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Abstract. The performance of today’s enterprise applications is influenced by a
variety of parameters across different layers. Thus, evaluating the performance
of such systems is a time and resource consuming process. The amount of pos-
sible parameter combinations and configurations requires many experiments in
order to derive meaningful conclusions. Although many tools for automated per-
formance testing are available, controlling experiments and analyzing results still
requires large manual effort. In this paper, we apply statistical model inference
techniques, namely Kriging and MARS, in order to adaptively select experiments.
Our approach automatically selects and conducts experiments based on the ac-
curacy observed for the models inferred from the currently available data. We
validated the approach using an industrial ERP scenario. The results demonstrate
that we can automatically infer a prediction model with a mean relative error of
1.6% using only 18% of the measurement points in the configuration space.

1 Introduction

Performance engineering is a crucial discipline throughout development and hosting
of enterprise applications. However, the sheer size and complexity of software sys-
tems and development processes hinders the application of performance engineering in
many cases. Especially in large enterprise applications, the performance of a system is
affected by a variety of parameters. Understanding their influences (and capturing them
in a performance model) requires a huge number of experiments and "what-if" analyses
in order to draw meaningful conclusions.

State-of-the-art performance engineering research approaches [14] use architectural
information and detailed performance behavior descriptions in order to build prediction
models. In most cases, the performance models are a combination of simulation mod-
els built using domain-specific languages and measurements to calibrate, validate or
extend the models [3, 9, 12, 20]. In industrial practice, performance measurements are,
for example, used to benchmark systems, customize configuration settings, or test the
quality of a new release before shipment [26, 28]. In both cases, the amount of possible
parameter combinations and configurations makes the measurement process time and
resource consuming. While many tools provide automation for generating load and get-
ting monitoring information there is still a lot of manual effort remaining to analyze the
measured data and to decide how many and which measurements to conduct in order to
reach a certain goal (e.g., finding a performance-optimized configuration).

In this paper, we present a fully automated approach that (i) selects and conducts
experiments, (ii) uses statistical inference techniques to derive a prediction model based



on the measured data, (iii) validates the prediction model, and (iv) iteratively determines
new experiments that maximise the information gain and thus increase the accuracy of
the model. The statistical inference techniques that we use in our experiments are Multi-
variate Adaptive Regression Splines (MARS) [7] and Kriging [29]. MARS has already
been succesfully applied for software performance analyses [3, 6, 10]. Kriging is a geo-
statistical interpolation technique that has been applied to various research areas dealing
with spatial data. However, to the best of our knowledge Sacks et al. [25] are the only
ones that applied Kriging to analyze data measured in computer system experiments.
The strength of both methods is that they provide robust predictions and do not require
any prior knowledge about the underlying dependencies in the data (e.g., in contrast to
simple linear regression).

The contributions of this paper are (a) the description and comparison of three au-
tomated experiment selection methodologies for the efficient derivation of statistical
performance prediction models and (b) the application of the Kriging interpolation tech-
nique for software performance analyses.

We validate our approach in two case studies. The results demonstrate that adaptive
experiment selection can yield accurate prediction models with a significantly reduced
amount of measurements. Moreover, we show that the geostatistical interpolation tech-
nique Kriging can be applied for the analysis of performance measurements. In fact,
Kriging outperforms MARS for some problem classes.

The remainder of this paper is organized as follows. Section 2 gives an overview
of our ongoing research and brings this paper into line with our overall motivation. In
Section 3, we discuss related research approaches. Section 4 provides basics of statis-
tical model inference using MARS and Kriging. In Section 5, we describe the three
experiment selection algorithms that we apply in our approach. A real-world case study
as well as detailed validation results are illustrated in Section 6. Finally, Section 7 con-
cludes the paper.

