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ABSTRACT
Benchmarking is a core element in the toolbox of most systems
researchers and is used for analyzing, comparing, and validating
complex systems. In the quest for reliable benchmark results, a con-
sensus has formed that a significant experiment must be based on
multiple runs. To interpret these runs, mean and standard deviation
are often used.

In case of experiments where each run produces a time series,
applying and comparing the mean is not easily applicable and not
necessarily statistically sound. Such an approach ignores the possi-
bility of significant differences between runs with a similar average.
In order to verify this hypothesis, we conducted a survey of 1,112
publications of selected performance engineering and systems con-
ferences canvassing open data sets from performance experiments.
The identified 3 data sets purely rely on average and standard devi-
ation. Therefore, we propose a novel analysis approach based on
similarity analysis to enhance the reliability of performance evalu-
ations. Our approach evaluates 12 (dis-)similarity measures with
respect to their applicability in analysing performance measure-
ments and identifies four suitable similarity measures. We validate
our approach by demonstrating the increase in reliability for the
data sets found in the survey.

CCS CONCEPTS
•Computingmethodologies→Modeling methodologies; • Infor-
mation systems→ Similaritymeasures; •Computer systems
organization → Embedded systems; Redundancy; Robotics; •
Networks → Network reliability.
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1 INTRODUCTION
Benchmarking is a core element in the toolbox of most systems
researchers and is used for analyzing, comparing, and validating
complex systems. In the quest for reliable benchmark results, a
consensus has formed that a significant experiment must be based
on multiple runs [20, 27]. To interpret the different runs various
approaches exist, but often mean and standard deviation are used
to present the outcome of an experiment. In case of experiments
where each run produces a time series applying and comparing
the mean is not easily applicable, besides being not necessarily
statistically sound.

One challenge of such experiments is to ensure that individual
runs do not differ too much. Yet, it may happen that the system
under test presents with multiple types of behavior. This is to
be expected in volatile environments such as cloud resources [1,
21], but also applies to other complex systems such as distributed
database management systems [9, 32, 33]. Another possibility could
also be an unnoticed system component crash during a run.

Here, it is mandatory to identify the different behavior groups in
the gathered data, because: (i) If all runs are compared without this
filter, the analysis of the entire experiment is potentially mislead-
ing; (ii) Identified groups can indicate problems, non-determinism,
disturbances, or uncontrollable events in the experiment set-up;
(iii) Outlier measurements can be used to investigate anomalies;
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(iv) Reporting the results of each group increases the experiment
validity as well as data quality.

However, a method to automatically analyze benchmarking re-
sults regarding their time series similarity or dissimilarity is missing.
Moreover, any applied solution should avoid predefined thresholds
since these are application-specific and are usually calibrated by
domain knowledge experts. To address this situation, we seek to
answer the following three research questions:

RQ.1: Are open data sets available to validate our approach to
detect measurement similarity or dissimilarity?

RQ.2: Given the large number of available similarity and dis-
similarity measures, how comparable are their results and
is there a meaningful subset of these metrics to be used by
practitioners?

RQ.3: Can the use of a subset of similarity and dissimilarity
measures help identify outliers and problems in the data sets
and if so, does their use provide an improvement over the
mean and standard deviation?

Answering these research questions, we analyse publicly available
open data sets from earlier top-level cloud and systems confer-
ences in order to investigate if the sketched problems are actually
observed in practice. Using visual analysis as well as statistical
methods we (i) evaluate various measures to quantify the similar-
ity or dissimilarity of time series data from the same experiment;
(ii) evaluate the correlation between the similarity and dissimilarity
measures and from that derive a list of four such measures; (iii) in-
troduce a novel approach for these measures to identify outliers
in the data sets; and (iv) evaluate the capability of the measures to
identify outliers in comparison to mean and standard deviation.

The remainder of this paper is structured as follows: Section 2
gives an overview of our approach. Section 3 discusses the collection
of open data sets, Section 4 discusses the selection of (dis-)similarity
metrics, and Section 5 outlines our approach to determine (dis-
)similarity in repeated measurements. Further, Section 6 showcases
the results of the proposed approach when applied to the open
data sets. Finally, Section 7 discusses related work, Section 8 covers
threats to validity, and Section 9 concludes the paper with a call to
action to the community.

