
Towards Middleware-aware Integration of
Event-based Communication into the

Palladio Component Model∗

Christoph Rathfelder
FZI Research Center for
Information Technology

Karlsruhe, Germany
rathfelder@fzi.de

Benjamin Klatt
FZI Research Center for
Information Technology

Karlsruhe, Germany
klatt@fzi.de

Samuel Kounev
Karlsruhe Institute of

Technology (KIT)
Karlsruhe, Germany
kounev@kit.edu

David Evans
University of Cambridge

Cambridge, UK
david.evans@cl.cam.ac.uk

ABSTRACT
The event-based communication paradigm is becoming in-
creasingly ubiquitous as an enabling technology for build-
ing loosely-coupled distributed systems. However, the loose
coupling of components in such systems makes it hard for
developers to predict their performance under load. Most
general purpose performance meta-models for component-
based systems provide limited support for modelling event-
based communication and neglect middleware-specific influ-
ence factors. In this poster, we present an extension of our
approach to modelling event-based communication in the
context of the Palladio Component Model (PCM), allowing
to take into account middleware-specific influence factors.
The latter are captured in a separate model automatically
woven into the PCM instance by means of a model-to-model
transformation. As a second contribution, we present a short
case study of a real-life road traffic monitoring system show-
ing how event-based communication can be modelled for
performance prediction and capacity planning.

1. INTRODUCTION
In component-based systems using event-based commu-

nication, system components interact by sending and re-
ceiving events. Compared to synchronous communication
using, for example, remote procedure calls (RPCs), event-
based communication among components promises several
benefits including more loosely-coupled services and better
scalability. However, the event-based programming model
is more complex, as application logic is distributed among

∗This work was partially funded by the European Commis-
sion (grant No. FP7-216556)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DEBS’10, July 12–15, 2010, Cambridge, UK
Copyright 2010 ACM 978-1-60558-927-5/10/07 ...$10.00.

multiple independent event handlers and the flow of con-
trol during execution is harder to track. Furthermore, the
middleware used for communication influences the perfor-
mance of the whole system. This increases the difficulty of
modelling component-based systems with event-based com-
munication for performance prediction.

In [5, 6], we described an extension of the Palladio Compo-
nent Model (PCM) [2] allowing to model event-based com-
munication and analyse the system performance by means of
a model-to-model transformation. PCM is a design-oriented
performance meta-model for modelling component-based soft-
ware architectures. It allows to explicitly capture compo-
nent context dependencies (e.g., dependencies on the com-
ponent usage profile and execution environment) and pro-
vides support for a number of different performance anal-
ysis techniques. The model transformation we sketched in
[5] did not distinguish between platform-independent and
platform-specific influence factors. More precisely, the log-
ical flow of events between components was mixed with
platform-specific resource demands and middleware-specific
behaviours.

In this poster, we present a refined transformation based
on our work in [5, 6]. The transformation provides a clear
separation between platform-independent and platform-spe-
cific influence factors. This is achieved by capturing the be-
haviour of the communication middleware into a separate
model that is automatically woven into the PCM model in-
stance. The proposed approach allows to easily evaluate
and compare the performance influences of different middle-
ware implementations, as only the platform-specific reposi-
tory has to be replaced without changing the transformation.
In addition to this transformation, we present the results of
a case study showing how our modelling approach can be
applied to a road traffic monitoring system based on the
event-based middleware SBUS (Stream BUS) [3].

2. MODEL TRANSFORMATION
The performance analysis and simulation techniques in-

tegrated in the PCM tool chain currently do not support
event-based communication. To enable a semantically cor-
rect modelling of systems using event-based communica-

Extended PCM
Plattform Independent

Classic PCM
Plattform Independent

Transformation
Middleware
Repository

Plattform Specific

Final Model
Plattform Specific

Weaving

Simulation

Figure 1: Model Transformation Process

tion, we extended the PCM with new modelling constructs
(e.g., EventSource, EventSink, EventAction) [6]. As already
shown in [5], a transformation of these extensions into ex-
isting PCM modelling constructs is required in order to be
able to use the existing model analysis techniques.

