 usa eu2

db eu1 usa eu1

image usa eu2 eu1

persistence brazil usa eu1

recommender eu1 eu2 eu2

registry singapore usa eu2

webui eu2 eu2 eu1

(a) Selected nodes for services

cartAdd startPage login logout
Operation

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Re
sp

on
se

 T
im

e 
[m

s]

default
most-allocated
europe-only
measured
simulated

(b) Measured and simulated response times

Fig. 4: Effects of different scheduling policies in a global cluster.

Overall, the effects of different scheduling policies on microservice perfor-
mance can be qualitatively modeled. However, some operations also have signif-
icant errors in the response time prediction. These are caused by inaccuracies in
the MiSim performance model. For example, the large deviation for the start-
Page operation in the default policy is caused by large payloads with variable
sizes (here: images) sent over the network. MiSim lacks support for modeling
different payload sizes and parametric dependencies. Hence, the real network
overhead cannot be predicted accurately in this case. However, this is a limita-
tion of MiSim’s performance model rather than a weakness of our approach for
including orchestration mechanisms, as further discussed in Section 6. We also
analyzed the overhead of our adapter and the integration in total. In this exper-
iment, we measure only a tiny overhead. The simulation runs take, on average,
about 9.2 seconds, of which only about ten milliseconds are spent on the com-
munication with the adapter and kube-scheduler. This shows that our approach
has a reasonable overhead and can enrich MiSim with authentic Kubernetes
container orchestration mechanisms.

5.2 Expansion Policies for Cluster Autoscaling

Overview. In this section, we demonstrate our simulation with the CA and show
its ability to capture the interactions between the cluster-autoscaler and the
kube-scheduler (see Fig. 1). We model a heterogeneous cluster with two different
node groups. The CA offers the possibility to define expansion policies, i.e., to
configure which node groups should be prioritized during upscaling. We compare
two expansion policies and prove they work as expected in our framework.

Simulated Cluster Environment. We define a cluster with two machine sets.
Machines in the small-set have 4 CPU cores and in the large-set 8 cores. Both
machine sets can be scaled from one to ten nodes. One node from each machine
set is deployed at the start. The analogy in a real cluster would be to deploy
different instance groups with different resources and pricing models. Unfor-
tunately, we cannot directly compare this experiment to a Google Kubernetes
cluster where a proprietary, not freely configurable version of the CA is used.



Kubernetes-in-the-Loop 13

0 60 120 180 240
Desired Replicas

2

4

6

8

10
No

de
s

25

50

75

100

125

Ca
pa

cit
y 

[C
PU

 C
or

es
]

Random expansion

0 60 120 180 240
Desired Replicas

2

4

6

8

10

No
de

s

25

50

75

100

125

Ca
pa

cit
y 

[C
PU

 C
or

es
]

Least-waste expansion

Fig. 5: Cluster scaling with nodes from small-set (solid) and large-set (dashed).

Expansion Policies and Test Application. The expansion policies of the CA
can be adjusted via a command line flag. The CA triggers upscaling whenever
the kube-scheduler cannot assign a pod to a node due to a lack of resources.
We consider two expansion policies. The random policy randomly selects a node
group for upscaling. In contrast, the least-waste policy prefers the node group,
where as few resources as possible (here: CPU cores) are wasted after the de-
ployment of the new pods. In this case, the machine set with four cores is always
preferred. We use a Kubernetes deployment file of the TeaStore registry service
as a test application, with each replica requesting 0.5 cores. For demonstration
purposes, we use an autoscaler that requests a new instance every 15 seconds.

Results. Figure 5 shows the two expansion policies in comparison. Since the
random policy returns different results with repeated runs, Figure 5 shows only
a selected test run. Both expansion policies behave as expected: The random
expander deploys alternating instances with 4 and 8 CPU cores on average (both
blue lines increase early). The least-waste expander first scales the machine set
with 4 CPU cores up to the maximum number of 10 (only the solid blue line
rises first). This leads to a slow increase in the number of provided CPU cores
(red line) and many upscaling decisions being necessary initially. The random
policy makes capacity increase more stable, making it a policy that can be used
when nothing is known about workload changes. The least-waste policy is a cost-
optimized policy that can be used when slowly increasing loads and few upscaling
are expected. Both policies stop the expansion when the maximum size of the
machine sets is reached. Overall, we show that different CA configurations can
be correctly executed in our simulation. The basis for this is the interaction of
the CA with the kube-scheduler, as shown in Figure 1. Hence, we show that
multiple Kubernetes components can be used in parallel in our framework.

