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Abstract Event-based communication is used in dif-
ferent domains including telecommunications, transporta-
tion, and business information systems to build scal-
able distributed systems. Such systems typically have
stringent requirements for performance and scalability as
they provide business and mission critical services. While
the use of event-based communication enables loosely-
coupled interactions between components and leads to
improved system scalability, it makes it much harder for
developers to estimate the system’s behavior and perfor-
mance under load due to the decoupling of components
and control flow. In this paper, we present our approach
enabling the modeling and performance prediction of
event-based systems at the architecture level. Apply-
ing a model-to-model transformation, our approach in-
tegrates platform-specific performance influences of the
underlying middleware while enabling the use of differ-
ent existing analytical and simulation-based prediction
techniques. In summary the contributions of this paper
are: 1) the development of a meta-model for event-based
communication at the architecture level, ii) a platform
aware model-to-model transformation, and iii) a detailed
evaluation of the applicability of our approach based on
two representative real-world case studies. The results
demonstrate the effectiveness, practicability and accu-
racy of the proposed modeling and prediction approach.

* This work was partially funded by the German Research
Foundation (grant No. KO 3445/6-1)

1 Introduction

The event-based communication paradigm is used in-
creasingly often to build loosely-coupled distributed sys-
tems in many different industry domains. The applica-
tion areas of event-based systems range from distributed
sensor-based systems up to large-scale business infor-
mation systems [24]. Compared to synchronous com-
munication using, for example, remote procedure calls
(RPC), event-based communication among components
promises several benefits such as high scalability and ex-
tendability [25]. Being asynchronous in nature, it allows
a send-and-forget approach, i.e., a component that sends
a message can continue its execution without waiting for
the receiver to react on the message. Furthermore, the
loose coupling of components achieved by the mediating
middleware system leads to an increased extensibility of
the system as components can easily be added, removed,
or substituted.

With the growing proliferation of event-based com-
munication in mission critical systems, the performance
and scalability of such systems are becoming a major
concern. To ensure adequate Quality-of-Service (QoS), it
is essential that applications are subjected to a rigorous
performance and scalability analysis as part of the soft-
ware development process. In today’s data centers, soft-
ware systems are often deployed on server machines with
over-provisioned capacity in order to guarantee highly
available and responsive operation [28], which automati-
cally leads to lower efficiency. Although the event-based
communication model promises to improve flexibility and
scalability, the complexity compared to direct RPC-based
communication is higher since the application logic is
distributed among multiple independent event handlers
with decoupled and parallel execution paths. This in-
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creases the difficulty of modeling event-based commu- tailed evaluation of our approach based on two real-
nication for quality predictions at system design and world case studies representing different domains and
deployment time. Thus, the evaluation of event-based communication styles of event-based systems.
systems requires specialized techniques that consider the The contributions of the paper are i) the identifi-
different characteristics and features of event-based com- cation and implementation of meta-model elements re-
munication. quired for modeling event-based communication at the
Performance modeling and prediction techniques for architecture level, ii) the design and realization of the
component-based systems, surveyed in [33], support the two-step model-to-model transformation integrating plat-
architect in evaluating the system architecture and de- form-independent and platform-specific aspects of event-
sign alternatives regarding their performance and re- based communication into the prediction model, and fi-
source efficiency. However, most general-purpose perfor- nally iii) a detailed evaluation of the presented approach
mance meta-models for component-based systems pro- based on two representative real-world case studies.

vide limited support for modeling event-based commu-
nication. Furthermore, existing performance prediction
techniques specialized for event-based systems (e.g., [42,
9,54]) are focused on modeling the routing of events in
the system as opposed to modeling the interactions and
message flows between the communicating components.
As an example of a representative mature meta-model eling of publish/subscribe communication in com-
for component-based software architectures, we consider ponent-based systems. Theses extensions open up a
the Palladio Component Model (PCM) [6]. PCM is ac- new appllcatlop domain of industrial systems for our
companied with different analytical and simulation-based approach. We implemented these meta-model exten-
prediction techniques, e.g., [6,38,34] enabling quality pre- sions based on PCM, as a mature and representative
dictions at system design time. Similarly to most com- meta-model for component-based architectures.