2 Motivation and Overview

In this section, we give an overview of our overall approach for performance predic-
tions of enterprise applications. Applying Software Performance Engineering (SPE) in
practice is still a challenging task. In most cases, software vendors built their applica-
tions on a large basis of existing components such as middleware, legacy applications,
or third-party services. Software architects are facing questions like "How does mid-
dleware A affect the performance of my application?", or "Will the application under
development meet the performance requirements?". A software as a service provider
wants to know, for example, "What happens to the performance of my system if I dou-
ble the amount of underlying virtual machines?" or "What happens to performance if
the number of users increases?". Existing model-driven performance engineering ap-
proaches mainly realise a pure top down prediction approach. Software architects have
to provide a complete model of their system in order to conduct performance analyses.
Measurement-based performance evaluations, by contrast, depend on the availability of
the application and can only be applied in late development cycles. Our approach aims



at integrating model-driven and measurement-based performance predictions in order
to build practical performance models of enterprise applications.

2.1 Software Performance Curves

The main idea of our approach is to apply goal-oriented, systematic measurements to
already existing parts of a system. The result of the systematic measurements is a quan-
tification of the dependencies between the system’s usage (workload and parameters)
and performance (timing behavior, throughput, and resource utilization). We refer to
the statistical models describing these dependencies as software performance curves.
Formally, a performance curve describes the performance P (response time, through-
put, and resource utilisation) of a system in dependence on a set of input parameters
A1, . . . , An with n ∈ N. It is a function f :A1×A2× . . .×An → R, where each input
parameter Ai is a number (⊂ R), an enumeration, or a boolean value. The function’s
result represents the performance metric of interest. The benefit of these statistically
inferred models is that they do not require specific knowledge on the internal structure
of the system under study (e.g., in contrast to other approaches that use statistical in-
ference to estimate parameters of queuing networks [15, 17, 22]). Thus, the software
performance curves are a black-box description of the performance behaviour of the
system under test. The derivation of the performance curves requires the execution of
many measurements in different settings. Therefore, we developed a framework called
Software Performance Cockpit [33, 32] that encapsulates best practices and allows for
separation of concerns regarding the different aspects of a performance evaluation. Us-
ing this framework we can automatically control measurements, trigger analyses and
export results [34].

2.2 Integrating Software Performance Curves and Model-driven Performance
Analyses

In order to use the software performance curves to decide on design alternatives, plan
capacities, or identify performance critical system configurations we propose to inte-
grate the curves with model-driven performance engineering approaches (such as sur-
veyed in [1] and [14]). Figure 1 illustrates the approach.

For those parts of a system that are under development we apply an existing ap-
proach for model-driven performance engineering [2]. Software architects specify the
system’s components, behaviour, deployment, and usage (System Modelling). This ac-
tivity results in a System Model that describes the newly developed parts as well as its
usage. In order to consider the effect of existing parts in a performance analysis, we
need to include them in the prediction model. The Measurements described above re-
sult in Performance Data of the system. Such data can be used for Model Inference. The
resulting software performance curves consider the effect of system external parts on
performance, these models have to be integrated with or made available in model-driven
prediction approaches (Integration). This step merges both model types and creates a
common basis for further performance analysis (Prediction). Based on the Performance
Predictions, software architects and performance analysts can decide about design al-
ternatives, plan capacities, or identify critical components.



System Modelling

Integration

Prediction

Model Inference

MeasurementRequirements
Software Components

System
Model

Complete
Performance

Model

Performance
Data

Statistical
Model

Performance 
Predictions

Legend

Workflow

Flow of Artefact

Change of Activity

External Services
3rd Party Artefacts

Fig. 1. Overview of integrating model-driven and measurement-based performance analysis.

In this paper we focus on the Measurement and Model Inference parts. In our future
work, we will describe how performance curves can be integrated with the Palladio
Component Model (PCM) [2].

3 Related Work

In this section, we present related work in the area of measurement-based performance
analysis. Various approaches explore the influence of different parameters on the per-
formance of software applications. The authors focus on the instrumentation itself [5,
13, 19] or use the results to build performance models (or tests) [35, 24, 30, 12] or detect
errors [19, 20].