2 OVERVIEW
In order to answer our research questions, we proceed as follows:
In an initial step, we analyse 1,000+ conference papers to identify
openly available data sets from the cloud computing and perfor-
mance engineering domain. This step is detailed in Section 3. In
parallel, we analyse existing measures for similarity and dissimilar-
ity which are applicable to time series data (cf. Section 4). This is
followed by applying the similarity measures to the performance
metrics found in the data sets. Due to the large number of similarity
measures, we then identify measures with group-wise similar be-
haviour and exclude them from the set of used similarity measures.
In the following step, we apply the remaining similarity measures
to the performance metrics in the data set and identify whether
forming subgroups of runs increases the similarity within them.
Section 5 elaborates this procedure and details how this allows us
to detect conspicuous time series measurements. In a final step, we

Table 1: List of analyzed conferences

Conferences papers Conferences papers

UCC 2018 27 CLOUD 2018 34
UCC 2019 28 CLOUD 2019 84
UCC 2020 28 CLOUD 2020 83
ICPE 2019 33 SOCC 2018 70
ICPE 2020 29 SOCC 2019 54
ICPE 2021 27 SOCC 2020 35
MASCOTS 2018 34 SIGMOD 2018 107
MASCOTS 2019 45 SIGMOD 2019 104
MASCOTS 2020 34 SIGMOD 2020 145

Total 1,112

evaluate whether the found time series are indeed different from
other series from the same experiment.

3 OPENDATA AND DATA SETS
For the sake of clarity, we introduce the terms Time Series, Ex-
periment, and Run. They are used in the remainder of the text to
describe the data sets.

Definition 1 (Time Series). A time series 𝑋 = {𝑥1, . . . , 𝑥𝑛} is a
vector of 𝑛 real-valued observations ordered in time. We do not impose
equidistance in time for the observations.

Definition 2 (Experiment). An experiment defines a repeatable
procedure in order to create data as well as a framework for executing
the procedure and analysing the resulting data set. As such, the exper-
iment defines the used software and hardware components, specifies
timing, parameters, and repetitions.

A data set may contain the outcome of multiple experiments. Usu-
ally, these experiments are performed in the same domain, but vary
with respect to their execution parameters.

Definition 3 (Run). A run is a unique execution of the experi-
ment’s procedure. In our scope, its outcome is one time series for each
performance metric under observation.

For addressing our research questions, we ideally require access to
a large collection of data sets from different performance-oriented
domains. Here, our approach is to conduct a study of published
research papers from recent years. Due to the open data policy
gaining momentum, we expect to find more than enough data sets
for our purposes.

3.1 Methodology
For discovering the data sets for our study, we systematically review
all publications from the last three years of selected top-level sys-
tems and cloud conferences. We decided to include the conferences
shown in Table 1.

Table 1 shows a list of conference iterations from 2018 to 2021 to-
gether with the respective number of papers that we analysed. Over-
all, these conferences were chosen as they give a broad overview
over the cloud and performance community, with over 1,000 pub-
lished papers. The table gives us our first and only inclusion criteria:
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• IC1: The paper was published in any of the three last itera-
tions of our defined conference list.

Next, our study concentrates mainly on exclusion criteria for
filtering the relevant data sets. We define the following exclusion
criteria:

• EC1: The paper does not publish a data set.
• EC2: The published data set is not concerned with perfor-
mance measurements.

• EC3: The measurements do not contain real performance
measurements, but are simulated etc.

• EC4: The measurements contain only aggregated values,
instead of entire measurement time series.

• EC5: The performance measurements contains less than 10
measurement repetitions.

We reviewed all published papers according to the given criteria
and excluded papers matching any of the given exclusion criteria.

3.2 Data sets
In contrast to our expectation, we only identified 3 data sets, de-
noted as DS.1–DS.3, qualified for further analysis.

During our literature review, we noticed that many researchers
would not execute multiple runs when dealing with time series,
but instead argue that the time series itself is already a repeated
measurement, and apply statistical analysis to their single time
series. It should be noted, that our elimination criteria might be
considered tough, however, we do consider repeated measurements
a cornerstone of performance engineering.

DS.1: In [8], the authors conduct measurements on the variability of
performancemeasurement of microservice applications in the cloud.
The experiments consist of ten runs of 21 different configurations
of the TeaStore [38] application on the Google Kubernetes Engine.
Each experiment was 15 minutes long, with an average of 40 service
instances deployed per experiment.

DS.2: DS.2 [30] is conducted by the Mowgli framework [31] and
applied in [14] to model and predict the performance of cloud-
hosted distributed Database Management Systems (DBMSs). The
experiments consist of ten runs of 102 different cloud-hosted DBMS
configurations. The measurements are conducted in a private Open-
Stack cloud and comprise three VM flavours, two NoSQL DBMSs
and eleven DBMS runtime configurations such as cluster size, repli-
cation factor and consistency settings. All measurements are based
on the Yahoo Cloud Serving Benchmark (YCSB) [5] with a write-
heavy workload configuration.

DS.3 This data set was originally published together with [28]. The
authors evaluate the stability of cloud application performance
using micro-benchmarks. For that purpose, they repeatedly start
different types of virtual machines on various regions of Amazon
Web Services. On each virtual machine, they run multiple iterations
of a series of micro-benchmarks. The results of each benchmark
iteration on each virtual machine are published in a csv file on
GitHub1. For the sake of this paper, we consider all iterations of a
micro-benchmark on one virtual machine as a single experiment.