6 Discussion

This section summarizes our approach’s strengths, weaknesses, and limitations.
As already mentioned, there are different user groups of our framework. We en-
able designers of microservice architectures to simulate realistic scenarios with
authentic container orchestration. We provide a new lightweight test platform



14 M. Straesser et al.

for Kubernetes or container orchestration developers, where real code and new
configurations can be tested without requiring a cluster. A significant advantage
is that orchestration mechanisms can be included in the simulation in their full
complexity without having to model them. The drawback is that expert knowl-
edge of the orchestrator interfaces is required to integrate its code. This could
be an obstacle for microservice designers, less for developers of CO frameworks.

To include new orchestration mechanisms in our framework, the interfaces
required by the mechanism must be identified and implemented in the adapter.
In a concrete use case, the question of whether integration in this form is worth-
while or whether a simple model of the mechanism is sufficient must be answered.
The integration is worthwhile if the mechanism has a complex configuration and
logic. If it is a relatively simple algorithm without regular updates, a simple
model should be preferred. Generally, we assume that the integrated compo-
nents are independently deployable and work event-based. A current limitation
of our approach is that component responses are always executed immediately
in the simulation. While this is a good approximation for the kube-scheduler,
cluster autoscaling includes non-negligible node start times. Extensions in our
framework for these purposes are planned. Since we do not change the perfor-
mance models in MiSim, the challenge for accurate predictions for response times
and similar metrics remains the correct calibration of the performance models
as well as a correct modeling of parametric dependencies [15]. However, these
weaknesses concern the MiSim core rather than the extension presented in this
paper, which in theory, would also support other performance models.

7 Conclusion

This paper presented a new approach for connecting a microservice simulation
with Kubernetes components based on a general concept for combining discrete-
event simulation and event-driven systems. We validated our approach in ex-
periments with the kube-scheduler and cluster-autoscaler. We have shown that
different component configurations can be represented in the simulation by us-
ing the actual Kubernetes components and without abstract models or manual
re-implementation. Our framework can be used, for example, by microservice
application developers to simulate real-world scenarios and by CO framework
developers to test new orchestration policies. Future work will focus on evalu-
ating complex scenarios, simulation-based optimization of CO mechanisms, and
increasing the simulation accuracy, e.g., by considering startup times.

Acknowledgements This work was funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) – 510552229. We thank the Ger-
man Federal Ministry of Education and Research (dqualizer FKZ: 01IS22007B
and Software Campus 2.0— Microproject: DiSpel, FKZ: 01IS17051), the Google
Cloud Research Credits program (GCP213506809) and our student researchers
Lion Wagner and Lukas Mönch for supporting this work. The work was con-
ducted in the context of the SPEC RG DevOps Performance Working Group [6].



Kubernetes-in-the-Loop 15

References

1. https://github.com/DescartesResearch/misim-orchestration
2. https://github.com/DescartesResearch/misim-k8s-adapter
3. https://doi.org/10.24433/CO.4913288.v1
4. https://github.com/joakimkistowski/HTTP-Load-Generator
5. https://github.com/DescartesResearch/TeaStore
6. https://research.spec.org/devopswg
7. Aslanpour, M.S., Toosi, A.N., Taheri, J., Gaire, R.: Autoscalesim: A simulation

toolkit for auto-scaling web applications in clouds. Simulation Modelling Practice
and Theory (2021)

8. Bao, L., Wu, C., Bu, X., Ren, N., Shen, M.: Performance modeling and work-
flow scheduling of microservice-based applications in clouds. IEEE Transactions
on Parallel and Distributed Systems (2019)

9. Becker, M., Becker, S., Meyer, J.: Simulizar: Design-time modeling and perfor-
mance analysis of self-adaptive systems. Software Engineering (2013)

10. Ben Ayed, M., Zouari, L., Abid, M.: Software in the loop simulation for robot
manipulators. Engineering, Technology & Applied Science Research (2017)

11. Bozóki, S., Szalontai, J., Pethő, D., Kocsis, I., Pataricza, A., Suskovics, P., Kovács,
B.: Application of extreme value analysis for characterizing the execution time
of resilience supporting mechanisms in kubernetes. In: Dependable Computing -
EDCC 2020 Workshops (2020)

