
The Architecture Documentation Maturity Model ADM2

Christoph Rathfelder, Henning Groenda

FZI Forschungszentrum Informatik, Karlsruhe
{rathfelder,groenda}@fzi.de

Abstract: Today, the architectures of software systems are not stable for their whole
lifetime but often adapted driven by business needs. Preserving their quality charac-
teristics beyond each of these changes requires deep knowledge of the requirements
and the systems themselves. Proper documentation reduces the risk that knowledge is
lost and hence is a base for the system’s maintenance in the long-run. However, the
influence of architectural documentation on the maintainability of software systems is
neglected in current quality assessment methods. They are limited to documentation
for anticipated change scenarios and do not provide a general assessment approach. In
this paper, we propose a maturity model for architecture documentation. It is shaped
relative to growing quality preservation maturity and independent of specific tech-
nologies or products. It supports the weighting of necessary effort against reducing
long-term risks in the maintenance phase. This allows to take product maintainability
requirements into account for selecting an appropriate documentation maturity level.

1 Introduction

Most of the available software systems are adapted after their creation driven by changes in
the business requirements. For example, if new functionality is needed or systems have to
be integrated after a merger. A successful evolution during the maintenance phase requires
a sound knowledge about existing requirements and their implementation in the system.
Otherwise, the quality characteristics of the system cannot be preserved. Design erosion
happens and the chance for critical errors rises.

The loss of knowledge over time or by changes in the maintenance personnel can be ad-
dressed by documentation. There are several kinds of documentation for a system. For ex-
ample fine-grained information at source code level, coarse-grained at architectural level,
and system-wide at requirements level. The latter two set the big picture and provide a
base to comprehend the structure, behavior, rationales, and design decisions. In real life,
the most time-consuming task within maintenance activities is the search for this kind of
information [Sou98,DLS07]. A big share of this effort can be traced back to the search for
high-level information like rationales and design decisions [KLvV]. Besides the included
information, the quality of the documentation is also a key factor in preventing design ero-
sion [PB06]. Overall, the documentation at the architecture level and above is a key factor
for maintaining systems efficiently in the long-run.

However, the influence of architectural documentation on the maintainability of software
systems is neglected in current quality assessment methods. Existing methods provide



the assessment of maintainability for a set of anticipated changes, from a process-based
or educational viewpoint, or considering specific technological solutions. They all lack a
product and technology independent assessment providing general quality statements.

We propose a maturity model for assessing architecture documentation with respect to
maintainability. Its maturity levels are shaped according to a growing ability of quality
preservation during maintenance. The requirements and characterization stated for each
maturity level should support trade-off decisions between higher comprehensibility in the
long-term and the effort of creating the documentation. Furthermore, the advantages of
automatic knowledge reasoning and provisioning by using formal kinds of documenta-
tion should be reflected. This additionally enables assessments tailored to model-driven
software engineering environments in which the usefulness of documentation differs com-
pared to classical ones.

The contribution of this paper is the presentation of the multidimensional Architecture
Documentation Maturity Model (ADM2), which includes 1) the effect of documentation
on maintainability attributes, 2) independent evaluation dimensions for the degree of for-
malization and information depth, and 3) a benefit-oriented characterization of the maturity
levels.

This paper is structured as follows: Section 2 gives an overview of related work. Section
3 presents the effect of documentation on the different maintainability quality attributes.
Section 4 describes the ADM2 including both of its evaluation dimensions and all of its
overall seven maturity levels. Section 5 discusses the benefits promised by each maturity
level. Section 6 presents an outlook on the validation plans of the ADM2. Section 7
concludes the paper and provides an outlook to future work.

2 Related Work

Work related with ADM2 can be classified into two main categories. The first one sub-
sumes approaches which focus on the maintainability of software systems. The second
subsumes approaches focusing on documentation of software systems. Approaches for
both categories are presented in the following.

2.1 Maintainability Assessment

Maintainability approaches can be split into three different categories. The first covers
scenario-based approaches which evaluate the maintainability of a software system for se-
lected scenarios. The second covers process-based approaches which reason about main-
tainability solely based on the maturity of maintenance processes. The third category
focuses on effects by education, training and knowledge of maintenance personnel. All
are presented in the order of enumeration in the following paragraphs.