1https://github.com/joe4dev/cwb-analysis/blob/9da7a83d4f4cec7f39c0188c9138ff7b41adf5db/
data_raw/cwb-data-raw.csv

Hence, each virtual machine maps to a set of very short time se-
ries, one for each performance metric investigated. In addition, we
consider the time series (of a performance metric) from different
virtual machines of the same type and regions, e.g., m3.medium in
eu-west-1, as runs of one experiment.

4 MEASURES OF (DIS-)SIMILARITY
Dissimilarities and similarities are widely used in many fields of
science. Although the concept of a distance is mathematically well
defined, there exists no appropriate concept for similarity [4] let
alone similarity for time series. Consequently, we have to elaborate
the term “similiarity” in our case to assess how dissimilar or similar
two time series are. First, we define the dissimilarity as:

Definition 4 (Dissimilarity). Let 𝑋 be a set. A function 𝑑 :
𝑋 × 𝑋 → R is called a dissimilarity, if 𝑑 is non-negative, symmetric
and reflexive, i.e. if for all 𝑥,𝑦 ∈ 𝑋 holds𝑑 (𝑥,𝑦) ≥ 0,𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥)
and 𝑑 (𝑥, 𝑥) = 0.

Analogously, we define the similarity as:

Definition 5 (Similarity). Let𝑋 be a set. A function 𝑠 : 𝑋×𝑋 →
R is called a similarity, if 𝑠 is non-negative, symmetric, i.e. if for all
𝑥,𝑦 ∈ 𝑋 holds 𝑠 (𝑥,𝑦) ≥ 0, 𝑠 (𝑥,𝑦) = 𝑠 (𝑦, 𝑥); and 𝑠 (𝑥, 𝑥) ≥ 𝑠 (𝑥,𝑦) for
all 𝑥,𝑦 ∈ 𝑋 with equality if and only if 𝑥 = 𝑦.

Moreover, we define the normalised (dis-)similarity:

Definition 6 (Normalised (Dis-)Similarity). Let 𝑋 be a set
consisting of measurements. A dissimilarity 𝑑 is a normalised dissim-
ilarity if and only if 0 ≤ 𝑑 (𝑥,𝑦) ≤ 1 for all 𝑥,𝑦 ∈ 𝑋 . A similarity 𝑠 is
a normalised similarity if and only if 0 ≤ 𝑠 (𝑥,𝑦) ≤ 1 for all 𝑥,𝑦 ∈ 𝑋 .

Based on the definitions of normalised (dis-)similarity, the relation-
ship between a normalised dissimilarity 𝑑 and normalised similarity
𝑠 is 𝑑 = 1 − 𝑠 .

4.1 Metric Selection
After formalising the concept of (dis-)similarity, we introduce 12
(dis-)similarities for numerical data comprising traditional distance
metrics and metrics found in literature [3, 7, 35]. The considered
(dis-)similarity are labeled as 𝑠𝑖 and 𝑑𝑖 in Table 2.

Addressing RQ.2, we compare the considered (dis-)similarity
metrics when applying them to DS.1–DS.3. Our goal is to determine
a set of metrics that yield the most diverse results assuming that
this set of metrics detect dissimilarities in the data most efficiently.
Initially, we transform each similarity to a dissimilarity: 𝑚𝑑𝑖𝑠 =

1 −𝑚𝑠𝑖𝑚 . From here on we only consider dissimilarities.
The approach for filtering the best set of metrics is described in

Algorithm 1: The goal of the algorithm is to group dissimilarities
that perform similarly. Then, each of the groups is represented
by one of the dissimilarities in it. For that, we first compute the
dissimilarities over the selected time series of all data sets. For each
dissimilarity, this yields a vector of pairwise dissimilarities, for each
combination of two repetitions from the same data set. As these
correlation vectors are aligned, we can then compute Pearson’s 𝑟
correlation between the resulting vectors.

Figure 1 shows the density chart of the correlations between the
dissimilarities. From Figure 1, we observe that there appears to be a
grouping between some dissimilarities (indicated by light squares),
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Table 2: Considered (dis-)similarity metrics.

