
Chapter 17
Online Learning of Run-time Models for
Performance and Resource Management in Data
Centers

Jürgen Walter, Antinisca Di Marco, Simon Spinner, Paola Inverardi,
Samuel Kounev

Abstract In this chapter, we explain how to extract and learn run-time models that
a system can use for self-aware performance and resource management in data cen-
ters. We abstract from concrete formalisms and identify extraction aspects relevant
for performance models. We categorize the learning aspects into: i) model struc-
ture, ii) model parametrization (estimation and calibration of model parameters),
and iii) model adaptation options (change point detection and run-time reconfigura-
tion). The chapter identifies alternative approaches for the respective model aspects.
The type and granularity of each aspect depends on the characteristic of the concrete
performance models.

Jürgen Walter
University of Würzburg, Department of Computer Science, Am Hubland, D-97074 Würzburg,
Germany, e-mail: juergen.walter@uni-wuerzburg.de

Antinisca Di Marco
University of L’Aquila Via Vetoio 1, 67010 Coppito (AQ), Italy,
e-mail: antinisca.dimarco@univaq.it

Simon Spinner
University of Würzburg, Department of Computer Science, Am Hubland, D-97074 Würzburg,
Germany e-mail: simon.spinner@uni-wuerzburg.de

Paola Inverardi
University of L’Aquila Via Vetoio 1, 67010 Coppito (AQ), Italy,
e-mail: paola.inverardi@univaq.it

Samuel Kounev
University of Würzburg, Department of Computer Science, Am Hubland, D-97074 Würzburg,
Germany e-mail: samuel.kounev@uni-wuerzburg.de

499

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

500 Walter et al.

17.1 Introduction

In order to become self-aware, systems require an internal representation of them-
selves. According to the definition of self-aware computing systems given in Chap-
ter 1, such systems

1. learn models capturing knowledge about themselves and their environment
(such as their structure, design, state, possible actions, and run-time behavior)
on an ongoing basis and

2. reason using the models (for example predict, analyze, consider, plan) enabling
them to act based on their knowledge and reasoning (for example explore, ex-
plain, report, suggest, self-adapt, or impact their environment)

in accordance with higher-level goals, which may also be subject to change. In this
chapter, we focus on learning performance models of IT systems and infrastructures
that can be used for online performance and resource management in data centers.
As stressed in the definition, the term learn does imply that some information based
on which models are derived is obtained at system run-time, while also additional
static information built into the system at design-time can be employed as well.
Typically, a system may be built with integrated skeleton models whose parameters
are estimated using monitoring data collected at run-time. Once an initial model is
available, it is subjected to continuous updates at run-time to reflect any changes in
the system itself and/or in the environment during operation.

A performance model is any abstraction of the system and its environment cap-
turing knowledge that can be used to reason about the performance of the system.
One main challenge in learning performance models is that the built models should
present a right level of abstraction since it has to be detailed enough to guaran-
tee accurate performance results while maintaining the adequate abstraction to be
resolvable at run-time. The learned models, also called extracted models, can be
descriptive, prescriptive and predictive models (see Chapter 1). Note that this clas-
sification is not mutually exclusive. One major challenge of the performance model
learning is to find the right level of abstraction such that the constructed models are
detailed enough to support accurate performance analysis, while at the same time
they can be solved with reasonable overhead.

Approaches to automatically construct analytical performance models, such as
Queueing Network(s)s (QNs), are very popular (e.g., [37, 39] and [40]). Often in
such approaches, performance models are learned in a testing phase and applied
at run-time. However, the constructed models are rather limited since they abstract
the system at a very high level without capturing its architecture and configuration
explicitly. For example, such models offer no means to express a change in the con-
figuration of the virtualization platform, which may have a significant impact on the
performance of system. Moreover, they often impose restrictive assumptions such as
a single workload class or homogeneous servers. Furthermore, the model structure is
typically assumed to be static. The structure is either derived by hand or tied to a spe-
cific application scenario (e.g, n-tier-web applications [1] or MapReduce jobs [48])
and only model parameters are derived using run-time monitoring data [29]. Fur-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 501

thermore, extraction case studies are often limited to certain technologies, e.g., Java
EE systems [10] or certain specific target platforms like Oracle WebLogic server
offering a proprietary monitoring infrastructure [8]. There is a lot of existing work
on the extraction and maintenance of performance models. However, the extraction
process often includes non-automated manual subparts or a priori knowledge about
the system. Few solutions support a full automation and provide portability beyond
one or two case studies.

In this chapter, we focus on gray-boxor white-box models as they contain struc-
tural and causal information (see Chapter 16), whereas black-box models do not
have any a priori structure imposed. In contrast to white-box models, black-box
models serve as interpolation of the measurements and lack information that is re-
quired for system adaptation (i.e., resource management at run-time). Hence, black-
box model extraction, e.g., using genetic optimization techniques [15, 45], is not
considered in the following. There are numerous performance modeling formalisms
in the literature (cf. Chapter 16) and due to their high number, we cannot discuss the
extraction process separately for each of them. However, most performance models
provide a common set of features that have to be extracted, which allows us to ab-
stract from the concrete modeling formalisms. We propose to structure the model
extraction and maintenance into the following three disciplines, namely: i) model
structure, ii) model parametrization (estimation and calibration of model parame-
ters), and iii) model adaptation options (change point detection and run-time recon-
figuration). We focus on the extraction of architectural performance models, as they
provide the highest flexibility and potential for realizing the general idea of self-
aware computing in data centers. Such models combine the descriptive and seman-
tic aspects of architectural models, such as the Unified Modeling Language (UML),
with the prediction capabilities of analytical models, like QN. Nonetheless, most of
the techniques we present are not restricted to architectural performance models. In
this chapter, we use the following acronyms:

APM Application Performance Management
DML Descartes Modeling Language
EJB Enterprise Java Beans
Java EE Java Enterprise Edition
LQN Layered Queueing Network(s)
QN Queueing Network(s)
QPN Queueing Petri Net(s)
PMF Performance Management Framework
S/T/A Strategies/Tactics/Actions
UML Unified Modeling Language

The remainder of this chapter is structured as follows: Section 17.2 discusses cross-
cutting concerns for model extraction. Section 17.3 explains possibilities for system
structure extraction. Section 17.4 discusses parametrization of models with resource
demands and branching probabilities. Section 17.5 is about system and model adap-
tation. Section 17.6 concludes the chapter and discusses future work.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

502 Walter et al.

17.2 Cross-Cutting Concerns

The learning of performance models requires several issues to be taken into account
in order to guarantee the correctness of the process and its efficiency.