Nowadays, scenario-based approaches like the Architecture-Level Modifiability Analysis
(ALMA) [BLBvV04] or the Architecture Trade-Off Analysis Method (ATAM) [KKC00]
are widely used techniques to evaluate the maintainability of a system. These approaches



require the definition of scenarios that represent the anticipated evolution of the system.
Especially if the planning period is long it is hardly possible to anticipate all needed adap-
tations of the system. Hence, The uncertainty of assessment results is quite high. As
experts estimate the required effort for their implementation, the results of these evalua-
tions strongly depend on the participating individuals and reproducibility between differ-
ent expert teams is non distinctive. In contrast, our scenario-independent approach allows
maintainability assessments by assessing architecture documentation.

The Software Maintenance Maturity Model (SMMM) [AHAD] developed by April et al.
allows the evaluation of maintenance activities and the determination of their maturity.
Similar to SEI’s CMMI, they assess the maintenance process to draw conclusions about
quality attributes of maintained products from the process’s maturity. The SMMM is based
on the assumption that mature processes lead to maintainable systems. It neither evaluates
the product itself nor its documentation. It also provides no assistance on how to increase
the maintainability of a system.

An additional maturity model with relation to maintainability is the Corrective Mainte-
nance Maturity Model (CM3) [KMFO01]. In this model, the capability of an enterprise
to maintain systems is considered from an educational point of view. It is focused on the
knowledge and training of maintenance engineers and based on the assumption that well-
educated engineers produce maintainable systems. Hence, there are no guidelines how the
maintainability of a software system can be evaluated.

2.2 Documentation Assessment

The different existing assessment approaches for the quality of a system’s documentation
are scenario-independent and consider documentation from a generic and broad viewpoint.
These approaches are briefly described in the following.

Pareto and Boquist developed a quality model for design documentation based on the re-
sults of their quality model survey [PB06]. They identified overall 22 quality attributes for
6 different quality characteristics which effect the quality of design documentations. They
regard design documentation as documentation on artifacts on the abstraction level be-
tween requirements specifications and code. They identify the 22 attributes but no metrics
or guidelines about their characteristic maturity benefits are pointed out. Trade-off deci-
sions are therefore not supported. The authors concentrate on documentation in model-
centric projects. Hence, the identified different quality characteristics are regarded purely
from a documentation data handling perspective. This renders reasoning about the effects
of documentation, for example on maintainability, cumbersome.

Huang and Tilley described their idea of a Documentation Maturity Model (DMM) in
[HT03]. The DMM has five maturity levels and is focused on the perception of docu-
mentation by software engineers in terms of ease of interpretation. Each level requires a
different set of presentation techniques, for example level 3 requires animated graphics and
hyperlinks. They do not consider the information contained in the documentation. There is
no distinction between the different application levels of documentation, for example code,
architecture, or requirements level. By focusing on human interpretation, their approach



is not reflecting how pay-off for formalized documentation differs with respect to different
kinds of documentation, for example in model-driven software engineering environments.

3 Effects of Documentation on Maintainability

Understanding the effect of documentation on maintainability first requires a thorough
definition of maintainability. There is a number of different maintainability definitions
available, for example as discussed in [BDP]. Some approaches view maintainability
purely at the code level, whereas other reflect specific issues at the architecture level. For
example Grover et al. [GKS07] take into account that on the architecture level a recon-
figuration or arrangement of components and their interconnection is more likely than a
complete restructuring and recoding. Our focus is on the effect of architecture documen-
tation on maintainability. We clarify and introduce our refined view on maintainability
in this section and point out the extent of effects on maintainability attributes caused by
documentation.

Our definition of maintainability is based on the ISO/IEC 9126 standard [ISO01] which
provides a complete quality model. The model covers the characteristics functionality,
reliability, usability, efficiency, maintainability, and portability. The standard describes
maintainability as “the capability of the software to be modified” and provides the sub-
characteristics shown in Figure 1. In addition to this quality definition we use the term
architecture as provided by Bass et al. [BCK99]:

“The software architecture of a program or computing system is the struc-
ture or structures of the system, which comprise software elements, the ex-
ternally visible properties of those elements, and the relationships among
them.” [BCK99]

Subcharacteristics Capability Description

M
ai

nt
ai

na
bi

lit
y

Stability
The capability to avoid that modifications cause 
unexpected effects on other parts of the 
software system.

Analyzability
The capability needed to search out deficiencies 
and causes of failures within the system.

Changeability
The capability to extend, enhance, and 
customize a software system.

Testability
The property of a software system to be tested 
effectively in order to observe and check its 
behavior.

Figure 1: Meaning of Maintainability according to ISO/IEC 9126 [ISO01]

Our view on maintainability is illustrated in Figure 2. We divided each subcharacteristic
further into several quality attributes which represent independent viewpoints on that sub-
characteristic. These attributes and how strongly they are affected by documentation is
pointed out in the following paragraphs.