𝑠1: Kulczynski 2 1
2
∑
min(𝑥𝑖 , 𝑦𝑖 )

(
1∑
𝑥𝑖

+ 1∑
𝑦𝑖

)
∈ [0, 1]

𝑠2: Bray-Curtis
2
∑
min(𝑥𝑖 ,𝑦𝑖 )∑(𝑥𝑖+𝑦𝑖 ) ∈ [0, 1]

𝑠3: Roberts
∑(𝑥𝑖+𝑦𝑖 ) min(𝑥𝑖 ,𝑦𝑖 )

max(𝑥𝑖 ,𝑦𝑖 )
)∑(𝑥𝑖+𝑦𝑖 ) ∈ [0, 1]

𝑠4: Ruzicka
∑
min(𝑥𝑖 ,𝑦𝑖 )∑
max(𝑥𝑖 ,𝑦𝑖 ) ∈ [0, 1]

𝑠5: Cosine
⟨𝑥,𝑦⟩

∥𝑥 ∥22 ∥𝑦 ∥22
∈ [0, 1]

𝑠6: Kumar-Hassebrook ⟨𝑥,𝑦⟩
∥𝑥−𝑦 ∥22+⟨𝑥,𝑦⟩

∈ [0, 1]

𝑑1: Scaled 𝐿2
∥𝑥−𝑦 ∥2

∥𝑥 ∥2+∥𝑦 ∥2 ∈ [0, 1]

𝑑2: Wave-Hedgets
∑ |𝑥𝑖−𝑦𝑖 |

max(𝑥𝑖 ,𝑦𝑖 ) ∈ [0, 1]

𝑑3: Soergel
∑ |𝑥𝑖−𝑦𝑖 |∑
max(𝑥𝑖 ,𝑦𝑖 ) ∈ [0, 1]

𝑑4: normal. Canberra 1 − 2
𝑛

∑ min(𝑥𝑖 ,𝑦𝑖 )
𝑦𝑖+𝑦𝑖 ∈ [0, 1]

𝑑5: Clark
√

1
𝑛

∑ ( 𝑥𝑖−𝑦𝑖
𝑥𝑖+𝑦𝑖

)2 ∈ [0, 1]

𝑑6: Scaled RMSE 𝐿2 =
∥𝑥−𝑦 ∥2

2max( ∥𝑥 ∥2, ∥𝑦 ∥2) ∈ [0, 1]

with 𝑥 = 𝑥1, . . . , 𝑥𝑛 ∈ R𝑛 and 𝑦 = 𝑦1, . . . , 𝑦𝑛 ∈ R𝑛 be time series,
where for all i: 𝑥𝑖 , 𝑦𝑖 ≥ 0.
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Figure 1: Correlation matrix for all dissimilarities

but there are also some dissimilarities that produce different results
than any others (indicated by dark squares). In summary, the cor-
relations from Figure 1 motivate our approach for grouping and
selecting representative metrics for each group.

Algorithm 1: Filtering Dissimilarity Metrics
Input: measurement repetitions𝑚, dissimilarity metrics 𝑠
Output: filtered dissimilarity metrics 𝑠𝑓

1 𝑐𝑚 = calculateAverageCorrelation(𝑚, 𝑠)
2 𝑠𝑠 = sortByAverageCorrelation(𝑠 , 𝑐𝑚)
3 𝑠𝑓 = []
4 while 𝑙𝑒𝑛 (𝑠𝑠 ) > 0 do
5 𝑚𝑠 = 𝑠𝑠 [0]
6 𝑠𝑓 .append(𝑚𝑠 )
7 for𝑚𝑑 𝑖𝑛 𝑠𝑠 do
8 if correlation(𝑚𝑑 ,𝑚𝑠 ) ≥ 0.9 then
9 𝑠𝑠 .remove(𝑚𝑑 )

10 return 𝑠𝑓

Table 3: Selected metrics for different data sets

Dataset Selected metrics

DS.1 Cosine, Wave-Hedgets, Scaled RMSE
DS.2 Cosine, Wave-Hedgets, Bray-Curtis, Scaled RMSE
DS.3 Cosine, Kumar-Hassebrook, Wave-Hedgets

All Cosine, Wave-Hedgets, Kumar-Hassebrook, Scaled RMSE

Therefore, Algorithm 1 calculates the presented correlation ma-
trix as 𝑐𝑚 in the first step. We use this correlation matrix to group
the metrics as follows: First, we compute the average dissimilarity
for each metric in comparison to all other metrics. Following, the
list 𝑠𝑠 is sorted in ascending order. This way, the metric that has
the most disagreement with all other metrics is listed first. Then,
we pick the first metric from 𝑠𝑠 in line 5 as our selected metric𝑚𝑠

and add it to the list of filtered metrics 𝑚𝑓 . We then discard all
other metrics𝑚𝑑 with 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑚𝑑 ,𝑚𝑠 ) ≥ 0.9 from the list of
remaining metrics 𝑠𝑠 , as we assume that its properties are already
covered by the newly included metric. This also removes𝑚𝑠 from
𝑠𝑠 , as 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑚𝑠 ,𝑚𝑠 ) = 1. This procedure is repeated until all
metrics are either added to the list of resulting filtered metrics𝑚𝑠

or discarded as they do not add enough information.
Note that the defined threshold of 0.9 was chosen as the goal of

this experiment was to retain a sizeable set of metrics. By increasing
the threshold, the final number of metrics can be higher, by lowering
it, the resulting number will decrease. Future experiments might
elaborate on different thresholds for these or other data sets.