Data Collection Performance models are parameterized by means of monitoring
data. Disseminated commercial Application Performance Management (APM)
tools are e.g., Dynatrace, AppDynamics, NewRelic, and Riverbed Technology
[9]. Additionally, free and open source performance monitoring tools exist, e.g.,
Kieker [9]. Typically, trace data is collected from the running system and is
used to estimate model parameters, e.g, request arrival rates, service resource
demands, or control flow parameters like routing probabilities. Problems that
might follow include:

• The collected data may be more fine-grained than the performance model
parameters, thus an aggregation step may be needed.
• The measurement overhead may significantly influence the system.

Modeling Abstraction and Formalism The constructed performance models have
to be modified and evaluated online. This poses requirements on the models
themselves. The choice of a suitable performance model of the system becomes
one of the most important and critical steps. Indeed, the models should be as
flexible as possible supporting dynamic adaptation when the system is recon-
figured or its architecture evolves and at the same time they should support effi-
cient performance analysis at run-time. In many cases, these two characteristics
may be incompatible. The model flexibility requires detailed models that sup-
port changes, such as re-parameterization based on online monitoring data or
modification in terms of their topology, in order to reflect a new system configu-
ration. The efficient performance analysis requires models that can be solved in
a short amount of time. This implies that in many cases only models having an-
alytical/numerical solution may be usable at run-time. The challenge here is to
design performance models expressive enough to describe different resource al-
locations and system configurations with respect to their performance behavior,
but still having numerical/analytical solution.

Online Evaluation In order to control the state space explosion , system perfor-
mance models should be as expressive as possible, omitting irrelevant details
about individual system components behavior. This is important for lightweight
and fast model evaluation. Of course, there is a trade-off between the simplicity
of models and their support for detailed feedback facilitating online decision
making.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 503

17.3 Model Structure

The learning of model structure involves extracting information about the software
components of the system as well as information about resource landscape in which
the system is deployed. The learning of inter-component interactions is covered in
the next section since it includes dynamic aspects. Although different types of soft-
ware components exist, for pragmatic reasons, we consider a component simply as
an element of the software architecture providing one or more services. Software
systems that are assembled from existing prepackaged components may be repre-
sented by the same components in a performance model [46]. Examples of com-
ponents are: web services, Enterprise Java Beanss (EJBs) in Java Enterprise Edi-
tion (Java EE) applications [7, 8, 10], or IComponent extensions in .NET. Apart
from building performance models of systems assembled from prepackaged com-
ponents, previous research on architecture extraction targeted system reengineer-
ing scenarios. Examples of reverse engineering tools and approaches in this area
are for example FOCUS [17], ROMANTIC [25], Archimetrix [44] or SoMoX [3].
These approaches are either clustering-based, pattern-based, or a combination of
both. Components are identified from a reengineering perspective which does not
necessarily correspond to deployable structures of the current implementation. Fur-
thermore, the choice of an appropriate granularity is important. The complexity of a
component decomposition can be reduced by merging sub-services. However, there
is no rule that can be automatically applied to solve the granularity problem. To
allow automated learning of the system structure, the system and its components
should provide information about their boundaries. If no predefined component
boundaries are provided, component identification requires manual effort. In gen-
eral, the following guidelines can be applied in case of component-based systems
implemented using an object-oriented programming language: i) classes that imple-
ment component interfaces form components, ii) all classes that inherit from a base
class belong to the same component, iii) component A uses component B → A is
a composite component containing B. Compared to component extraction, the au-
tomated identification of hardware and software resources in a system environment
is already supported by industrial software tools For instance, [26] or [47] provide
such functionalities. An open issue is to define common interfaces for resource ex-
traction. This would greatly improve the integration of different tool chains sup-
porting interoperability. Deployment information can be extracted using event logs
containing identifiers for software components and resources. The extraction pro-
cess creates one deployment component for each pair of software component and
resource identifier. Summing up, there are still many open research questions and
a lack of tool support for a full automation of the extraction of information about
the system structure. However, many semi-automatic solutions have already been
proposed and successfully applied in case studies.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

504 Walter et al.

17.4 Model Parameterization

Model parameterization includes the determination of resource demands, determi-
nation of the inter-component interactions (control flow), and the extraction of load
profile. In performance models, component resource demands are key parameters
required for quantitative analysis. A resource demand describes the amount of a
hardware resource needed to process one unit of work (e.g., a user request, a system
operation, or an internal action). The granularity of resource demands depends on
the abstraction level of the control flow in a performance model. Resource demands
may depend on the values of input parameters. This dependency can be either cap-
tured by specifying the stochastic distributions of resource demands or by explicitly
modeling parametric dependencies.

The estimation of resource demands is challenging as it requires the integration
of application performance monitoring solutions with resource usage monitors of
the operating system in order to obtain resource demand values. Operating system
monitors often provide only aggregate resource usage statistics on a per-process
level. However, many applications (e.g., web and application servers) serve different
types of requests with one or more processes.

Profiling tools [20, 21], typically used during development to track down per-
formance issues, provide information on call paths and execution times of individ-
ual functions. These profiling tools rely on either fine-grained code instrumenta-
tion or statistical sampling. However, these tools typically incur high measurement
overheads, severely limiting their usage in production environments, and leading to
inaccurate or biased results. In order to avoid distorted measurements due to over-
heads, [34,35] propose a two-step approach. In the first step, dynamic program anal-
ysis is used to determine the number and types of bytecode instructions executed by
a function. In a second step, the individual bytecode instructions are benchmarked
to determine their computational overhead. However, this approach is not applica-
ble during operation and fails to capture interactions between individual bytecode
instructions. APM tools enable fine-grained monitoring of the control flow of an
application, including timings of individual operations. These tools are optimized to
be also applicable to production systems.

Modern operating systems provide facilities to track the consumed CPU time of
individual threads. This information is, for example, also exposed by the Java Run-
time Environment and can be used to measure the CPU resource consumption by
individual requests as demonstrated for Java in [10] and at the operating system level
in [2]. This requires application instrumentation to track which threads are involved
in the processing of a request. This can be difficult in heterogeneous environments
using different middleware systems, database systems, and application frameworks.
The accuracy of such an approach heavily depends on the accuracy of the CPU time
accounting by the operating system and the extent to which request processing can
be captured through instrumentation.

Over the years, a number of approaches to estimate the resource demands us-
ing statistical methods have been proposed. These approaches are typically based
on a combination of aggregate resource usage statistics (e.g., CPU utilization) and

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 505

coarse-grained application statistics (e.g., end-to-end application response times or
throughput). These approaches do not depend on a fine-grained instrumentation
of the application and are therefore widely applicable to different types of sys-
tems and applications incurring only insignificant overheads. Different approaches
from queuing theory and statistical methods have been proposed [43], e.g., response
time approximation least-squares regression, robust regression techniques, cluster-
wise regression, Kalman Filter, adaptive filtering, Bayesian estimation, optimiza-
tion techniques, Support Vector Machines, Independent Component Analysis, Max-
imum Likelihood Estimation, and Gibbs Sampling. These approaches differ in their
required input measurement data, their underlying modeling assumptions, their out-
put metrics, their robustness to anomalies in the input data, and their computational
overhead. A detailed analysis and comparison is provided in [43], where a library
for resource demand estimation - LibReDE - is described.