Reussner et al. [24] introduce an approach to benchmark and compare different
OpenMPI implementations. Their approach combines performance metrics with lin-
ear interpolation techniques to assess the implementation’s overall performance be-
haviour. To maximise the information gain of subsequent experiments, they identify
those points with the (potentially) largest error in the current prediction model. While
this approach presents one of the starting points of our work, it is limited to the evalua-
tion of a single parameter and simple linear interpolation techniques that are not suited
for multi-dimensional scattered data. Another starting point for our work is the approach
of Woodside et al. [35] and Courtois et al. [3]. They introduce a workbench for auto-
mated measurements of resource demands in dependence of configuration and input
parameters. The results are fitted by different statistical methods resulting in so-called
resource functions that capture performance metrics with respect to the given parame-
ters. However, the authors did not compare different experiment selection methodolo-
gies or different analysis methods.

Denaro et al. [5] propose an approach for early performance testing of distributed
applications. Their core assumption (similar to Gorton et al. [8]) is that the middle-
ware is the determining factor of an application’s performance. However, the usage of



middleware features (like transaction or persistence) is determined by the application.
Therefore, Denaro et al. use architecture designs to derive performance test cases that
can be executed and used to estimate the applications performance in the target envi-
ronment. Gorton et al. also conduct measurements in the target environment but use the
results to calibrate a prediction model which is then used to predict the application’s
performance. Both approaches do not explicitly evaluate the influence of parameters
of configurations. The measurements are focused on specific scenarios. While this is
sufficient for the author’s purposes, it is not enough to capture the influence of different
configurations and input parameters on performance.

In [12], Jin et al. introduce an approach called BMM that combines Benchmarking,
production system Monitoring, and performance Modelling. Their goal is to quantify
the performance characteristics of real-world legacy systems under various load condi-
tions. However, the measurements are driven by the upfront selection of a performance
model (e.g layered queuing network) which is later on built based on the measurement
results.

Miller et al. [19] propose Paradyn, a tool for the automatic diagnoses of performance
problems. They apply dynamic instrumentation to control the instrumentation in search
of performance problems. Paradyn starts looking for high-level problems for a whole
application and, once the general problem is found, inserts further instrumentations to
find more specific causes. Miller et al. focus on the detection of performance problems
and do not measure parameter spaces systematically.

4 Statistical Model Inference

Statistical model inference is the process of learning from data [11]. A variety of
methodologies have been developed in statistical science [11, 18, 21] in order to extract
patterns and trends from data or to fit curves to the data. In this paper, we focus on so
called supervised learning problems [11] where the goal is to predict the value of an ob-
served metric based on a number of input parameters. The different statistical methods
have their own characteristics that mainly differ in their degree of model assumptions.
For example, linear regression makes rather strong assumptions on the model under-
lying the observations (they are linear) while the nearest neighbor estimator makes no
assumptions at all. Most other statistical estimators lie between both extremes. Methods
with stronger assumptions, in general, need less data to provide reliable estimates, if the
assumptions are correct. Methods with less assumptions are more flexible, but require
more data. In the course of this paper, we apply and compare two different methodolo-
gies, namely MARS and Kriging. Both methods are able to deal with the assumption
that we have less or no knowledge about the structure of the data. MARS has already
been successfully applied in software performance prediction [3, 6, 10]. Geostatistical
interpolation methods, such as Kriging, are designed to analyse irregularly spaced set of
data points in a three dimensional space [29]. Characteristics of geostatistical data are
(i) high costs to get the value of interest for these points and (ii) that near measurements
are more interrelated to each other then distant ones [31]. We assume that these charac-
teristics are also true for measured performance data. Measuring a single configuration
of an enterprise application often requires extensive effort. Moreover, in most cases a



minor change in a configuration has less effect on the performance metric of interest
than larger changes. Furthermore, the adaptive experiment selection method presented
in Section 5.3 creates an irregularly spaced set of data points. For this reasons, we de-
cided to investigate the use of Kriging to derive software performance curves. In the
following, we briefly introduce the two methods.