Subcharacteristics Quality Attributes Effect of Documentation

M
ai

nt
ai

na
bi

lit
y

Stability
• Functional Isolation
• Rationale Preservability

Low
High

Analyzability
• Comprehensibility
• Traceability
• Analytical Modelability

High
High
Medium

Changeability
• Modifiability
• Extensibility
• Portability

Low
Low
Low

Testability
• Impact Limitability
• Observability
• Controllability

Low
Low
Low

Figure 2: Effect of Documentation on Maintainability

Stability. Stability is the capability to avoid that modifications cause unexpected effects
on other parts of the software system. It is based on the structure of a system and depends
on the two aspects functional isolation and rationale preservability. Functional Isolation
addresses the grouping and isolation of different functionality within a system. If func-
tions are changed or replaced, a strong grouping reduces unexpected effects in unchanged
groups. However, extra-functional quality attributes (e.g., performance or availability) of
the system and other components may still be affected by such changes. Documentation
should be used to describe function groups, but it has no effect on the separation itself. The
effect is therefore rated low. Rationale Preservability addresses the continuity of areas in
the designed system architecture. Areas within an architecture have a specified semantic
and are usually defined according to architectural patterns. They can be seen as design
rationales. For example, the use of the Model-View-Controller pattern leads to 3 areas for
models, views and controllers. These areas should be preserved over the lifetime. Changes
on the system only lead to component assignment or removal from the areas. Documen-
tation of rationales has a high impact on the continuity of the design. It states important
design issues at a high level and is a key to prevent design erosion.

Analyzability. Analyzability is the capability needed to search out deficiencies and causes
of failures within the system. It can be broken down into the three aspects of compre-
hensibility, traceability, and analytical modelability. It can be seen either from a human
or machine centric perspective. Comprehensibility addresses how easily engineers can
understand the system and its architecture. Documentation is responsible for providing
detailed and high-level information. Hence, it has a high influence on comprehensibility.
Traceability addresses how requirements, design rationales, decisions, and even discarded
alternatives are linked. Tracing back decisions to rationales or requirements allows re-
examining them at any time. Especially the links to discarded alternatives attached with
reasons or measurements may be valuable if the made decision is revisited at a later point
in time. Hence, documentation has a high effect on traceability. Analytical Modelability
addresses how easy models for automated analyses can be built for the system. There are
tools and analyses which can extract necessary information from design models, source-,
or object code but in most cases additional knowledge of engineers is necessary. Storing
this additional information in the documentation fosters its reuse. Examples for automated
analyses are the component interaction checker SOFA [HPB+05] and the performance pre-



diction approach Palladio [Bec]. Overall, documentation has a medium effect on analytical
modelability.

Changeability. Changeability is the capability to extend, enhance, and customize a soft-
ware system. It can be broken down into the three aspects modifiability, extensibility, and
portability as Matinlassi and Nimelä have shown in [MN03]. It focuses on the changes
or adaptations themselves. Modifiability addresses how the system can be restructured in
order to meet new or changed requirements (e.g. a shorter response time). Documentation
of the traceability can ease a design preserving restructuring and support quality assurance
by analytic checks of requirements (e.g. runtime constraints). However, documentation
has only a low effect on the modifications themselves. Extensibility addresses how the
system can be extended with new functionality or function groups. Documentation of ex-
plicitly provided extension points can ease this kind of changes, but the structural aspect
of extension points being there in the first place is definitely bigger. Hence, documentation
has a low effect on extensibility. Portability addresses how the system can be adapted to
other environments (e.g. another operating system or middleware). Documentation for the
subcharacteristic stability can ease portability (e.g. if abstraction layers are used), but its
general effect on portability is low.

Testability. Testability is the ability of a software system to be tested effectively in order
to observe and check its behavior. It can be broken down into the three aspects of impact
limitability, observability, and controllability. The two latter ones are already discussed in
detail in [Bin94] and are important properties in unit testing. Documentation has in general
only low effect on testability although the documentation of design patterns for example
may increase the testability of an architecture [CKvS05]. Impact Limitability addresses
how changes and their effects can be restricted to parts of the system. If limitability is
high, it is sufficient to test the restricted parts. Controllability addresses how fine-grained
the state of the system and its components is controllable when its behavior is examined.
Observability addresses how fine-grained the state of a system and its components can be
observed from the outside.