We identify the following areas of future research on resource demand estima-
tion:

1. Current work is mainly focused on CPU resources. More work is required to
address the specifics of other resource types, such as memory, network, or I/O
devices. The challenge with these resource types is, among others, that resource
utilization is often not as clearly defined as for CPU, and the resource access
may be asynchronous. For instance, utilization of a storage I/O device w.r.t.
throughput is hard to quantify since the maximum Input/Output Operations Per
Second of a device is workload dependent itself.

2. Comparisons between statistical estimation techniques and direct measurement
approaches are missing. This would help to better understand their implications
on accuracy and overhead.

3. Most approaches are focused on estimating the mean resource demand. How-
ever, in order to obtain reliable performance predictions it is also important to
determine the correct distribution of the resource demands.

4. Modern system features (e.g., multi-core CPU, dynamic frequency scaling, vir-
tualization) can have a significant impact on the resource demand estimation.

The extraction of information about the interactions between components differs
for design time and run-time. At design time, models can be created based on de-
signer expertise and design documents as proposed in [42], [38], [41], and [14]. The
automated extraction of structural information based on monitoring logs has the ad-
vantage that it tracks the behavior of the actual product as executed at run-time. An
effective architecture can be extracted which means that only executed system ele-
ments are extracted [27]. Furthermore, runtime monitoring data enables to extract
branching probabilities for different call paths [6,10]. The approaches for extraction
of information about inter-component interactions by [23], [5], and [27] use moni-
toring information based on probes injected in the beginning of each response and
propagated through the system.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

506 Walter et al.

17.5 Adaptation

Software systems and surroundings are continuously subject to change (e.g., hard-
ware breakdown, workload increase or decrease). Therefore, performance models
have to be maintained up-to-date and the system has to be adapted to guarantee
the satisfaction of performance requirements. In this section, we face the problem
of maintaining performance models in online scenarios,continuously refining and
calibrating them the performance models to allow them to better fulfill the purpose
for which they are used. First of all, in Section 17.5.1, we discuss adaptation points
which specify what may be changed within a system. Section 17.5.2 is about detec-
tion of changes in the system (e.g., hardware breakdown) and its surroundings (e.g.,
workload). Section 17.5.3 is about model-based reconfiguration in general, followed
by the description of two exemplary reconfiguration frameworks in Section 17.5.4.

17.5.1 Adaptation Points

To support suitable automatic adaptations of a self-aware system, it has to be de-
fined what, in the system, can be subject to change and what not. First, one has to
define what changes shall or can be detected. Secondly, one has to define how the
system may adapt itself. Therefore, it is necessary to identify adaptation points in
the system and respectively in its model. The points where the system architecture
can be adapted can be formalized in an adaptation point meta-model, as proposed
in [24]. Thereby, this sub-model reflects the boundaries of the systems configura-
tion space; i.e., it defines the possible valid states of the system architecture. The
adaptation points at the model level correspond to adaptation operations executable
on the real system at run-time, e.g., adding virtual CPUs to VMs, migrating VMs
or software components, load-balancing requests, variation of algorithms or the size
of a thread-pool. In general, the detection of the change points cannot be executed
automatically since they are typically limited by constraints imposed by the execu-
tion environment, design choices (e.g., the usage of monolithic component/service)
or even by business issues (e.g., in case of infrastructure-as-service we have a max-
imum amount of resources that we can use fixed by the contract). Adaptation point
models are application specific and research on adaption point extraction is in its in-
fancy. For example, the authors are not aware of an extraction mechanism that says
if a component may be replicated or not.

In the future, guidelines or semi-automatic approaches should improve adaption
point model creation. However, whenever identified and formally specified, such
adaption points can enter the online adaptation mechanisms in order to select actions
respecting them and hence to be considered in the adaptation.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 507

17.5.2 Detection of Changes

To detect changes in the system and its surrounding, monitoring infrastructures can
be used to capture the occurrences of relevant events. Even in large and distributed
systems, it is possible to generate, combine and filter huge amounts of events to
timely detect changes in the behavior of the systems. Among existing monitoring
infrastructures, it is worth to mention Glimpse [4], a flexible monitoring infrastruc-
ture, developed with the goal of decoupling the event specification from the monitor-
ing and analysis mechanism. Glimpse was initially proposed to support behavioral
learning, performance and reliability assessment, security and trust management.
Many changes can be detected directly using event logs, e.g., deploy and undeploy
or allocation and deallocation of hardware resources [22]. In such cases, an incom-
ing event triggers a model update directly. However, there are changes in the real
world that require changes of the model that cannot be mapped to an event directly.
For instance, the behavior of software components often depends on parameters that
are not available as input parameters passed upon service invocation. Such param-
eters are not traceable over the service interface and tracing them requires looking
beyond the component boundaries [6]. For example, parameters might be passed to
another component in the call path and/or they might be stored in a database struc-
ture queried by the invoked service. Moreover, the behavior of component services
may also depend on the state of data containers such as caches or on persistent data
stored in a database. For example, databases often behave differently for different
load levels due to caching behavior. Such changes, non-traceable by events, require
a continuous periodic surveillance of the system and a validation and adaptation of
the model both with respect to its structural [22] and parameterization aspects [18].
Note that the prediction of workload changes is covered in detail in Chapter 18. so
we refer the interested reader to that chapter.

17.5.3 Adaptation Mechanisms

Besides externally driven changes, systems may proactively change according to
model-driven reconfigurations based on predictive analysis. This system-triggered
change idea is close to the self-aware computing vision as it includes deduction
of future states. The automated and dynamic nature of the reconfiguration process
poses new challenges on the decision step that aims at choosing the next system
configuration in order to overcome the observed problem. Most approaches use
predetermined strategies coded in the application or in the reconfiguration frame-
work [16]. However, in QoS management, a predetermined schema of decision can
prevent the implementation of smart alternatives more suitable to effectively over-
come the observed problems. Compared to threshold-based approaches, the use of
predictive system performance models improves the adaptation process. It allows
the choice of the system reconfiguration alternative that is predicted to satisfy the
performance requirements of the system [11, 12, 19, 36].