4.1 Kriging

Kriging is a generic name for a family of spatial interpolation techniques using gen-
eralised least-squares regression algorithms [18]. It is named after Daniel Krige who
applied the method to a mineral ore body [16]. Examples of Kriging algorithms are
Simple, Ordinary, Block, Indicator, or Universal Kriging. In [18], the authors provide a
comprehensive review of multiple Kriging algorithms as well as other spatial interpola-
tion techniques. Generally, the goal of spatial interpolations is to infer a spatial field at
unobserved sites using observations at few selected sites. According to [18], nearly all
spatial interpolation methods share the same general estimation formula:

Ẑ(x0) =

n∑
i=1

λiZ(xi)

where the estimated value of an attribute at the point of interest x0 is represented by
Ẑ, the observed value at the sampled point xi is Z, the weight assigned to the sampled
point is λi, and the number of sampled points used for the estimation is represented
by n. Furthermore, the semivariance (γ) of Z between two data points is an important
concept in geostatistics. It is defined as:

γ(xi, x0) = γ(h) =
1

2
var[Z(xi)− Z(x0)]

where h is the distance between point xi and x0 and γ(h) is the semivariogram (com-
monly referred to as variogram)[18].

Figure 2 shows an example variogram with an exponential variogram model. The
nugget (or nugget effect) is a contribution to variability without spatial continuity [29].
The range is the distance where the model first flattens out and the sill is the value at
which the variogram model reaches the range.

The Kriging implementation [23] that we applied in our experiments uses the Ordi-
nary Kriging algorithm to estimate unknown points. As described above the estimated
values are computed as simple linear weighted average of neighbouring measured data
points. The weights are determined from the fitted variogram with the condition that
they must add up to 1 which is equivalent to the process of reestimating the mean value
at each new location [4].

4.2 MARS

Multivariate Adaptive Regression Splines (MARS) [7] is a non-parametric regression
technique which requires no prior assumption as to the form of the data. The method fits
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Fig. 2. Sample Variogram

functions creating rectangular patches where each patch is a product of linear functions
(one in each dimension). MARS builds models of the form f(x) =

∑k
i=1 ciBi(x),

the model is a weighted sum of basis functions Bi(x), where each ci is a constant
coefficient [7]. MARS uses expansions in piecewise linear basis functions of the form
[x− t]+ and [t− x]+. The + means positive part, so that

[x− t]+ =

{
x− t , if x > t

0 , otherwise and [t− x]+ =

{
t− x , if x < t

0 , otherwise

The model-building strategy is similar to stepwise linear regression, except that
the basis functions are used instead of the original inputs. An independent variable
translates into a series of linear segments joint together at points called knots [3]. Each
segment uses a piecewise linear basis function which is constructed around a knot at the
value t. The strength of MARS is that it selects the knot locations dynamically in order
to optimize the goodness of fit. The coefficients ci are estimated by minimizing the
residual sum-of-squares using standard linear regression. The residual sum of squares
is given by RSS =

∑N
i=1(ŷi − y)2, where y = 1

N

∑
ŷi, where N is the number of

cases in the data set and ŷi is the predicted value.

5 Experiment Selection

In order to automatically derive a software performance curve with the least possible
number of measurements, we need an iterative algorithm that (i) selects new experi-
ments for each iteration, (ii) infers a statistical model based on the available data after
each iteration, and (iii) is aware of the quality of the inferred model. In the context
of this paper, an experiment (or configuration point) is defined as one configuration of
all parameters (i.e., it corresponds to one point in the configuration space). The con-
figuration space is spanned by the configuration parameters and their corresponding
domains. In this section, we present three experiment selection methodologies that ful-
fill the requirements mentioned above by applying different strategies (see Figure 3).



The random experiment selection strategy randomly selects a fixed number of new ex-
periments. The equidistant experiment selection strategy splits the parameter space in
equidistant areas. The adaptive experiment selection strategy selects new experiments
in those areas of the parameter space that show the worst predictions. Each of the three
methodologies can be combined with various model inference techniques.