4 Architecture Documentation Maturity Model

In this section, we describe the developed Architecture Documentation Maturity Model
(ADM2). Based on the refined definition of architectural maintainability presented in the
previous section, the ADM2 maturity levels allow an assessment of an architecture’s doc-
umentation with respect to maintainability of the system. The development of the ADM2

is based on a sound literature review as well as the experiences we have gained within
different industrial and research projects First, we introduce the two dimensions that are
used to evaluate maturity. Second, we show the different maturity levels of each evalua-
tion dimension including a description of the characteristic attributes of an architecture’s
documentation on the respective maturity level.



4.1 Evaluation Dimensions

In [RG08], we have sketched our ideas of a one-dimensional documentation maturity
model. We validated that model in industrial projects and in discussions with several
software architects. The outcome showed that a one-dimensional maturity model is not
sufficient to assess maturity with respect to maintainability. A differentiation between the
information included in the documentation and the formal techniques used for document-
ing this information is necessary. These two dimensions are independent of each other,
which mean that the maturity in one dimension does not influence the maturity in the
other dimension.

The first evaluation dimension is called Information Depth and regards the information
and knowledge included in the documentation. The importance of information depth for
the maintainability is for example investigated in the study conducted by Forward and
Lethbridge [FL02]. The study shows that in their case the content of documentation has a
larger influence on maintainability than the formal techniques used.

The second evaluation dimension is called Formalization and focuses on the formaliza-
tion degree of the documentation. The use of formalized models not only reduces the risk
of misinterpretation but also enables automated processing of information. For example,
Grisham et al. [GHP07] showed that formalization promises an increasing quality of the
design decisions made. The type of representation of the documentation plays only a mi-
nor role. For example, the study of Forward and Lethbridge [FL02] shows that there is no
clear distinction if using graphical or textual representation for documentation is an advan-
tage. Grönniger et al. [GKR+] pointed out areas in which textual representations are more
efficient although engineers often regard graphical representations as catchier. The ADM2

does not differentiate between a textual or graphical representation of the architecture.

Figure 3 visualizes the two evaluation dimensions and sketches the maturity levels. We
describe the 7 different maturity levels of the ADM2 for each dimension in detail in the
following subsection.

Level F3:
Machine Centric

Level F2:
Human Centric

Level F1:
Informal

Le
ve
lI
1:

St
ru
ct
ur
e

Le
ve
l I
2:

D
ec
is
io
ns

Le
ve
l I
3:

Tr
ac
es

Le
ve
l I
4:

Ra
tio

na
le
s

Fo
rm

al
iz
at
io
n 

M
at
ur
ity

Information Depth Maturity

Figure 3: ADM2 Overview



4.2 Maturity Levels

The existence of an architectural documentation is a precondition for the ADM2, hence
systems without any architectural documentation cannot be ranked in the ADM2. How-
ever, they can be subsumed as a virtual level 0 to point out their immaturity. The maturity
levels are arranged in an ascending order for each of the two dimensions. The documen-
tation characteristics required on a maturity level include all characteristics mandatory on
lower levels of that dimension. Growing maturity of the documentation thereby goes along
with an increased maintainability. Lifting the maturity of a system to a higher level ini-
tially induces effort. However, the increased maintainability could compensate these costs
over the life-time of the system depending on the system and situation. Evaluators of doc-
umentation maturity should take this into account when selecting the appropriate maturity
level for a system.

The description of the maturity levels within this section starts with the formalization
dimension which is followed by information depth’s dimension.

4.2.1 Formalization Maturity

A higher maturity of the documentation in this dimension is accompanied by the use of
more formal models. These provide a fixed semantic meaning of the modeled architectural
artifacts and thereby ease comprehension of the system. Furthermore, the use of formal
models eases (semi-)automated analyses which can for example be used to estimate the
impacts caused by architectural modifications. Model-driven techniques can be applied to
ensure a consistent documentation by automatically propagating changes in the architec-
ture to the implementation and vice versa. In the following, we describe the three maturity
levels of this dimension, namely (F1) Informal, (F2) Human Centric, and (F3) Machine
Centric, in more detail.

Level F1: Informal. On this maturity level, the documentation consists of simple graph-
ics or textual descriptions. The architecture documentation has no predefined semantics.
For example, tools like Microsoft PowerPoint or Word provide the respective drawing and
writing capabilities. In the case of a textual representation, a common glossary which
defines the meaning of the used terms is missing on this maturity level.

Level F2: Human Centric. In order to reduce the risk of misinterpretation, this maturity
level requires a semantic description within the architecture’s documentation. Architecture
documentations which are rated on this level are mainly used by humans, as the formaliza-
tion of the documentation is too low to allow automated processing of the models. There
are several possibilities to add semantic description to the documentation. In a textual rep-
resentation, a common glossary can be used, to define the meaning of different terms. In
a graphical representation, the use of a common set of symbols each having a defined se-
mantic is an adequate solution. The semantic of the symbols can be specified individually
in a legend or a common standardized set of predefined symbols can be used. The prob-
ably most popular set of symbols to describe software systems is the Unified Modeling



Language (UML) [OMG]. The shortcomings of UML and why it can not be considered as
fully formalized language are pointed out in [HS05].