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

508 Walter et al.

In case of self-aware resource management in data-centers, a general framework
observes the software application during its execution to monitor performance at-
tributes of the software application. Whenever the performance constraints are no
longer satisfied, the adaptation management process will start. The monitoring data
is evaluated in order to identify the performance problem and the portion of the sys-
tem affected by it. Such information is used to plan changes in the system configura-
tion in order to overcome the observed problem. Whenever a new system configura-
tion is determined, the changes are enacted and the system configuration is modified
accordingly. Such general framework has been realized in different application do-
mains (e.g., in service oriented software, in cloud computing, in component based
systems).

At design time the full design space can be explored [31]. At run-time it is not
possible to explore all design alternatives. Instead of a full exploration, greedy
approaches are common. For example, in the Performance Management Frame-
work (PMF) [11], the configuration alternatives are built on-the-fly by applying re-
configuration policies suitable for the application. At PMF, the initial performance
model is specified by performance specialists. The next ones instead are generated
on-the-fly by modifying the current performance model during the evaluation of the
reconfiguration policies. Finally, the information collected during the monitoring
phase is used to evaluate the predictive performance model(s).

The description of the alternatives needs to be simple in order to reduce the over-
head of the model generation and evaluation, and, hence, of the decision step. This
simplification may have impact on the accuracy of the measured performance in-
dices, but the evaluation should be accurate enough for the choice of the recon-
figuration alternative. The intuition here is that all the alternatives are represented
at the same level of abstraction and the actual data are observed through the same
abstractions thus providing a uniform workbench to consistently evaluate different
alternatives. In [11], this intuition is confirmed by an empirical experimentation that
showed that the chosen alternative was indeed the best among the generated ones.
There are some major open issues in online model adaptation.

1. When should the reconfiguration be performed? The condition that triggers the
adaptation process is a very critical issue in run-time performance management.
It influences the execution frequency of the reconfiguration loop. Conditions
that are verified too often lead to a high overhead: the management framework
can consume more resources than the application itself. Conversely, conditions
that rarely trigger the reconfiguration can prevent a timely management of per-
formance problems. The critical issue here is to determine the best trade-off
between computational overhead and timely resolution of performance prob-
lems.

2. Cost-benefit analysis for the next reconfiguration step. In order to be effec-
tive, the reconfiguration process must actually improve the performance of the
managed system. Indeed, complex systems must address several non-functional
requirements. The risk of having a degradation of some other non-functional
property (e.g., security) related to the reconfiguration is avoided by allowing
only a controlled set of configuration alternatives, which are decided by the de-

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 509

veloper according to the risks associated with the reconfiguration. Moreover,
at each reconfiguration step, the costs to place the system in the new selected
configuration, should be considered during the selection. This can be achieved
by combining the result of the model evaluation provided by the solver with a
coefficient representing the cost of the reconfiguration process.

3. Extensive search for the best reconfiguration versus finding a sufficient recon-
figuration very fast.

Whenever a system and the corresponding performance model are adapted, the mon-
itoring infrastructure that supports the adaptation framework could be subject to
adaptation itself. For example: reploying some components may require redeploy-
ing the probes as well; dynamic binding of a different service would also change
the catch and monitor event. As a consequence, an adaptable monitoring infrastruc-
ture able to reflect the system changes must be used. An example of such a flexible
monitoring infrastructure can be found in [28]. However, this opens a wide research
area that is out of scope of this chapter.

17.5.4 Model-based Adaptation Frameworks

In this section, we discuss two frameworks for model-based system adaptation at
run-time. Section 17.5.4.1 presents the Performance Management Framework [11]
and Section 17.5.4.2 the Strategies/Tactics/Actions [24] framework. Extraction of
system structure and calibration will be mostly left out for complexity reasons.

17.5.4.1 Performance Management Framework

Performance Management Framework (PMF) [11] is an environment that focuses
on run-time management of performance requirements of complex software sys-
tems. It monitors the current performance of the application and, when some prob-
lem occurs, it chooses a new configuration based on the feedback provided by the
online evaluation of the performance models corresponding to different reconfigu-
ration alternatives. The main characteristic of PMF is the heuristic mechanism to
generate such alternatives. Differently from other approaches it does not rely on a
fixed repository of predefined configurations but on a reconfiguration policy defined
as a suitable combination of basic reconfiguration rules. Such basic reconfiguration
rules guarantee the validity of the final reconfiguration policy with respect to exter-
nal constraints (e.g, usage of legacy systems, usage of resources).

The reconfiguration policy is evaluated on the data retrieved by the online moni-
toring (that represents a snapshot of the current system state), thus generating a num-
ber of new configurations. Once such alternatives have been generated, the online
evaluation is carried out to predict which one is most suitable to solve the observed
problem.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

510 Walter et al.

The use of predictive system performance models improves the reconfiguration
process. It allows the choice of the system reconfiguration alternative that guaran-
tees the performance constrains and shows, in the predictive analysis, better per-
formance. However, the run-time evaluation of predictive models representing the
software systems poses strong requirements on the models themselves as discussed
later.

The PMF approach is based on: i) monitoring of the running system to col-
lect data, ii) dynamic reconfiguration to change the running configuration, and iii)
model-based performance analysis to decide the next system configuration among
the available ones.

Performance

model

Reconfiguration

policies

C1 C2

C3 C4

Software

architecture C1 C2 C3
C1 C2 C3

C1 C2 C3

op1

op2

op3

I1:C1

I3:C3

I2:C2

I4:C4
New application

configuration

I1:C1

I3:C3

I5:C2

I2:C2

I4:C4

monitor data

Current application

configuration Perf. Model

Alt1

RP1
RPk RPn

Results Results Results

Manager

Other

factorsRPk

Perf. Model

Altk

Perf. Model

Altn

New

performance

model

Solver

Fig. 17.1: The Performance Management Framework (PMF).

Figure 17.1 outlines the PMF process and its flow of activities. PMF observes the
software application during its execution to monitor performance attributes of the
software application. Whenever the performance constraints are no longer satisfied,
the adaptation management process is triggered. The monitoring data is evaluated
in order to identify the performance problem and the portion of the system affected
by it. Such information is used to plan changes in the system configuration in or-
der to overcome the observed problem. Whenever a new system configuration is
determined, the changes are enacted and the system configuration is modified ac-
cordingly.

In the PMF, the configuration alternatives are built on-the-fly by applying recon-
figuration policies suitable for the application. The initial performance model is, in
general, specified by performance specialists. The next ones instead are generated
on-the-fly by modifying the current performance model during the evaluation of the

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 511

reconfiguration policies. Finally, the information collected during the monitoring
phase is used to evaluate the predictive performance model(s).

The description of configuration alternatives must be simple in order to reduce
the overhead of the model generation and evaluation, and, hence, of the decision
step. This simplification may have impact on the accuracy of the measured perfor-
mance indices, but the evaluation should be accurate enough for the choice of the
reconfiguration alternative. The intuition here is that all the alternatives are repre-
sented at the same level of abstraction and the actual data are observed through
the same abstractions thus providing a uniform workbench to consistently evaluate
different alternatives. In [11], this intuition is confirmed by an empirical experi-
mentation that showed that the chosen alternative was indeed the best among the
generated ones.