12. Carrión, C.: Kubernetes scheduling: Taxonomy, ongoing issues and challenges.
ACM Comput. Surv. (2022)

13. Cloud Native Computing Foundation: Cncf annual survey 2022 (2023), https:
//www.cncf.io/reports/cncf-annual-report-2022/

14. Demers, S., Gopalakrishnan, P., Kant, L.: A generic solution to software-in-the-
loop. In: MILCOM 2007 - IEEE Military Communications Conference (2007)

15. Eismann, S., Walter, J., von Kistowski, J., Kounev, S.: Modeling of Parametric
Dependencies for Performance Prediction of Component-based Software Systems
at Run-time. In: IEEE International Conference on Software Architecture (ICSA)
(2018)

16. Erb, B., Kargl, F.: Combining discrete event simulations and event sourcing. In:
Proceedings of the 7th International ICST Conference on Simulation Tools and
Techniques. SIMUTools ’14 (2014)

17. Frank, S., Wagner, L., Hakamian, A., Straesser, M., van Hoorn, A.: Misim: A
simulator for resilience assessment of microservice-based architectures. In: IEEE
22nd International Conference on Software Quality, Reliability and Security (QRS)
(2022)

18. Friedman, N.: Kubernetes cluster autoscaler command line options (2023), https:
//gist.github.com/neerfri/4bd7477920cb33a2a229807ed10c29c2

19. Hellerer, M., Schuster, M.J., Lichtenheldt, R.: Software-in-the-loop simulation of
a planetary rover. In: The International Symposium on Artificial Intelligence,
Robotics and Automation in Space (2016)

20. IBM Market Development & Insights: Microservices in the enterprise (2021),
https://www.ibm.com/downloads/cas/OQG4AJAM

21. Jawarneh, I.M.A., Bellavista, P., Bosi, F., Foschini, L., Martuscelli, G., Monta-
nari, R., Palopoli, A.: Container orchestration engines: A thorough functional and
performance comparison. In: IEEE International Conference on Communications
(ICC) (2019)

https://github.com/DescartesResearch/misim-orchestration
https://github.com/DescartesResearch/misim-k8s-adapter
https://doi.org/10.24433/CO.4913288.v1
https://github.com/joakimkistowski/HTTP-Load-Generator
https://github.com/DescartesResearch/TeaStore
https://research.spec.org/devopswg
https://www.cncf.io/reports/cncf-annual-report-2022/
https://www.cncf.io/reports/cncf-annual-report-2022/
https://gist.github.com/neerfri/4bd7477920cb33a2a229807ed10c29c2
https://gist.github.com/neerfri/4bd7477920cb33a2a229807ed10c29c2
https://www.ibm.com/downloads/cas/OQG4AJAM


16 M. Straesser et al.

22. Jindal, A., Podolskiy, V., Gerndt, M.: Performance modeling for cloud microser-
vice applications. In: Proceedings of the ACM/SPEC International Conference on
Performance Engineering (2019)

23. von Kistowski, J., Eismann, S., Schmitt, N., Bauer, A., Grohmann, J., Kounev,
S.: Teastore: A micro-service reference application for benchmarking, modeling
and resource management research. In: IEEE 26th International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS) (2018)

24. Kubernetes Documentation: Assign pods to nodes using node affinity (2023),
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-
nodes-using-node-affinity/

25. Kubernetes Documentation: Kubernetes api concepts (2023), https:
//kubernetes.io/docs/reference/using-api/api-concepts/

26. Kubernetes Documentation: The kubernetes cluster autoscaler (2023),
https://github.com/kubernetes/autoscaler/blob/master/cluster-
autoscaler/README.md

27. Kubernetes Documentation: Kubernetes components (2023), https:
//kubernetes.io/docs/concepts/overview/components/

28. Kubernetes Documentation: Scheduling framework (2023), https://kubernetes.
io/docs/concepts/scheduling-eviction/scheduling-framework/

29. Kubernetes SIG Cluster API: Kubernetes cluster api (2023), https://cluster-
api.sigs.k8s.io/

30. Kubernetes SIG Scheduling: kube-scheduler-simulator (2023), https://github.
com/kubernetes-sigs/kube-scheduler-simulator

31. Law, A.M., Kelton, W.D.: Simulation modeling and analysis, vol. 3. Mcgraw-hill
New York (2007)

32. Lechler, T., Page, B.: Desmo-j: An object oriented discrete simulation framework
in java. In: Proceedings of the 11th European Simulation Symposium (ESS) (1999)