To realize the above mentioned separation of platform-
independent and platform-specific influence factors, we di-
vided the transformation into two parts. As shown in Fig. 1,
the extended PCM model, that includes the new constructs
enabling a semantically correct modelling of event-based com-
munication, is first transformed into a generic model rep-
resenting the event-based communication using a combina-
tion of ExternalCallActions and Forks as sketched in [6].
This model does not include platform-specific details like
resource demands or sizes of thread-pools. In the next step,
a platform-specific component model, located in a sepa-
rated repository, is woven into the PCM model instance.
The platform-specific models have to be created only once
and can be reused in different contexts. The result of the
transformation is a model instance which includes platform-
specific details and can be analysed by means of analytical
or simulation techniques. The transformation is performed
automatically and is fully transparent. It is only required
to select the component repository that corresponds to the
used middleware.

Fig. 2 shows the result of the platform-independent part
of the transformation. For each Sink and Source an addi-
tional component is added. These composite components
include several components that represent different steps in
the middleware’s event processing:

∙ SourcePort Interaction between source component
and middleware.

∙ DistributionPreparation Processing within the mid-
dleware, that is done once per event (e.g. marshalling
before the distribution).

∙ EventDistribution Splitting the control flow and dis-
tribution the events to all sinks.

∙ EventSender Processing within the middleware that
is done for each connected sink (e.g. communication
handshake).

∙ EventReceiver Processing of the event within the
middleware, but located on the receiver side. (e.g. Re-
ceiving the event from the communication channel or
demarshalling)

∙ SinkPort Communication between middleware and
receiving component.

Each of these internal components includes an ExternalCall
to the predefined interfaces IMiddlewareSource or IMid-

dlewareSink. These interfaces and ExternalCalls are later
connected with the platform-specific repository and the re-
spective components included in the repository.

Sink C

IMiddlewareSink

A

Source A

IMiddlewareSource

C

Sink B B

A
B

C

Source A
Sink B

Sink C

Figure 2: Platform-independent Result of the Trans-
formation

3. CASE STUDY
To evaluate the applicability of our modelling approach

as well as the accuracy of the prediction results, we applied
our modelling approach to a case study of a real-life road
traffic monitoring system [4]. The system we studied is de-
veloped as part of the TIME project (Transport Informa-
tion Monitoring Environment) [1] at the University of Cam-
bridge. The system is based on the SBUS middleware [3]
which supports peer-to-peer event-based communication in-
cluding both continuous streams of data (e.g., from sensors),
asynchronous events, and synchronous RPC. We considered
a number of different scenarios under different deployment
topologies and load conditions. We measured CPU utiliza-
tion as well as processing times within components. We
compared the measurements with the prediction values and
for all scenarios, the prediction error was less then 10% in
most of the cases and did not exceed 20%.

4. ONGOING AND FUTURE WORK
The proposed transformation allows a separation of generic

event-based communication and middleware specific charac-
teristics. The fully automated integration of this transfor-
mation into the PCM tool chain is part of our current work.
Additionally, we are working on an extended case study us-
ing the SBUS middleware and we are planning to conduct
a separate case study using a centralized messaging system
based on the Java Message Service (JMS). The goal will
be to demonstrate how the effect of using different imple-
mentations of JMS for event-based communication can be
reflected in the PCM model by incorporating different mid-
dleware repositories.

5. REFERENCES
[1] J. Bacon, A. R. Beresford, D. Evans, D. Ingram,

N. Trigoni, A. Guitton, and A. Skordylis. TIME: An
open platform for capturing, processing and delivering
transport-related data. In Proc. of the IEEE consumer
communications and networking conference, 2008.

[2] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Jour. of Syst. and Softw., 82:3–22, 2009.

[3] D. Ingram. Reconfigurable middleware for high
availability sensor systems. In Proc. of DEBS’09.

[4] C. Rathfelder, D. Evans, and S. Kounev. Predictive
Modelling of Peer-to-Peer Event-driven Communication
in Component-based Systems. In Proc. of ECSA 2010,
2010. under review.

[5] C. Rathfelder and S. Kounev. Fast Abstract:
Model-based Performance Prediction for Event-driven
Systems. In Proc. of DEBS’09, 2009.

[6] C. Rathfelder and S. Kounev. Modeling Event-Driven
Service-Oriented Systems using the Palladio
Component Model. In Proc. of QUASOSS’09, 2009.