4.2 Selected Metrics
Table 3 lists the resulting metrics for each of our data sets. In addi-
tion, we list the metrics chosen, if the correlation matrix of Figure 1
is used, i.e., if we execute Algorithm 1 on all data sets. Note that
the chosen metrics are not sorted, as the ordering reflects the order
in which the metrics were selected. Hence, the given ordering also
describes the initial correlation ranking of Algorithm 1. Metrics on
the left (i.e., Cosine) achieve the lowest average correlation and
are chosen before the following metrics on the right.

While there are noticeable differences between the different
data sets, we observe that there is a large consensus for the used
metrics. Cosine and Wave-Hedgets are included in all data sets
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as important metrics, with Cosine being the first metric chosen
by all data sets. Additionally, the Scaled RMSE metric was chosen
in two of the three data sets and is also included in the final se-
lection. Bray-Curtis and Kumar-Hassebrook are only included in
DS.2 and DS.3, respectively. However, Kumar-Hassebrookwas also
chosen as an important metric, when all data sets are considered.

We conclude that the results are to a certain degree transferable
between data sets. Therefore, for the remainder of this work, we
continuewith the four dissimilaritymetrics Cosine, Wave-Hedgets,
Kumar-Hassebrook and Scaled RMSE.

5 DETERMINE DISSIMILARITY
We have identified four dissimilarity metrics, that together are
capable of describing if the time series obtained from two runs of an
experiment are similar. However, for a single experiment with ten

runs (measurement repetitions) this results in a total of 4∗
9∑

𝑖=1
𝑖 = 180

scores, which is hard to interpret manually. Therefore, in a first
step, we calculate the average dissimilarity across all dissimilarity
metrics and combinations of measurement repetitions. This results
in a single value that gives an overview on the dissimilarity between
the measurement repetitions. If this aggregated value is low, we
can already conclude that there are no divergent measurements.
Yet, in case the value is at e.g., 0.1, it is unclear if there is some noise
in the measurements that makes every run slightly different, or if
there is a run that is different from the remaining runs, or if there
is an effect that is observed in only a subset of runs.

Algorithm 2: Identification of Measurement Differences
Input: measurement repetitions𝑚
Output: overall similarity 𝑠𝑡 , similarity improvement 𝑠𝑖 ,

cluster labels 𝑙𝑎𝑏𝑒𝑙𝑠
1 𝑙𝑎𝑏𝑒𝑙𝑠 = AgglomerativeClustering(𝑚)
2 𝑠𝑢𝑚𝐴𝑙𝑙, 𝑐𝑜𝑢𝑛𝑡𝐴𝑙𝑙, 𝑠𝑢𝑚𝐶𝑙, 𝑐𝑜𝑢𝑛𝑡𝐶𝑙 = 0
3 for 𝑖 = 0; 𝑖 < 𝑙𝑒𝑛(𝑚); 𝑖 = 𝑖 + 1 do
4 for 𝑗 = 𝑖 + 1; 𝑗 < 𝑙𝑒𝑛(𝑚); 𝑗 = 𝑗 + 1 do
5 𝑠𝑢𝑚𝐴𝑙𝑙 = 𝑠𝑢𝑚𝐴𝑙𝑙+dissimilarity(𝑚[𝑖],𝑚[ 𝑗])
6 𝑐𝑜𝑢𝑛𝑡𝐴𝑙𝑙 = 𝑐𝑜𝑢𝑛𝑡𝐴𝑙𝑙 + 1
7 if 𝑙𝑎𝑏𝑒𝑙𝑠 [𝑖] == 𝑙𝑎𝑏𝑒𝑙𝑠 [ 𝑗] then
8 𝑐𝑜𝑢𝑛𝑡𝐶𝑙 = 𝑐𝑜𝑢𝑛𝑡𝐶𝑙 + 1
9 𝑠𝑢𝑚𝐶𝑙 = 𝑠𝑢𝑚𝐶𝑙+dissimilarity(𝑚[𝑖],𝑚[ 𝑗])

10 𝑠𝑡 = 𝑠𝑢𝑚𝐴𝑙𝑙/𝑐𝑜𝑢𝑛𝑡𝐴𝑙𝑙
11 𝑠𝑖 = 𝑠𝑢𝑚𝐶𝑙/𝑐𝑜𝑢𝑛𝑡𝐶𝑙
12 return 𝑙𝑎𝑏𝑒𝑙𝑠, 𝑠𝑡 , 𝑠𝑖

To answer this question, we apply Algorithm 2: First, we use
agglomerative clustering to group the measurements based on their
dissimilarity [25].We use this clustering method over others for two
reasons: a) it dynamically selects the number of clusters, b) it can be
used with pre-computed distance values, which means we can use
the mean over the four dissimilarity metrics as distance measure. If
the clustering creates more than one cluster, we conclude that there
are divergent runs. If clustering returns more than one cluster, we
calculate the difference between the average dissimilarity across all