33. von Massow, R., van Hoorn, A., Hasselbring, W.: Performance simulation of run-
time reconfigurable component-based software architectures. In: 5th European
Conference on Software Architecture (ECSA) (2011)

34. Matarneh, R.J.: Self-adjustment time quantum in round robin algorithm depending
on burst time of the now running processes. American Journal of Applied Sciences
(2009)

35. Mekki, M., Toumi, N., Ksentini, A.: Microservices configurations and the impact
on the performance in cloud native environments. In: IEEE 47th Conference on
Local Computer Networks (LCN) (2022)

36. Michelson, B.M.: Event-driven architecture overview. Patricia Seybold Group
(2006)

37. Pan, Y., Chen, I., Brasileiro, F., Jayaputera, G., Sinnott, R.: A performance com-
parison of cloud-based container orchestration tools. In: IEEE International Con-
ference on Big Knowledge (ICBK) (2019)

38. Schmoll, R., Fischer, T., Salah, H., Fitzek, F.H.P.: Comparing and evaluating
application-specific boot times of virtualized instances. In: 2nd IEEE 5G World
Forum (2019)

39. Straesser, M., Bauer, A., Leppich, R., Herbst, N., Chard, K., Foster, I., Kounev,
S.: An empirical study of container image configurations and their impact on start
times. In: 23rd IEEE International Symposium on Cluster, Cloud and Internet
Computing (CCGrid) (2023)

https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/tasks/configure-pod-container/assign-pods-nodes-using-node-affinity/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://kubernetes.io/docs/reference/using-api/api-concepts/
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://github.com/kubernetes/autoscaler/blob/master/cluster-autoscaler/README.md
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-framework/
https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/
https://github.com/kubernetes-sigs/kube-scheduler-simulator
https://github.com/kubernetes-sigs/kube-scheduler-simulator


Kubernetes-in-the-Loop 17

40. Straesser, M., Grohmann, J., von Kistowski, J., Eismann, S., Bauer, A., Kounev, S.:
Why is it not solved yet? challenges for production-ready autoscaling. In: Proceed-
ings of the ACM/SPEC on International Conference on Performance Engineering
(2022)

41. Straesser, M., Mathiasch, J., Bauer, A., Kounev, S.: A systematic approach
for benchmarking of container orchestration frameworks. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering (2023)

42. Tamiru, M.A., Tordsson, J., Elmroth, E., Pierre, G.: An experimental evaluation of
the kubernetes cluster autoscaler in the cloud. In: IEEE International Conference
on Cloud Computing Technology and Science (CloudCom) (2020)

43. Tesfatsion, S.K., Klein, C., Tordsson, J.: Virtualization techniques compared: Per-
formance, resource, and power usage overheads in clouds. In: ACM/SPEC Inter-
national Conference on Performance Engineering (2018)

44. Truyen, E., Bruzek, M., Van Landuyt, D., Lagaisse, B., Joosen, W.: Evaluation
of container orchestration systems for deploying and managing nosql database
clusters. In: IEEE 11th International Conference on Cloud Computing (CLOUD)
(2018)

45. Truyen, E., Van Landuyt, D., Lagaisse, B., Joosen, W.: Performance overhead
of container orchestration frameworks for management of multi-tenant database
deployments. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing. SAC ’19 (2019)

46. Valera, H.H.A., Dalmau, M., Roose, P., Larracoechea, J., Herzog, C.: Draceo: A
smart simulator to deploy energy saving methods in microservices based networks.
In: IEEE 29th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE) (2020)

47. VMware: K-bench (2023), https://github.com/vmware-tanzu/k-bench
48. Wang, M., Zhang, D., Wu, B.: A cluster autoscaler based on multiple node types

in kubernetes. In: IEEE 4th Information Technology, Networking, Electronic and
Automation Control Conference (ITNEC) (2020)

49. Xavier, B., Ferreto, T., Jersak, L.: Time provisioning evaluation of KVM, Docker
and unikernels in a cloud platform. In: 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (2016)

50. Zhang, Y., Gan, Y., Delimitrou, C.: µqsim: Enabling accurate and scalable simu-
lation for interactive microservices. In: IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS) (2019)

https://github.com/vmware-tanzu/k-bench

	Kubernetes-in-the-Loop: Enriching Microservice Simulation Through Authentic Container Orchestration