Iteration 1 Iteration n

(a) Random Experiment Selection

Iteration 1 Iteration n

(b) Equidistant Experiment Selection

Iteration 1 Iteration n

(c) Adaptive Experiment Selection

Fig. 3. Experiment Selection Methodologies

5.1 Random Experiment Selection based on Global Prediction Error

The first algorithm randomly selects new experiments in order to minimize the global
prediction error. In each iteration a fixed number of n randomly selected configuration
points are measured (see Figure 3 (a)). Based on a set of validation points (measured
before the first iteration starts), we calculate the mean relative error (MRE) of the pre-
diction model. The algorithm terminates when the error is below a predefined threshold,
a predefined number of measurements has been reached, or a predefined measurement
time has expired.

5.2 Equidistant Experiment Selection based on Global Prediction Error

The second algorithm determines the measurement points for the next iteration by
stepwise equidistant splitting of the configuration space (see Figure 3 (b)). We define
P = {x|x ∈ Ri ∧ ∀xi ∈ [0..1]} as a set of all possible positions in the configuration
space with normalized values. An element p ∈ P describes one experiment or config-
uration point. Let the elements p1, p2 ∈ P be two opposing positions that describe the
multidimensional configuration space. Function fcenter : P × P → P returns the cen-
ter of the two given points which is calculated by the element-wise arithmetic middle
of the two vectors. Furthermore, function fedges : P × P → P ∗ returns the set of all
edges of the embraced space defined by two configuration points. The function com-
putes all possible element-wise combinations of the two given configuration points. We
use Hi,n,z as a set which helps to find the experiments for each iteration. H contains a
set of tuples describing areas of the space to be measured, therefore every element in H
consists two opposing positions. The process itself does continuously divide the space
into equidistant areas based on previously computed areas. Thereby, the measurement
iteration is expressed by the index i. The index n is used to iterate over the tuples stored
in H . The third index z ∈ [1, 2] defines which of the two positions stored in every ele-
ment of H is referenced. Formally, the set of experiments to be executed is computed
as follows:



H0 = fedges(p1, p2)× fcenter(p1, p2)

Hi =

|Hi−1|⋃
n=1

fedges(Hi−1,n,1, Hi−1,n,2)× fcenter(Hi−1,n,1, Hi−1,n,2)

Experimentsi = (

|Hi|⋃
n=1

Hi,n,1 ∪Hi,n,2) \ Experimentsi−1

The experiments that will be demanded in the next iteration include all the points
within the tuples of H that have not yet been measured.

The termination criteria as well as the validation procedure are the same as those
defined for the random selection methodology (see 5.1).

5.3 Adaptive Experiment Selection based on Local Prediction Error

In contrast to the algorithms described in the previous sections, this algorithm takes
the locality and the size of single prediction errors into account when determining
experiments for the next iteration (see Figure 3 (c)). We assume that a new experi-
ment at the area with the highest prediction error raises the accuracy of the overall
model at most. Another difference to the previous experiment selection methodologies
is that it does not include all determined points for an iteration in the training data,
but uses a subset of these points for validation. Thus, this methodology does not re-
quire the creation of a validation set before the actual iteration starts. In the following,
we describe the algorithm in detail. First, we introduce some basic data types, vari-
ables and functions followed by a listing of the algorithm. As in Section 5.2, we define
P = {x|x ∈ Ri ∧ ∀xi ∈ [0..1]} as a set of all possible positions in the configura-
tion space with normalized values. Elements of P are declared as p. The elements p1
and p2 are opposing positions necessary to describe a multidimensional space. Func-
tion fcenter : P × P → P returns the center of the two given points which is calcu-
lated by the element-wise arithmetic middle of the two vectors. Furthermore, function
fedges : P × P → P ∗ returns a set of all edges of the embraced space given by p1 and
p2.