Table 4: Similarity distribution across data sets

Sim. DS.1 DS.2 DS.3

all 21 180 100
≤ 0.99 21 179 51
≤ 0.98 4 165 37
≤ 0.95 3 76 6
≤ 0.90 3 49 2
≤ 0.85 1 38 1
≤ 0.80 0 26 0

Table 5: Distribution of cluster sizes across data sets

1 2 3 4 5 6 7 8 9

DS.1 21 – – – – – – – –
DS.2 136 12 7 5 6 3 4 5 2
DS.3 91 8 – 1 – – – – –

pairs of measurements and the average dissimilarity between pairs
of measurements in the same cluster. By comparing the difference
between these two values, we can quantify how different the iden-
tified clusters of runs are. A cluster may contain a single run that
is considered to be different from the other runs. In any scenario
where no cluster contains more than half of the measurements,
we do not calculate the decrease in dissimilarity from clustering
and instead return -1, as it seems that there are not enough similar
measurements.

Based on this approach, we can quantify the dissimilarity be-
tween a large number of measurement repetitions in two values: the
overall dissimilarity between measurements and the dissimilarity
within the identified clusters. If a high overall dissimilarity between
measurements, or a significantly lower dissimilarity within clusters
is identified, we can conclude that the measurement repetitions
are not homogeneous. For a more in-depth understanding of the
differences, a manual/visual analysis is still required, but can use
the identified clusters as a starting point.

6 RESULTS
This section discusses the results of applying our methodology to
the identified data sets.

6.1 General Observations
In DS.1, we analyze one performance metric, latency; in DS.2, we
look at latency and throughput; and finally DS.3 contains 20 dif-
ferent performance metrics from various system resources. In any
case, we consider all time-series as univariate and analyze each
performance metric independent from other performance metrics.
An analysis of multivariate time-series is subject to future work.

This leads to the analysis of 301 experiments from the three
data sets with more than 4,200 runs. Table 4 presents the similarity
distribution for each data set and Table 5 shows the distribution of
cluster sizes per data set. Finally, Table 6 lists the experiments that
are flagged by our approach to have dissimilar repetitions.
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Observation 1: Overall, we can state a very high similarity be-
tween all runs across all data points and across all data sets as
illustrated by Table 4. This high similarity was expected as the time
series come from performance benchmarks in laboratory environ-
ments. Only 26 set-ups show a similarity below 0.80. For all of these,
more than one cluster is found as discussed later.

In accordance with the high similarity and as visible in Table 5,
the number of experiments for which only a single cluster is formed
is 248; 82% of all experiments. In particular, DS.1 does not unveil
any clusters and will not be considered in the following discussion.

Observation 2: There is a correlation between high similarity
and few clusters: Out of the 247 experiments with similarity >

0.9, 237 (96%) have a single cluster only. In contrast, there are 11
experiments with a single cluster and similarity ≤ 0.9. The most
dissimilar, yet single cluster data set, has a similarity of 0.813.

Further, all experiments with similarities < 0.813 render multiple
clusters. The highest similarity for a non-single cluster is about
0.985, while the overwhelmingmajority of non-single cluster results
yield similarities ≤ 0.9 (43/53). The highest similarities with more
than two clusters are 0.920 and 0.916 respectively and come from
DS.3. All other 3+ clusters unveil a similarity ≤ 0.85.

Observation 3: Latency seems to be more sensitive to disturbances
than throughput, which has also been observed elsewhere [23]. Ta-
ble 6 contains all experiments that result in more than one cluster
and hence are suspected to have dissimilar repetitions. Overall,
20 experiments address a throughput-oriented performance met-
ric (throughput and iops), while the majority of 33 suspicions are
due to latency. Moreover, in DS.2 all experiments that are flagged
due to throughput are also flagged due to latency, but not vice versa.

Observation 4: Table 6 shows that there are a 15 cases for which
the number of clusters exceeds half of the number of runs. That
is with 10 runs, the number of clusters is > 5. In nine of these
scenarios, all but one cluster contain only a single element. In six
cases, two clusters contain more than one element. The fact that so
many clusters are generated for these cases allows us to conclude
that overall the measurements are extremely heterogeneous and
no conclusions can be drawn from them. In these cases a manual
(visual) inspection of the data is highly recommended (cf. Section 5).

Observation 5: Investigating Table 6, we can state that clustering is
not always successful in reducing dissimilarity. Particularly, for AF,
AO, AR, AT, AX there is barely any improvement visible. Despite
the fact that clustering isolates a single time series in all these
experiments. On the other hand, there are also very impressive
improvements such as A, B, C, AB.