Level F3: Machine Centric. The documentation on this maturity level must follow a
strict grammar or meta-model to be machine readable and processable. This requires a
much stricter semantic definition compared to level F2. Architecture Description Lan-
guages (ADL) [Cle96] can be used for this kind of formal description. The languages or
meta-models used on this level are often specialized to a certain domain (e.g. embedded
controllers) and therefore also known as Domain Specific Languages (DSL). Regarding
component-based software systems for example, there are specialized meta-models avail-
able which provide aligned modeling capabilities.

4.2.2 Information Depth

As already depicted in Figure 3 the Information Depth dimension is split into the four
maturity levels (I1) Structure, (I2) Decisions, (I3) Traces, and (I4) Rationales. They are
explained in the following.

Level I1: Structure. This first maturity level requires the existence of an architectural
documentation that includes a description of the system’s structure. This description must
include the connections and dependencies between different components of the system
and should give an overview on the structure of the system.

Level I2: Decisions. In addition to I1, this maturity level stipulates to mark design de-
cisions. This means for example that the use of design patterns (e.g. [Fow03]) and their
association to the elements of the architecture have to be indicated. Making decisions is an
essential part of an architecture’s development [TA]. An explicit marking of the design de-
cisions prevents architects to repeat a design decision several times. In [ZG] and [CND07],
two solutions that support a formalized modeling of design decisions are proposed.

Level I3: Traces. This level stipulates that the already marked design decisions have to
be associated with the requirements on the software system, which are the cause for the
respective design decision. The results of Vokác et al.’s [VTS+04] experiment demon-
strate that the use of inappropriate design patterns negatively influence the maintainability.
Because of the explicit linking of design decisions and requirements, software architects
are forced to examine the appropriateness of the design patterns and their decisions more
clearly. Based on the UML-profile proposed by Zhu and Gorton [ZG], it is possible to
formally specify requirements.

Level I4: Rationales. Based on the traces introduced with the level I3, a I4 architectural
documentation requires reasoning on design decisions. In addition to the association with
the respective requirements, the architect has to describe the reasons for making the design
decision. It is also necessary to mention considered design alternatives and to argue why
they are chosen or not. Furthermore, dependencies between design decisions (e.g., some
decisions make only sense in combination with other decisions) are emphasized and their
connections are directly visible. Reasoning on the design decisions and their rationales



increases the comprehensibility. In [KLvV], Kruchten et al. present an ontology that
supports an automatic reasoning on design decisions. However, they also mention, that
documenting design rationales is still only seldom used in practice.

5 Application Benefits of the ADM2

In this section we point out the benefits regarding the system’s maintainability that come
along with each maturity level. The ISO/IEC 12207 [IEE08] defines a common frame-
work for software life cycle processes and describes software maintenance as one of the
primary processes in the life cycle of a software product. Based on these general life cy-
cle processes, the ISO/IEC 14764 standard [IEE06] focuses on maintenance activities and
defines the software maintenance cycle. This cycle consists of the three phases Problem
and Modification Analysis, Modification Implementation, and Maintenance Review / Ac-
ceptance. In Figure 4 we sketch this maintenance cycle, whereas we adjusted the naming
of the phases a little bit to clarify their content.

Figure 4: Software Maintenance Cycle [IEE06]

Based on this refined view on maintenance, we describe the influences of documentation
on the different maintenance phases. For each maturity level, we discuss in which way the
mandatory characteristics lead to a reduction of the maintenance effort in these phases. We
firstly focus on the dimension of Formalization and afterwards on the Information Depth
dimension.

5.1 Formalization Maturity
Level F1: Informal. The use of an informal architectural documentation eases the com-
prehension of the architecture and can be used to gain an abstract overview of the ar-
chitecture. As shown in [FL02], this is an essential part during the Problem Analysis /
Modification Planning phase. Nevertheless, the lack of semantics on the first level might
lead to misinterpretations of the graphics and descriptions, which may in the worst case
lead to inconsistent or wrong modifications of the architecture. Another common problem
is to keep the documentation and implementation consistent. As there are no constraint
checks, the probability of producing inconsistent views within the documentation is quite
high.