Application of PMF on SIENA publish/subscribe middleware

In [11], PMF has been used to dynamically reconfigure the SIENA middleware
[13] topology depending on the utilization and throughput of SIENA routers. Ac-

Fig. 17.2: SIENA Architecture.

cording to the general publish/subscribe model introduced above, the SIENA ar-
chitecture (depicted in Figure 17.2) defines two main entities: (i) the clients and
(ii) the event-service. Clients may be both publishers (i.e., objects of interest) and
subscribers (i.e., recipients) that express their interest in certain kinds of events by
supplying a filter. The event-service, composed of one or more servers intercon-
nected in a hierarchical fashion (shown in Figure 17.3), forms a store-and-forward
network that is responsible for delivering events from publishers to the subscribers
that submitted a filter matching the respective events.

The performance of a SIENA network depends on the performance of each
SIENA server within the event-service and of the SIENA network topology. The
performance of a SIENA router depends on the number of stored filters, as well as on
the traffic generated by the clients connected to it. The SIENA network topology af-
fects the routing of subscriptions and publications, and thus the global performance

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

512 Walter et al.

of the middleware. Indeed, since these indices are correlated by the utilization law,

S0

S1
S2

S3 S4

C0

C1

C3

C4

C5

C6

C7

C8

C9

C2

Fig. 17.3: A possible configuration for the SIENA network

in the experimental setup of SIENA publish subscribe middleware [11] we use the
routers utilization as a basis to decide when a reconfiguration has to be performed.

Due to the event dispatcher rules and the dynamism of the network, it can happen
that one or more routers are overloaded and degrade the performance of the whole
network. For example, a router might be the access point of too many clients or it
might be the root of a large sub-network, while other routers are unloaded (in this
case the hierarchical structure is not balanced). When a SIENA router is overloaded
(i.e., its utilization is high), we aim to reconfigure the network in order to prevent
critical performance scenarios. The possible policies to reconfigure the network are
specified as follows:

Moving SIENA clients – One or more SIENA clients are moved from the over-
loaded SIENA router to the unloaded one(s). This policy aims at balancing the work-
load among the routers. Note that, in order to obtain a significant improvement, the
receiving routers must not belong to the sub-hierarchy of the overloaded router.

Changing SIENA routers’ internal parameters – The router implementation
allows the modification of the number of its internal threads satisfying the service
requests of external software entities. In this way, it is possible to add (software)
processing capabilities to each router.

Changing SIENA routers topology – One or more routers are switched from the
overloaded router to the unloaded ones. This policy aims at balancing the workload
among the routers switching them from one master to another. Again, to reach an
improvement, the reconfigured routers must be attached to a master that does not
belong to the sub-hierarchy of the overloaded router.

Adding/removing SIENA routers – The last possible reconfiguration policy is
to remove/add router instances in order to increase/decrease the processing capacity
of the network. Of course, we add new router instances if we need more (software)
processing capacity, whereas we remove router instances whenever there are too
many routers with respect to the needs.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 513

The online adaptation of the performance model has to respect the changing re-
quirements of the software system the model represents. Moreover, a reconfigura-
tion is normally not intended to change the application functionality (e.g., the substi-
tution of a component with a new one providing different services). This restriction
is necessary since functional changes in the application would normally imply a
re-design of the performance model, and not only a change in its topology or in
some parameters. Consequently, the reconfiguration process could not be realized
in a completely automated manner.

In line with the above observations, in PMF [11] the allowed model reconfigura-
tions are of two kinds: they may change internal parameters of software components
(such as the number of threads or other features defined by the component devel-
oper); they may change the system topology by adding/removing component and/or
connector instances. To relax this restriction, the online reconfiguration of models
should rely on a database containing several different implementations of a com-
ponent together with their performance models. When the reconfiguration policy
requires the substitution of an implementation of a component, the adaptation of the
performance model is done by replacing the sub-model of the first implementation
with the one of the new implementation retrieved from the database.

PMF has been the first approach in literature to self-adapt system that uses per-
formance models at run-time. In PMF, the predictive models are used to support
the decision of how to reconfigure the system to overcome performance problems
observed through the monitoring. In this way, the selected reconfiguration guaran-
tees the performance requirements satisfaction until both system and environment
characteristics do not change considerably.

17.5.4.2 S/T/A Adaptation Framework

In this section, we illustrate, how an architectural performance model of a soft-
ware system (modeled with the Descartes Modeling Language (DML) described in
Chapter 16 or [30]) can be updated and kept in sync with the real system using
the Strategies/Tactics/Actions (S/T/A) adaptation framework [24]. We demonstrate
this based on an industrial case study. The example model was created as part of a
cooperation with Blue Yonder GmbH & Co. KG, a leading service provider in the
field of predictive analytics and big data. The modeled system (called Blue Yonder
system) provides forecasting services used by customers for predicting, e.g., sales,
costs, churn rates. These services are based on compute-intensive machine-learning
techniques and subject to customer SLAs. In this case study, the DML models were
used to predict the resource requirements for a given usage scenario and optimize
the resource allocation to reduce costs. Figure 17.4 depicts an excerpt of a DML
model in a UML-like notation. Blue Yonders system consist of three types of com-
ponents: Gateway Server, Database, and Prediction Server. These
components run on a heterogeneous resource environment composed of low-cost
desktop computers and high-end machines. The Prediction Server provides
two services: train and predict. The train service infers a mathematical

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

514 Walter et al.

<<DataCenter>>

BYDC

<<FineGrainedBehavior>>

IPredictionServer.predict()

<<ComputingInfrastructure>>

desc2

<<FineGrainedBehavior>>

IDatabase.write()

<<FineGrainedBehavior>>

IGateway.predict()

<<implements>>

<<ComputingInfrastructure>>

desc1

<<ComputingInfrastructure>>

desc4
Database

Gateway

Server

<<ComputingInfrastructure>>

desc3
Prediction

ServerA

Prediction

ServerB

IGateway

 train()

 predict()

 results()

IDatabase

 write()

 query()IPredictionServer

 train()

 predict()

<<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=2

<ConfigurationSpecification>>

ResourceType="CPU"

ProcessingRate=2.7GHz

Cores=8

<<UsageProfile>>

UserPopulation=10

ThinkTime=0.0

Service="train"

RecordSize=500,000

<<BranchAction>>

doLoadBalancing

Probability: 0.5

<<ExternalCallAction>>

PredictionServerA.predict

Probability: 0.5

<<ExternalCallAction>>

PredictionServerB.predict

<<InternalAction>>

parsePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.04015 + (2.628 * 10^(-8) * recordsize)) * 2700

* (recordsize / bucketsize)"

<<InternalAction>>

schedulePredictionJobs

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(0.5506 + (7.943 * 10^(-8)

* recordsize)) * 2700"

<<implements>>

<<ExternalCallAction>>

predict_write

<<InternalAction>>

verify_results

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="(1.225 + (1.827 * 10^(-7) *

recordsize)) * 2700 * (recordsize / bucketsize)"

<<implements>>

<<ModelEntity

ConfigRange>>

minInstances=1

maxInstances=16

1 Gbit Ethernet

<<InternalAction>>

writeData

<<ParametricResourceDemand>>

ResourceType="CPU"

Unit="CpuCycles"

Specfication="recordsize"

Fig. 17.4: Excerpt of the DML BlueYonder System Model

model for the available historical data. The predict service uses this model to
return forecasts.