6.2 Illustration by Example
For the sake of space, we are not able to illustrate the benefits and
shortcomings of our approach using examples based on DS.2 and
DS.3. Our supplementary material2 contains five such examples.
They have been chosen such that each example represents one
archetype of time series similarity. As a baseline, we consider the
common two sigma rule, where every measurement that deviates
by more than two sigma from the mean is considered anomalous.

2https://doi.org/10.5281/zenodo.5786869

7 RELATEDWORK
Experimental evaluation in many scientific disciplines usually in-
volves uncertainty. Therefore, NIST and ISO have standards and
guidelines for evaluating, expressing, and reporting uncertainty
in measurements [19, 34]. In addition, there are also several scien-
tific papers focusing on uncertainties in measurements: (i) articles
focusing on providing different principles for a good and clean
measurement approach; (ii) articles investigating performance vari-
ability during measurements; (iii) articles proposing frameworks
for reproducible measurements with reasonable effort.

Papadopoulos et al. [27] suggested eight principles (e.g., open
access artifacts of measurements) for reproducible performance
evaluation in cloud computing. Another seven principles were
introduced by Schwarzkopf et al. [29]. For supercomputing en-
vironments, Hoefler and Belli [15] introduced 12 principles similar
to [27]. Frachtenberg and Feitleson [11] provide a framework of 32
pitfalls in supercomputing environments, each combining practical
principles and research challenges. For networked systems, Krish-
namurthy et al. [22] provide 12 checkpoints that researchers can
use to audit their experiments. Similarly, Vitek and Kalibera discuss
common mistakes made by researchers [37].

Uta et al. [36] examined the question whether big data perfor-
mance is reproducible based on performance variability. Similar
work for measurements in cloud computing was done by Laaber et
al. [24], Iosup et al. [18], and Folkerts et al. [10]. Others investigated
sources of measurement bias in experimental work [26, 39]

The Collective Knowledge Framework [12] enables systematic
recording of individual experimental steps, which permits indepen-
dent reproduction and contribution of additional results. Another
framework is DataMill [6], which randomizes selected environmen-
tal conditions to improve the generalizability of specific measure-
ments. In addition, works such as [13, 16] provide principles on
how to avoid the most common pitfalls of experimental evaluation.

8 THREATS TO VALIDITY
The goal of this paper is to investigate approaches to detect dissim-
ilarities in time series gained from benchmarking. Yet, for several
reasons, this explorative study cannot claim generalizability to arbi-
trary data sets nor to all performance benchmarking experiments.

First, we only worked with three data sets. Further, the experi-
ments in data set DS.3 have many runs (> 25), but in most cases the
time series of a run only consist of three data points. Some of these
time series are even shorter than that. For all of these cases the
dissimilarity is very low. This may be a consequence of the short
time series or of the large number of repetitions.

There are also several threats to the validity of the metric selec-
tion in Algorithm 1 (Section 4): (i) all of our results are based on
the selected metrics presented in Table 2. Therefore, the presented
results might be substantially different, if other metrics are added
to the list. (ii) We rely on Pearson’s 𝑟 coefficient to measure the cor-
relation of two metrics and choose a threshold of 0.9 in the filtering
step of Algorithm 1. Yet, Pearson’s coefficient only captures linear
correlations and fails for other correlations. Applying a different
measure of correlation, as well as using a different threshold is very
likely to impact the results.
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Table 6: Experiements with similarity suspects found using clustering. The last column lists the improvement after applying
the clustering. A after dissimilarity of — indicates that more than half of all elements were put in different clusters.

id origin metric dissim. runs/
clust.

after

A DS.2 latency 0.110 10/2 0.018
B DS.2 latency 0.186 10/3 0.026
C DS.2 latency 0.126 10/2 0.027
D DS.2 latency 0.077 10/1 0.031
E DS.2 latency 0.379 10/8 —
F DS.2 latency 0.549 10/8 —
G DS.2 latency 0.573 10/9 —
H DS.2 latency 0.262 10/3 0.118
I DS.2 latency 0.255 10/4 0.135
J DS.2 latency 0.357 10/4 0.162
K DS.2 latency 0.325 10/8 —
L DS.2 latency 0.340 10/7 —
M DS.2 latency 0.259 10/5 0.143
N DS.2 latency 0.232 10/5 -1
O DS.2 latency 0.212 10/3 0.106
P DS.2 latency 0.300 10/9 —
Q DS.2 latency 0.321 10/5 0.128
R DS.2 latency 0.206 10/5 0.130
S DS.2 latency 0.261 10/6 0.174
T DS.2 latency 0.268 10/4 0.144
U DS.2 latency 0.376 10/8 —
V DS.2 latency 0.280 10/8 —
W DS.2 latency 0.281 10/7 —
X DS.2 latency 0.167 10/3 0.127
Y DS.2 latency 0.136 10/2 0.100
Z DS.2 latency 0.373 10/6 —
AA DS.2 latency 0.422 10/7 —

id origin metric dissim. runs/
clust.