Level F2: Human Centric. The reduction of misinterpretations is the main benefit of
this level. This is achieved, as architects are forced, to use a common language to describe
the architecture and the included information. Due to the predefined set of symbols or
terms, it is possible to use specialized tools. These tools provide maintenance engineers
a better support for their activities than the general tools like MS Word for example. For
these reasons, a documentation of the second maturity level may increase the efficiency
in the Problem Analysis / Modification Planning phase. The improved tool support in
combination with semi-formal defined description languages also promises an increasing
consistency of implementation and documentation and thereby improves the efficiency of
the Implementation phase.

Level F3: Machine Centric. In addition to an accurate semantical description, the pos-
sibility to apply automated analyses (e.g., impact analyses or performance predictions)
is an improvement promised by this maturity level. The automated analyses further im-
prove the efficiency within the Problem Analysis / Modification Planning as they support
the investigation of problem, for example analyzing performance bottlenecks [BDIS04].
Additionally, they can also be applied to evaluate and weigh different design alternatives.
This improves the quality of the planed modifications. Furthermore, the formalized docu-
mentation can be used to reason about the included architectural knowledge as envisioned
by Kruchten et al. [KLvV]. The formalized architectural model also improves the Imple-
mentation phase is as they enable the automated generation of code using model-driven
techniques. Moreover, the consistency of model and code is increased due to the auto-
mated transformations. If these transformations are coupled with the automated analyses,
the quality of the results can be further improve as shown in [Bec]. In the Acceptance Test
phase, the formalized models likewise form the bases for an automation of some activi-
ties. As shown by Grundy et al. in [GCL04], it is possible to generate test cases based on
a formalized model. In this way, the effort in the Acceptance Test phase can be reduced.

5.2 Information Depth Maturity

In the following paragraphs we focus on the improvements regarding the maintenance ef-
fort that are proposed by a growing maturity of the knowledge included in the documenta-
tion. These improvements are mainly concentrated in the Problem Analysis / Modification
Planning phase, whereas there are also some smaller effects on the Implementation and
Acceptance Test phase.

Level I1: Structure. The explicit documentation of the system’s structure is the main
benefit of this level. As shown in [FL02], the extraction of a system’s overview and the de-
tection of relations between different components is an important activity for maintenance
engineers. An explicit documentation of the structure and relations reduces the effort for
this activity, as the engineers do not any more need to extract the structure the source code.
If formalized models are used which are rated on level F3 the advantages of automated
analyses and prediction as already shown above can be reached even on this first maturity
level.



Level I2: Decisions. The documentation of design decisions required on this level fur-
ther increases the comprehensibility. It also promises to impede the repetition of design
decisions during the lifetime of a software system [CND07]. Maintenance engineers often
have to capture design decisions to plan modifications. As shown [ZG], the documentation
of the structure only does not aid them. For this reason, the explicit documentation of de-
sign decision supports maintenance engineers in their work. The experiments conducted
by Vokác et al. [VTS+04] and Prechelt et al. [PULPT02] show that documenting the use
of design patterns reduces the maintenance effort in the Problem Analysis / Modification
Planning and Implementation phase.

Level I3: Traces. The documentation of the associations between design decisions and
causal requirements is a central characteristic of level I3. Changes of requirements often
lead to changes of some design decisions. The explicit linking of decisions and require-
ments eases the location of design decisions that have to be reconsidered when require-
ments are changed. This leads to a reduction of the effort required for the Problem Analy-
sis. The study described in [dSAdO05] also emphasizes that requirements are an important
part of an architecture’s documentation used for maintenance. The link to requirements
forces architects to think over their design decisions, which might lead to a reduction of
using inappropriate design patterns. Thus, the quality of the results of the Modification
Planning activities is improved. The linking of requirements and design decisions also
influences the Acceptance Test phase, as the traces ease the detection of requirements that
might be affected by changes within the architecture and therefore need to be tested again.

Level I4: Rationales. The explicit documentation of design rationales clarifies the rea-
sons that led to the architecture and thus improves the comprehensibility of the architecture
and the inherent design decisions [GHP07]. Maintenance engineers thereby do not only
know the architecture itself but also the reasons why it is like that. Software architects and
maintenance engineers are forced to argue their rationales. Thus, the probability to make
inconsistent design decisions is reduced and the quality of the planned modifications as
increased. Additionally, Zimmermann et al. [ZGK+] show that explicitly modeled design
decisions and their rationales promise the benefit of being reused within different soft-
ware projects. Although this sparsely influences the maintainability of a single system,
the reuse of design decision increases the efficiency if different systems are developed or
maintained.