In addition, let e ∈ R+ describe the error of the performance curve at a defined area
or position and S = {p1 × p2 × e|p1 ∈ P ∧ p2 ∈ P ∧ e ∈ R+}. Three subsets of S
control the measurement progress. A priority-controlled queue Q ⊂ S contains tuples
describing areas in the configuration space, where the error of the curve ran out of the
acceptable threshold. The order of priority is based on e. The collection V ⊂ S is the
validation set which contains all the tuples describing areas where a good prediction
has already been observed. M ⊂ S is the training set which contains the measurement
results used to create a performance curve. All subsets of S are mutually disjoint and
it holds that S = Q ∪ V ∪M . The function predictM : P → R creates a prediction
results based on the given measurements M for a specific configuration point. The
functionality of the method is based on the assumption, that the prediction error of the
curve on fcenter(p1, p2) is representative for the error in the spatial field embraced by



p1 and p2. The parameter threshold ∈ R+ is predefined by the performance analyst
and gives an option to control the accuracy and thus the runtime of the method.

1: p1 = (1, 1, . . . , 1)
2: p2 = (0, 0, . . . , 0)
3: e =∞
4: Q← {< p1, p2, e >}
5: while sizeof(Q)!=0 do
6: T ← ∅
7: ttmp ← dequeue(Q)
8: T ← T ∪ ttmp

9: while Q.first.e = ttmp.e do
10: ttmp ← dequeue(Q)
11: T ← T ∪ ttmp

12: end while
13: for all t in T do
14: measure all points fedges(t.p1, t.p2), add results to M
15: measure value rm at point fcenter(t.p1, t.p2)
16: rp ← predictM (fcenter(t.p1, t.p2))
17: e← rm

|rm−rp|
18: if e > threshold then
19: for all ptmp in fedges(t.p1, t.p2) do
20: p1 ← fcenter(t.p1, t.p2)
21: ttmp ←< p1, ptmp, e >
22: enqueue(Q, ttmp)
23: M ←M∪ < rm, fcenter(t.p1, t.p2) >
24: end for
25: else
26: V ← V ∪ t
27: end if
28: end for
29: for t in V do
30: measure value rm at point fcenter(t.p1, t.p2).
31: rp ← predictM (fcenter(t.p1, t.p2))
32: e← rm

|rm−rp| .
33: if e > threshold then
34: t.e← e
35: V ← V \ t
36: Q← Q ∪ t
37: end if
38: end for
39: end while
40: for all t in V do
41: measure value rm at point fcenter(t.p1, t.p2)
42: M ←M∪ < rm, fcenter(t.p1, t.p2) >
43: end for



Line 1-4 ensure the preconditions for the actual experiment selection which starts
in line 5. The primary control structure is the loop over Q starting in 5. Lines 6-12 deal
with the selection of all elements with highest error. Starting at line 13 the loop body
executes measurements (line 14) in the area of each selected tuple. Furthermore, it cal-
culates the error for these areas in line 15-17 and defines new subareas to be measured
in further iterations (line 18-25) if the error is greater than the defined threshold. If the
error is less than the threshold the current tuple is stored in V at line 26. To provide
faster convergence against the underlying performance functions it brings significant
advantages to execute this breadth-first approach over all elements with the same e.
This ensures to step down in the area with the highest prediction faults. Since nearly
all interpolation or regression techniques cannot absolutely avoid the influence of new
elements in M onto preliminary well predicted areas, the validation repository V is
checked in line 30-32 for negative effects in areas that have been well predicted before
the last modifications. If for any element in V the curve is still not accurate enough it
is returned to Q at line 33-37 and thus measured in more detail in later iterations. We
expect that the heuristic converges more efficient if a new measurement has only local
effects onto the interpolation function. Finally, line 40-43 copies all elements from V
to M as the positions where measured before and thus the data is available but not yet
added to the training data of the model.

6 Case Study and Validation

In this section, we demonstrate the efficiency of the approach and the accuracy of the
inferred prediction models. Moreover, we apply the software performance curves in a
"real-world" scenario using a large enterprise application. For the evaluation we formu-
late the following research questions:

– RQ1: To which extent are the experiment selection methodologies presented in
Section 5 more efficient (in terms of necessary measurements to create an accurate
prediction model) (i) compared to measuring the full configuration space and (ii)
compared to other approaches?

– RQ2: Are geostatistical interpolation techniques applicable in software perfor-
mance analysis scenarios? Are they more efficient compared to multivariate re-
gression?