To enable performance predictions, services have to be equipped with model
variables (e.g., branching probabilities, resource demands). For model parameter-
ization, DML supports a hybrid approach: all model variables can be declared as
either explicit or empirical. The model parameters in the example model in Fig-
ure 17.4 are all explicit, i.e., the values of the parameters are defined at model
creation time. Empirical model parameters need to be learned based on monitor-
ing data. Thus, it is possible to specify some model parameters based on expertise
knowledge in advance while others can be learned from monitoring data collected

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 515

at system run-time. Further, the model in Figure 17.4 includes an example for an
adaptation point. Adaptation points can be either associated with model parame-
ters (e.g., number of CPU cores) or with model entities. In the example model, the
adaptation point (see ModelEntityConfigRange) is associated with a com-
ponent specifying the minimum and maximum number of instances of this com-
ponent that are allowed. In the example, the PS component is instantiated twice
(PredictionServerA and PredictionServerB). The depicted configura-
tion can be changed using adaptation processes. Figure 17.5 shows a schematic
representation of an adaptation process for the Blue Yonder system. The objective is

<<Strategy>>

FindDeployment

<<uses>>

<<Strategy>>

ReduceDeployment

<<uses>>

<<Tactic>>

DecreaseResources

weight=1.0

<<AdaptationPlan>>

<<Action>>

removePsInstance

LowBudgetMachine

<<Action>>

removePsInstance

HighEndMachine

50%

50%

<<Strategy>>

ConsolidateDeployment

<<Objective>>

response_time < SLA

<<uses>>

<<Tactic>>

MigratePsInstance

weight=1.0

<<AdaptationPlan>>

<<Action>>

migratePsInstance

<<Tactic>>

IncreaseResources-LowBudget

weight=0.5

<<AdaptationPlan>>

<<Action>>

addPsInstance

LowBudgetMachine

<<Tactic>>

IncreaseResources-HighEnd

weight=1.0

<<AdaptationPlan>>

<<Action>>

addPsInstance

HighEndMachine

<<uses>>

Fig. 17.5: Adaptation process for the Blue Yonder system.

to keep the response time below a certain SLA (while at the same time optimize the
resource efficiency). In order to achieve this objective, the adaptation mechanism
uses the following strategies: FindDeployment, ReduceDeployment, and
ConsolidateDeployment. The FindDeployment strategy launches new
PS instances until all customer SLAs are fulfilled. It contains two different tactics
starting the new PS instances on low-budget machines or on high-end machines,
respectively. ReduceDeployment removes unnecessary PS instances from ma-
chines to save operating costs, e.g., if the workload of a customer has decreased.
Finally, ConsolidateDeployment migrates PS instances between machines
with the goal to improve efficiency.

If a strategy contains different tactics to reach a certain objective, S/T/A assigns
weights to the tactics, which are dynamically updated based on their predicted im-
pact. The tactic with the highest weight is always applied first until the objective
is reached or the tactic’s weight is decreased and another tactic becomes the tac-
tic with the highest weight. An educated setting of initial weights may speed up
convergence, however, it is not required.

The reconfiguration planning step ends when the adaptation process has deter-
mined a series of reconfigurations that results in all application objectives being
fulfilled. The reconfigurations are then applied on the real system. Thus, the model-
based adaptation ensures that all reconfigurations are first applied on the model
level, and their impact is predicted before applying them on the real system.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

516 Walter et al.

DML can be used to predict the impact of changes in the workload and system
configuration on the performance and resource usage of the application. DML is
a descriptive model designed for high expressiveness and good understandability.
In order to enable performance predictions, DML relies on mathematical analy-
sis techniques based on existing stochastic modeling formalisms, such as (Layered)
Queueing Networks (LQNs) and Queueing Petri Nets (QPNs). In [6], three different
model-to-model transformations are defined providing different levels of prediction
speed and accuracy: (a) bounds analysis uses operational analysis from queueing
theory to determine asymptotic bounds on the average throughput and response
time, (b) an LQN solver offering fast analytical model solution, and (c) a QPN
solver supporting the analysis of larger models using simulation. The benefit of the
transformation approach is that it provides the flexibility to switch between differ-
ent prediction techniques depending on the prediction goals. The prediction goals
comprise the requested performance metrics, the required accuracy and the time
constraints. In [6], an algorithm is described that automatically selects a suitable
transformation depending on the prediction goals. This algorithm is able to tailor
the input model and remove parts that are not relevant for predicting the requested
performance metrics. Thus, the model complexity can be reduced to speed up the
analysis.

Another important issue is how to determine when the model-based adaptation
should be triggered. At Blue Yonder, users have to book services in advance which
allows to predict future incoming requests. In a general setting, enabling proactive
adaptations of a system requires the use of forecasting methods to predict changes in
the workload (described by the usage profile in DML). Chapter 18 introduces such
forecasting methods, which can be combined with DML to detect changes in the us-
age profile. If workload changes are detected, the previously described mechanisms
can be used to determine if and how the system should be reconfigured

17.6 Conclusion and Open Challenges

In order to be self-aware, a system needs to create an internal model representation
of itself. The extraction of performance models yields an abstraction of the real sys-
tem capturing only a subset of factors influencing the performance of the system.
We briefly discuss the open challenges for completely automating the model extrac-
tion process. Existing research on automated model extraction is mostly based on
small case studies and the majority of approaches proposed in the literature have
not yet been validated in the context of large real-life systems. Improvements can
be achieved by developing extraction tool benchmarks (which are currently miss-
ing) and by defining specific extraction tool design goals. Existing model extraction
approaches differ in accuracy, granularity, and update behavior. So far, there are al-
most no comparisons between different approaches. Besides this, we identify the
following challenges for performance model extraction:

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 517

• Testing if the extracted model accurately reflects the system behavior. The as-
sessment of validity and accuracy of extracted models is often based on trial
and error. An improvement would be to equip models with confidence intervals
that provide hints on their validity.
• Models may become outdated if they are not updated as the system evolves.