6 Validation

The validation of a maturity model is an extensive task. We initially performed a valida-
tion of the applicability of the ADM2 by evaluating different architectural documentations
using the ADM2. As application of maturity models cannot lead to antithesis and rejection
of the model, we strive for a validation of the benefits proposed by each level. We plan
to perform this kind of validation by an empirical case study with a group of computer
science students from Universität Karlsruhe (TH) as well as discussions with experienced
maintenance engineers and the application of the ADM2 in industrial projects. As a lot
of these projects at our research institute are focused on restructuring of evolved software



systems, we expect to substantiate the results of the experiment.

The empirical experiment used to validate the benefits and the shaping of the models is
set up as follows. All participating students are split up into different groups and receive
an identical maintenance task for a software system. However, the provided architecture
documentation is different for each group. It is derived from a mature documentation by
removing parts which are mandatory on a higher level (e.g., the design rationales or the
traces). We also vary the formalization level of the documentation. For example by re-
moving the glossary and substituting DSL by UML symbols and UML symbols by other
symbols like boxes that have no predefined meaning. The time required for completing the
task is captured for each phase of the maintenance cycle (see Figure 4) separately. Based
on these measurements, we expect to be able to show that increased documentation matu-
rity provides the proposed benefits and that the levels are shaped according to ascending
maintainability.

7 Conclusion and Outlook

In this paper, we first presented and discussed the effects of documentation on different
maintainability quality attributes. Second, we introduced the Architecture Documentation
Maturity Model (ADM2) and showed the necessity of two independent different evaluation
dimensions for Formalization and Information Depth. Third, we described for each of
the overall 7 maturity levels their shaping as well as their characteristics and additionally
provided tool examples. Fourth, we presented the maintainability benefits gained for each
maturity level and their share in the different phases of the maintenance cycle. Fifth and
last, we elaborated on the current and planned validation of the ADM2.

The proposed maturity model aids software engineers to evaluate the maturity of exist-
ing documentation and plan documentation for new projects. As it is designed in a way
that a growing maturity of the documentation is accompanied by a better maintainability,
identifying the appropriate maturity levels is much easier compared to other approaches.
Planning appropriate documentation with the ADM2 even supports to select different ma-
turity levels for different partitions of a project. In contrast to other approaches, this tailor-
ing enables fine-granular trade-off decisions, for example to take areas into account where
model-driven software engineering techniques are used or not used. The ADM2 further-
more differentiates itself by supporting targeted improvements of the documentation as
the maturity levels can also be used to identify rewarding aspects of the architectural doc-
umentation.

As we pointed out in section 6, a more detailed refinement and validation of the ADM2 is
planned, consisting of its application in industrial projects, discussions with experienced
maintenance engineers and researches, and an empirical study. In the future, we also want
to examine other areas than documentation to build a general Architecture Maintainability
Maturity Model.



References

[AHAD] Alain April, Jane Huffman Hayes, Alain Abran, and Reiner Dumke. Software Main-
tenance Maturity Model (SMmm): the software maintenance process model: Research
Articles. Journal on Software Maintenance and Evolution, 17(3):197–223.

[BCK99] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley ; Bonn, 1999.

[BDIS04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta Simeoni. Model-
Based Performance Prediction in Software Development: A Survey. IEEE Transactions
on Software Engineering, 30(5):295–310, May 2004.

[BDP] Manfred Broy, Florian Deissenboeck, and Markus Pizka. Demystifying Maintainabil-
ity. In Proc of the WoSQ ’06.

[Bec] Steffen Becker. Coupled Model Transformations. In WOSP ’08.

[Bin94] Robert V. Binder. Design for testability in object-oriented systems. Commun. ACM,
37(9):87–101, 1994.

[BLBvV04] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-level
modifiability analysis (ALMA). Jour. of Syst. and Softw., 69(1-2):129–147, 2004.

[CKvS05] Roberta Coelho, Uirá Kulesza, and Arndt von Staa. Improving architecture testability
with patterns. In in OOPSLA ’05, 2005.

[Cle96] Paul C. Clements. A Survey of Architecture Description Languages. In Proc. of IWSSD
’96. IEEE, 1996.

[CND07] Rafael Capilla, Francisco Nava, and Juan C. Duenas. Modeling and Documenting the
Evolution of Architectural Design Decisions. In Proc. of SHARK-ADI ’07. IEEE, 2007.

[DLS07] Sumita Das, Wayne G. Lutters, and Carolyn B. Seaman. Understanding documentation
value in software maintenance. In Proceedings of CHIMIT ’07. ACM, 2007.