– RQ3: Is the approach applicable to automatically create measurement-based per-
formance models of large enterprise applications in a reasonable amount of time?

In the remainder of this section we present two case studies and a discussion of the
results. Figure 4 summarizes the results of the two case studies. The table contrasts
the different combinations of experiment selection method and analysis method. To
determine the quality of the derived prediction model we compared the prediction for
each measurement point in the configuration space with its actual value and calculated
the mean relative error (MRE).

6.1 Communication Server Case Study
In this case study we applied our approach to a scenario described by Courtois and
Woodside [3]. The authors applied a similar adaptive experiment selection approach



combined with MARS to derive resource functions for a unicast-based multicast com-
munications server. The basic components of the server are (i) a Supplier Handler that
reads, packages, and enqueues incoming messages from the Supplier processes and (ii)
a Consumer Router which dequeues a message and sends it to each of its Consumer
processes (see [3] for details). The authors derived the following resource function for
the Consumer Router component:
Consumer-Router-CPU = 1436.73 + 0.1314 ∗ h(msgsize− 1)
−0.0159 ∗ h(−(consumers− 9)) ∗ h(msgsize− 1)
+808.082 ∗ h(consumers− 9)− 149.399 ∗ h(−(consumers− 9))
−0.03 ∗ h(consumers− 9) ∗ h(−(msgsize− 21091))
−0.0092 ∗ h(consumers− 1) ∗ h(−(msgsize− 10808))
+0.0989 ∗ h(msgsize− 4223)− 0.01 ∗ h(−(consumers− 9)) ∗ h(msgsize− 5424)
The domain of message sizes was set between 1 and 64K bytes and the number of
consumers varied from 1 to 10. Thus, the full configuration space consists of 640 mea-
surement points. For our case study, we tried to fit this function using the same domains
for the two parameters. The results (see Figure 4) show that for this case study the com-
binations RandomSelection/MARS with 89 measurement points (#M) and an average
prediction error of 4.1% and AdaptiveSelection/Kriging with 92 measurement points
and an error of 2.3% performed best. Thus, the approaches required only 14% of the
full configuration space to create a very good prediction model. Compared to the ap-
proach presented in [3] which required 157 measurements to build the prediction model
(with an error of 8.58%) we saved 65 measurements (i.e., 41%). However, when com-
paring the two approaches one has to note that we fitted the simulated function and
had not to deal with the real measurement data which might cause additional prediction
error.

6.2 Enterprise Application Case Study

The goal of this cast study is to demonstrate that the approach is applicable on real
data measured on a large enterprise application. We address the problem of customiz-
ing an SAP ERP application to an expected customer workload. The workload of an
enterprise application can be coarsely divided into batch workload (background jobs
like monthly business reports) and dialog workload (user interactions like displaying
customer orders). This workload is dispatched by the application server to separate
operating system processes, called work processes, which serve the requests [28]. At
deployment time of an SAP system the IT administrator has to allocate the available
number of work processes (depending on the size of the machine) to batch and dialog
jobs, respectively. With the performance curve derived in this case study, we enable IT
administrators to find the optimal amount of work processes required to handle the dia-
log workload with the constraint that the average response time of dialog steps should be
less than one second. The system under test consists of the enterprise resource planning
application SAP ERP2005 SR1, an SAP Netweaver application server and a MaxDB
database (version 7.6.04-07). The underlying operating system is Linux 2.6.24-27-xen.
The system is deployed on a single-core virtual machine (2,6 GHz, 1024KB cache).
To generate load on the system we used the SAP Sales and Distribution (SD) Bench-
mark. This standard benchmark covers a sell-from-stock scenario, which includes the