Change point detection mechanisms are required to learn when models get out
of date and when to update them.
• Devise guidelines or semi-automatic approaches for the extraction of adaptation

points to derive actions for online adaptation.
• Current performance modeling formalisms barely ensure the traceability be-

tween models and the systems they represent. Explicit traceability information
should be stored as part of the models.
• The automated inspection of the system under test often requires technology

specific solutions. One approach to enable tools that are less technology-specific
might be a definition of self-descriptive resources using standardized interfaces.
• A system can be modeled at different granularity levels. Extraction approaches

usually support only one. Automated identification of an appropriate model
granularity level and model reduction techniques are promising research areas.
• The automated identification and extraction of parametric dependencies in call

paths and resource demands would enable significant improvements in the pre-
diction accuracy of extracted models. Basic approaches, based on static code
analysis, have been proposed in [33].
• Model extraction should support parallelism (multi-core systems and asyn-

chronous calls) [32].

References

1. Mahmoud Awad and Daniel A. Menascé. Computer Performance Engineering: 11th European
Workshop, EPEW 2014, Florence, Italy, September 11-12, 2014. Proceedings, chapter On the
Predictive Properties of Performance Models Derived through Input-Output Relationships,
pages 89–103. Springer International Publishing, Cham, 2014.

2. Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. Using Magpie for re-
quest extraction and workload modelling. In Proceedings of the 6th Symposium on Operating
Systems Design & Implementation (OSDI’04), pages 18–18. USENIX Association, 2004.

3. Steffen Becker, Michael Hauck, Mircea Trifu, Klaus Krogmann, and Jan Kofron. Reverse
engineering component models for quality predictions. In Proceedings of the 14th European
Conference on Software Maintenance and Reengineering (CSMR ’10), pages 199–202. IEEE,
2010.

4. Antonia Bertolino, Antonello Calabrò, Francesca Lonetti, and Antonino Sabetta. Glimpse: A
generic and flexible monitoring infrastructure. In Proceedings of the 13th European Workshop
on Dependable Computing, EWDC ’11, pages 73–78, New York, NY, USA, 2011. ACM.

5. Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse engineering of UML
sequence diagrams for distributed Java software. IEEE Transactions of Software Engineering,
32(9):642–663, 2006.

6. Fabian Brosig. Architecture-Level Software Performance Models for Online Performance Pre-
diction. PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany, 2014.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

518 Walter et al.

7. Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Automated extraction of architecture-
level performance models of distributed component-based systems. In Proceedings of the 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE 2011), 2011.

8. Fabian Brosig, Samuel Kounev, and Klaus Krogmann. Automated Extraction of Palladio
Component Models from Running Enterprise Java Applications. In Proceedings of the 1st
International Workshop on Run-time mOdels for Self-managing Systems and Applications
(ROSSA 2009). ACM, 2009.

9. Andreas Brunnert, Andre van Hoorn, Felix Willnecker, Alexandru Danciu, Wilhelm Hassel-
bring, Christoph Heger, Nikolas Herbst, Pooyan Jamshidi, Reiner Jung, Joakim von Kistowski,
Anne Koziolek, Johannes Kroß, Simon Spinner, Christian Vögele, Jürgen Walter, and Alexan-
der Wert. Performance-oriented DevOps: A research agenda. Technical Report SPEC-RG-
2015-01, SPEC Research Group — DevOps Performance Working Group, Standard Perfor-
mance Evaluation Corporation (SPEC), 2015.

10. Andreas Brunnert, Christian Vgele, and Helmut Krcmar. Automatic Performance Model Gen-
eration for Java Enterprise Edition (EE) Applications. In MariaSimonetta Balsamo, WilliamJ.
Knottenbelt, and Andrea Marin, editors, Computer Performance Engineering, volume 8168
of Lecture Notes in Computer Science, pages 74–88. Springer Berlin Heidelberg, 2013.

11. Mauro Caporuscio, Antinisca Di Marco, and Paola Inverardi. Model-based system reconfig-
uration for dynamic performance management. Journal of Systems and Software, 80(4):455–
473, 2007.

12. Valeria Cardellini, Emiliano Casalicchio, Vincenzo Grassi, Stefano Iannucci, Francesco Lo
Presti, and Raffaela Mirandola. MOSES: A framework for qos driven runtime adaptation of
service-oriented systems. IEEE Trans. Software Eng., 38(5):1138–1159, 2012.

13. Antonio Carzaniga, David S. Rosenblum, and Alexander L. Wolf. Design and evaluation of a
wide-area event notification service. ACM Trans. Comput. Syst., 19(3):332–383, 2001.

14. Vittorio Cortellessa, Antinisca Di Marco, and Paola Inveradi. Model-based software perfor-
mance analysis. Springer-Verlag, 2011.

15. Marc Courtois and Murray Woodside. Using regression splines for software performance
analysis. In Proceedings of the 2nd International Workshop on Software and Performance
(WOSP ’00), pages 105–114. ACM, 2000.

16. Antinisca Di Marco, Paola Inverardi, and Romina Spalazzese. Synthesizing self-adaptive con-
nectors meeting functional and performance concerns. In Marin Litoiu and John Mylopoulos,
editors, Proceedings of the 8th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS 2013, San Francisco, CA, USA, May 20-21, 2013,
pages 133–142. IEEE Computer Society, 2013.

17. Lei Ding and Nenad Medvidovic. Focus: A light-weight, incremental approach to software
architecture recovery and evolution. In In Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA ’01), pages 191–200. IEEE, 2001.

18. Ilenia Epifani, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli. Model evolution
by run-time parameter adaptation. In Proceedings of the 31st International Conference on
Software Engineering, (ICSE 2009), pages 111–121. IEEE, 2009.

19. Carlo Ghezzi, Valerio Panzica La Manna, Alfredo Motta, and Giordano Tamburrelli.
Performance-driven dynamic service selection. Concurrency and Computation: Practice and
Experience, 27(3):633–650, 2015.

20. Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A call graph execution
profiler. SIGPLAN Not., 17(6):120–126, 1982.

21. Robert J. Hall. Call path profiling. In Proceedings of the 14th International Conference on
Software Engineering (ICSE ’92), pages 296–306. ACM, 1992.