[dSAdO05] Sergio Cozzetti B. de Souza, Nicolas Anquetil, and Káthia M. de Oliveira. A study of
the documentation essential to software maintenance. In Proc. of SIGDOC ’05, pages
68–75. ACM, 2005.

[FL02] Andrew Forward and Timothy C. Lethbridge. The relevance of software documenta-
tion, tools and technologies: a survey. In Proc. of DocEng ’02, 2002.

[Fow03] Martin Fowler. Patterns of enterprise application architecture. Addison-Wesley, 2003.

[GCL04] John Grundy, Yuhong Cai, and Anna Liu. SoftArch/MTE: Generating Distributed Sys-
tem Test-Beds from High-Level Software Architecture Descriptions. In Automated
Software Engineering, volume 12, pages 5–39, December 2004.

[GHP07] Paul S. Grisham, Matthew J. Hawthorne, and Dewayne E. Perry. Architecture and
Design Intent: An Experience Report. In Proc. of SHARK-ADI ’07. IEEE, 2007.

[GKR+] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and S. Völkel. Textbased Modeling.
In in ATEM ’07.

[GKS07] P. S. Grover, Rajesh Kumar, and Arun Sharma. Few useful considerations for maintain-
ing software components and component-based systems. SIGSOFT Softw. Eng. Notes,
32(5):1–5, 2007.



[HPB+05] Petr Hnetynka, Frantisek Plasil, Tomas Bures, Vladimir Mencl, and Lucia Kapova.
SOFA 2.0 metamodel. Technical report, Dep. of SW Engineering, Charles University,
December 2005.

[HS05] Brian Henderson-Sellers. UML - the Good, the Bad or the Ugly? Perspectives from a
panel of experts. Software and System Modeling, 4(1):4–13, 2005.

[HT03] Shihong Huang and Scott Tilley. Towards a documentation maturity model. In Proc.
of SIGDOC ’03, pages 93–99, 2003.

[IEE06] IEEE. International Standard - ISO/IEC 14764 IEEE Std 14764-2006. 2006.

[IEE08] IEEE. Systems and Software Engineering - Software Life Cycle Processes. IEEE STD
12207-2008, 2008.

[ISO01] ISO. International Standard - ISO/IEC 9126 - 1 (2001). International Organization for
Standardization, 2001.

[KKC00] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for Architecture Eval-
uation. Technical Report CMU/SEI-2000-TR-004, SEI, 2000.

[KLvV] Philippe Kruchten, Patricia Lago, and Hans van Vliet. Building Up and Reasoning
About Architectural Knowledge. In QoSA 06.

[KMFO01] Mira Kajko-Mattsson, Stefan Forssander, and Ulf Olsson. Corrective maintenance ma-
turity model (CM3): maintainer’s education and training. In Proc. of ICSE ’01, 2001.

[MN03] Mari Matinlassi and Eila Niemela. The impact of maintainability on component-based
software systems. Proc. of Euromicro ’03., pages 25–32, 2003.

[OMG] OMG. Unified Modeling Language (UML).

[PB06] Lars Pareto and Urban Boquist. A quality model for design documentation in model-
centric projects. In Proceedings of SOQUA ’06, pages 30–37. ACM, 2006.

[PULPT02] Lutz Prechelt, Barbara Unger-Lamprecht, Michael Philippsen, and Walter F. Tichy.
Two Controlled Experiments Assessing the Usefulness of Design Pattern Documenta-
tion in Program Maintenance. IEEE TSE, 28(6):595–606, 2002.

[RG08] Christoph Rathfelder and Henning Groenda. Towards an Architecture Maintainability
Maturity Model (AM3). Softwaretechnik-Trends, 28(4):3–7, November 2008.

[Sou98] Maria Joao Sousa. A Survey on the Software Maintenance Process. In Proceedings of
ICSM ’98, page 265. IEEE, 1998.

[TA] Jeff Tyree and Art Akerman. Architecture Decisions: Demystifying Architecture. IEEE
Softw., 22(2):19–27.

[VTS+04] Marek Vokác, Walter Tichy, Dag Sjoberg, Erik Arisholm, and Magne Aldrin. A Con-
trolled Experiment Comparing the Maintainability of Programs with and without De-
sign Patterns - A Replication in a Real Programming Environment. Empirical Software
Engineering, 9(3):149–195, 2004.

[ZG] Liming Zhu and Ian Gorton. UML Profiles for Design Decisions and Non-Functional
Requirements. In SHARK-ADI ’07.

[ZGK+] Olaf Zimmermann, Thomas Gschwind, Jochen Malte Küster, Frank Leymann, and
Nelly Schuster. Reusable Architectural Decision Models for Enterprise Application
Development. In QoSA07.