after

AB DS.2 throughput 0.107 10/2 0.020
AC DS.2 throughput 0.085 10/2 0.045
AD DS.2 throughput 0.124 10/2 0.031
AE DS.2 throughput 0.074 10/2 0.030
AF DS.2 throughput 0.206 10/5 0.191
AG DS.2 throughput 0.193 10/3 0.112
AH DS.2 throughput 0.173 10/3 0.131
AI DS.2 throughput 0.240 10/6 —
AJ DS.2 throughput 0.182 10/2 0.177
AK DS.2 throughput 0.235 10/7 —
AL DS.2 throughput 0.208 10/5 0.111
AM DS.2 throughput 0.124 10/2 0.104
AN DS.2 throughput 0.189 10/3 0.171
AO DS.2 throughput 0.175 10/2 0.167
AP DS.2 throughput 0.202 10/4 0.183
AQ DS.2 throughput 0.178 10/4 0.139
AR DS.2 throughput 0.165 10/2 0.156
AS DS.3 latency 0.084 35/2 0.057
AT DS.3 latency 0.780 61/2 0.070
AU DS.3 iops 0.038 35/2 0.025
AV DS.3 latency 0.064 33/2 0.054
AW DS.3 latency 0.039 35/2 0.026
AX DS.3 latency 0.028 35/2 0.017
AY DS.3 throughput 0.101 33/2 0.071
AZ DS.3 throughput 0.196 29/4 0.056
BA DS.3 latency 0.029 61/2 0.021

Finally, the metric selection in Section 5 relies on a number of
somewhat arbitrarily chosen thresholds, namely, the clustering al-
gorithm and the interpretation of what is considered a large overall
dissimilarity or a significant reduction in dissimilarity from cluster-
ing.

In general, the proposed approach is limited to time series of
measurement data obtained from software performance experi-
ments. Other time series might have different properties, which
could inhibit the applicability of our approach.

9 CONCLUSIONS
This paper investigates the problem of how to analyze benchmark-
ing results that produce time series. Because running the same
experiment multiple times may yield very different results due to
non-deterministic elements, an analysis may benefit from under-
standing that results fall in different groups so that each group may
be investigated independently. Our approach centers around using
measures to determine the (dis-)similarities between time series
using openly available data sets for analysis and validation.

9.1 Summary
For gathering data sets, we evaluated 1,000+ scientific papers from
the cloud and performance engineering domain. Surprisingly, we
could only identify three of data sets with 301 experiments in total.

Afterwards, we applied 12 different (dis-)similarities to the data
sets and compared their behaviour. Filtering out (dis-)similarities
with alike behaviour, a total of four (dis-)similarities stood out.
We used these in a clustering algorithm in order to group runs
of experiments according to their (dis-)similarity. Understanding
what clustering improves similarity gives some guidance to which
experiments may require a manual review. Overall, our approach
identified 53 experiments where more than one cluster was found.

Finally, we performed a detailed analysis of five experiments
where our approach detected dissimilar runs. This showed that
outliers exist in the data sets that would not have been detected by
only using means and standard deviations. Yet, it also taught us to
not blindly trust our approach and that further research is needed.

9.2 Future Work
Our explorative study raises multiple questions and can only be con-
sidered as starting point for further research. While we identified
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four (dis-)similarities with heterogeneous behaviour, we have not
covered all (dis-)similarities. For instance, Iglesias and Kastner [17]
partially use different similarities for their pattern analysis for time
series clusters. Also, approaches like Dynamic Time Warping have
not been considered yet [2], nor have strategies of pre-processing
the data, and multivariate data in general. Unfortunately, we have
not managed to avoid thresholds completely.

Finally, the capabilities and features of our approach are not
fully understood. This includes the impact of the time-series length
and the number of runs. Also, an exact analysis of the decisions of
the clustering algorithm is missing. In order to address these open
questions access to more and larger data sets is necessary.

9.3 Call to Action
A disappointing outcome of the research conducted in this paper
is that in our community OpenData is not as wide-spread as in,
e.g., medicine and physics. Analyzing 1,000+ papers resulted only
in 3 data sets useful for our work despite very generic acceptence
criteria. Admittedly, we found several published data sets that did
not fit our scope. Ironically, many authors used publicly available
data as input for their evaluations.

Hence, we call on the systems community to publish alongside
their research papers not only code, but also their evaluation data.
This helps to confirm outcomes, but equally as important, it also
enables more and higher quality meta-studies.
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