22. Robert Heinrich, Eric Schmieders, Reiner Jung, Kiana Rostami, Andreas Metzger, Wilhelm
Hasselbring, Ralf Reussner, and Klaus Pohl. Integrating run-time observations and design
component models for cloud system analysis. In Proceedings of the 9th Workshop on Mod-
els@run.time co-located with 17th International Conference on Model Driven Engineering
Languages and Systems (MODELS 2014), Valencia, Spain, September 30, 2014., pages 41–
46, 2014.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

17 Learning of Run-time Models for Performance and Resource Management 519

23. Curtis E. Hrischuk, C. Murray Woodside, Jerome A. Rolia, and Rod Iversen. Trace-based load
characterization for generating performance software models. IEEE Transactions of Software
Engineering, 25(1):122–135, January 1999.

24. Nikolaus Huber, André van Hoorn, Anne Koziolek, Fabian Brosig, and Samuel Kounev. Mod-
eling Run-Time Adaptation at the System Architecture Level in Dynamic Service-Oriented
Environments. Service Oriented Computing and Applications Journal (SOCA), 8(1):73–89,
March 2014.

25. Marianne Huchard, A. Djamel Seriai, and Alae-Eddine El Hamdouni. Component-based ar-
chitecture recovery from object-oriented systems via relational concept analysis. In Proceed-
ings of the 7th International Conference on Concept Lattices and Their Applications (CLA
2010), pages 259–270, 2010.

26. Hyperic. Hyperic (2014). http://www.hyperic.com, 2014.
27. Tauseef Israr, Murray Woodside, and Greg Franks. Interaction tree algorithms to extract ef-

fective architecture and layered performance models from traces. Journal of Systems and
Software, 80(4):474–492, 2007.

28. Gregory Katsaros, George Kousiouris, Spyridon V. Gogouvitis, Dimosthenis Kyriazis, An-
dreas Menychtas, and Theodora Varvarigou. A self-adaptive hierarchical monitoring mecha-
nism for clouds. Journal of Systems and Software, 85(5):1029 – 1041, 2012.

29. Samuel Kounev, Konstantin Bender, Fabian Brosig, Nikolaus Huber, and Russell Okamoto.
Automated simulation-based capacity planning for enterprise data fabrics. In Proceedings of
the 4th International ICST Conference on Simulation Tools and Techniques (SIMUTools ’11),
pages 27–36. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunica-
tions Engineering), 2011.

30. Samuel Kounev, Fabian Brosig, and Nikolaus Huber. The Descartes Modeling Language.
Technical report, Department of Computer Science, University of Wuerzburg, 2014.

31. Anne Koziolek, Heiko Koziolek, and Ralf Reussner. PerOpteryx: automated application of
tactics in multi-objective software architecture optimization. In Ivica Crnkovic, Judith A.
Stafford, Dorina C. Petriu, Jens Happe, and Paola Inverardi, editors, Joint proceedings of
the Seventh International ACM SIGSOFT Conference on the Quality of Software Architec-
tures and the 2nd ACM SIGSOFT International Symposium on Architecting Critical Systems
(QoSA-ISARCS 2011), pages 33–42. ACM, New York, NY, USA, 2011.

32. Heiko Koziolek, Steffen Becker, Jens Happe, Petr Tuma, and Thijmen de Gooijer. Towards
Software Performance Engineering for Multicore and Manycore Systems. SIGMETRICS Per-
form. Eval. Rev., 41(3):2–11, December 2013.

33. Klaus Krogmann. Reconstruction of Software Component Architectures and Behaviour Mod-
els using Static and Dynamic Analysis. PhD thesis, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany, 2010.

34. Michael Kuperberg, Martin Krogmann, and Ralf Reussner. ByCounter: Portable runtime
counting of bytecode instructions and method invocations. In Proceedings of the 3rd Interna-
tional Workshop on Bytecode Semantics, Verification, Analysis and Transformation, 2008.

35. Michael Kuperberg, Martin Krogmann, and Ralf Reussner. TimerMeter: Quantifying accuracy
of software times for system analysis. In Proceedings of the 6th International Conference on
Quantitative Evaluation of SysTems (QEST) 2009, 2009.

36. Moreno Marzolla and Raffaela Mirandola. Performance aware reconfiguration of software
systems. In Alessandro Aldini, Marco Bernardo, Luciano Bononi, and Vittorio Cortellessa,
editors, Computer Performance Engineering - 7th European Performance Engineering Work-
shop, EPEW 2010, Bertinoro, Italy, September 23-24, 2010. Proceedings, volume 6342 of
Lecture Notes in Computer Science, pages 51–66. Springer, 2010.

37. Daniel A. Menascé, Mohamed Bennani, and H.Honglei Ruan. On the use of online analytic
performance models, in self-managing and self-organizing computer systems. In Self-star
Properties in Complex Information Systems, pages 128–142, 2005.

38. Daniel A. Menascé and Hassan Gomaa. A method for design and performance modeling of
client/server systems. IEEE Transactions of Software Engineering, 26(11):1066–1085, 2000.

39. Daniel A. Menascé, Honglei Ruan, and Hassan Gomaa. QoS management in service-oriented
architectures. Perform. Eval., 64(7-8):646–663, 2007.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

520 Walter et al.

40. Adrian Mos. A framework for adaptive monitoring and performance management of
component-based enterprise applications. PhD thesis, Dublin City Universit, 2004.

41. Dorin C. Petriu and C. Murray Woodside. Software performance models from system scenar-
ios in use case maps. In Proceedings of the 12th International Conference on Computer Perfor-
mance Evaluation, Modelling Techniques and Tools (TOOLS ’02), pages 141–158. Springer-
Verlag, 2002.

42. Connie U. Smith and Lloyd G. Williams. Performance Solutions: A practical guide to creating
responsive, scalable software. Addison-Wesley, 2002.

43. Simon Spinner, Giuliano Casale, Xiaoyun Zhu, and Samuel Kounev. LibReDE: A library for
resource demand estimation. In Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE ’14), pages 227–228. ACM, 2014.

44. Markus von Detten. Archimetrix: A tool for deficiency-aware software architecture recon-
struction. In Proceedings of the 2012 19th Working Conference on Reverse Engineering
(WCRE ’12), pages 503–504. IEEE Computer Society, 2012.

45. Dennis Westermann, Jens Happe, Rouven Krebs, and Roozbeh Farahbod. Automated infer-
ence of goal-oriented performance prediction functions. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 190–199, 2012.

46. Xiuping Wu and Murray Woodside. Performance modeling from software components. In
Proceedings of the 4th International Workshop on Software and Performance (WOSP ’04),
pages 290–301. ACM, 2004.

47. Zenoss. Zenoss (2014). http://www.zenoss.com, 2014.
48. Zhuoyao Zhang, L. Cherkasova, and Boon Thau Loo. Automating platform selection for

mapreduce processing in the cloud. In Cloud and Autonomic Computing (ICCAC), 2015
International Conference on, pages 125–136, Sept 2015.

P
re

-p
rin

t v
er

si
on

 fo
r p

er
so

na
l u

se
 o

nl
y!