creation of a customer order with five line items and the corresponding delivery with
subsequent goods movement and invoicing. Each benchmark user has his or her own
master data, such as material, vendor, or customer master data to avoid data-locking
situations [27]. The dependent variable is the average response time of dialog steps
(AvgResponseT ime). The independent variables in this setup are (i) the number of
active users (NumUser) where the domain ranges from 60 to 150 and (ii) the num-
ber of work processes for dialog workload (NumWP ) varied from 3 to 6. Thus, we
are looking for the function f(NumUser,NumWP ) = AvgResponseT ime. The
full configuration space consists of 360 measurement points. In order to get statistically
stable results we repeated each measurement multiple times. All in all, the determina-
tion of a single measurement point takes approximately one hour which means that in
the worst case the IT administrator has to measure 15 days in order to determine the
optimal configuration. The results (see Figure 4) show that our adaptive experiment
selection methodologies provides very good results with both analysis methods. The
combination AdaptiveSelection/Kriging required only 64 measurement points (≈18%
of the full configuration space) to derive a prediction model with a mean relative error
of 1.6%. This reduces the time necessary to derive an optimal configuration from 15 to
≈2.5 days.

#M MRE #M MRE #M MRE #M MRE #M MRE #M MRE

2D SDBench 64 1,60% 67 8,30% 54 24,50% 40 14,20% 73 7,60% 72 8,10%

2D Router 92 2,30% 105 3,40% 112 10,80% 39 4,10% 199 10,00% 97 1,20%

1D MOM (QoSA) 21 2,00% 23 4,50% 21 1,20% 23 6,00% 35 0,20% 34 4,40%

3D Linear 544 15,80% 189 21,20% 199 4,60% 198 0,00% 99 7,50% 98 0,00%

3D Non-Linear 709 27,30% 546 26,60% 197 15,40% 198 1,90% 1297 15,00% 253 4,90%

5D Non-Linear 1079 71,10% 113 12,80% 200 1,40% 326 21,00% 824 8,50%
3D Non-Linear (+100) 242 4,20% 197 3,50%

#M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE #M/Full MRE
Communication Server 162/640 10,80% 89/640 4,10% 249/640 10,00% 147/640 1,20% 92/640 2,30% 105/640 3,40%
Enterprise Application 104/360 24,50% 90/360 14,20% 123/360 7,60% 122/360 8,10% 64/360 1,60% 67/360 8,30%

Random Equidistant Adaptive
Kriging Mars Kriging Mars Kriging Mars

EQ
Kriging Mars

HE
Kriging Mars

RD
Kriging Mars

Fig. 4. Case Study Results

6.3 Discussion
The results of the two case studies (see Figure 4) show that the approach presented in
this paper can significantly reduce the effort necessary to derive measurement-based
performance models with high prediction accuracy. In both cases, our approach was
able to derive a very good prediction model using only ≈15% of the full configuration
space (RQ1 (i)). Even the comparison with a similar approach proofed the efficiency of
our methodology (RQ1 (ii)). The equidistant experiment selection strategy generated
the worst results independent of the analysis strategy. The random strategy achieved
good results especially in combination with MARS. However, the best results have
been achieved by the adaptive experiment selection strategy independent of the analy-
sis strategy. But, the Kriging predictions outperformed MARS in both scenarios which
proofs the applicability of geostatistical interpolation techniques for software perfor-
mance analyses (RQ2). The combination AdaptiveSelection/Kriging reduced the time
necessary to find the optimal configuration of an enterprise application server from 15
days to ≈2.5 days which is an import reduction due to the fact that the time for the
configuration of a system in the staging phase is often very limited (RQ3).

7 Summary

In this paper, we presented an approach for the automated and efficient selection of
experiments in order to derive performance prediction models. We introduced three



experiment selection methodologies and combined them with the statistical model in-
ference techniques MARS and Kriging. Moreover, we applied the approach in two case
studies and compared the different combinations of experiment selection and analysis
methods. In these case studies, the combination of adaptive experiment selection and
Kriging achieved the best results. The proposed techniques support software architects
and performance analysts to capture the effect of existing software systems on soft-
ware performance and include these effects into further performance evaluations. In
our future work, we will investigate further experiment selection strategies and analysis
methods. We will address the curse of dimensionality [11] by applying the approach
in case studies with more than two independent parameters. Furthermore, we are going
to integrate the measurement-based performance models with model-driven approaches
as described in Section 2.
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