ponent meta-models for component-based architectures, ~ Flatform-aware refinement transformation We de-
PCM, in its original version did not provide support for veloped a two-step model-to-model transformation
modeling of event-based communication. Performance responsible for integrating the performance relevant
predictions are only possible using workarounds as demon- inﬂuence. fz'mctors of event-based communication into
strated in [48]. The modeling effort incurred by this man- the prediction model. The first step refines the event-
ual workaround approach is very high and provides lim- based point-to-point and publish/subscribe commu-
ited flexibility to evaluate different design alternatives. nication links with a detailed event-processing chain
In [50], we briefly sketched the core elements required while the second steps integrates platform-specific
for modeling event-based communication. In a follow components. The clear separation of platform-inde-
up poster paper [49], we described our idea of using a pendent and platform-specific aspects supports ar-
model-to-model transformation to map the newly intro- chitects in evaluating the influence of different mid-
duced model elements to existing PCM model elements dleware implementations on the system performance.
allowing to use the available prediction techniques, while Evalu;lltion In order to provide a comprehensive eval-
significantly reducing the modeling effort. In [29], we uation of our approach we selected two represen-
presented an extension of the PCM combined with an tative real-world systems from different application
initial implementation of such a model-to-model trans- domains and covering most aspects of event-based

formation that was limited to modeling point-to-point systems. The first case study is based on a traffic-
connections between components. monitoring system built on top of the distributed

peer-to-peer middleware SBUS [27]. In addition to
the prediction accuracy, we evaluated the adaptabil-
ity of our prediction model to reflect architectural
changes and deployment options, which are typical
for distributed event-based systems. The SPECjms-
2007 benchmark!, our second case study, is a sup-
ply chain management system representative for real-
world industrial applications built on top of a central-

Modeling event-based communication Modeling
event-based communication at the architecture level
requires new meta-model elements. We extended our
work in [29], which was limited to direct point-to-
point connections with elements enabling the mod-

In this paper, we present our integrated approach
enabling the comprehensive modeling and performance
prediction of event-based communication as part of ar-
chitecture-level models. We extend our work presented
in [29] to additionally support the modeling and predic-
tion of publish/subscribe systems and thus extends the
scope of our approach to a new domain of event-based
systems. The implementation of our approach is based
on PCM as a mature and representative meta-model
for architecture-level performance predictions. The de-

1 SPECjms2007 is a trademark of the Standard Perfor-

bed del el bined with th mance Evaluation Corporation (SPEC). The results or find-
scribed meta-model elements combined with the pre- ings in this publication have not been reviewed or ac-

sented model-to-model transformation cover point-to-po- cepted by SPEC, therefore no comparison nor performance
int as well as publish/ subscribe communication and inference can be made against any published SPEC re-
thus the most often used communication styles in event- sult. The official web site for SPECjms2007 is located at
based systems. Furthermore, this paper presents a de- http://www.spec.org/osg/jms2007.
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ized message-oriented middleware. The different in-
teractions exercise a complex transaction mix includ-
ing point-to-point and publish/subscribe communi-
cation [52]. The results of our evaluation demonstrate
that our approach reduces the modeling efforts by
more than 80% compared to the use of workarounds.
The effort to reflect different design alternative and
multiple deployment options in the architecture level
models is less than 30 minutes. In both case stud-
ies, the detailed evaluation of the prediction accuracy
shows that the prediction error, compared to mea-
surements on the running system, is less than 20% in
most cases. This is a more than acceptable accuracy
for design-time performance analysis [39)].

The remainder of this paper is organized as follows.
Section 2 presents the foundations of our work and intro-
duces event-based systems and software performance en-
gineering in general. Additionally, it presents an overview
on PCM which is the basis of our implementation. Sec-
tion 3 presents the meta-model elements enabling the
modeling of event-based communication at the architec-
ture level. Section 4 describes the model-to-model trans-
formation and the separation of platform-specific and
platform-independent aspects. Section 5 presents a de-
tailed evaluation of our approach in the context of two
representative real-world case studies. Finally, in Sec-
tion 6, we give an overview of related work and conclude
with a brief summary and a discussion of ongoing and
future work in Section 7.

2 Foundations

In the following, we present an overview on event-based
systems and event-based communication. Furthermore,
we introduce software performance engineering in gen-
eral and PCM in particular, which we selected as ba-
sis for our implementation as it is a mature and rep-
resentative meta-model for performance predictions of
component-based systems.

2.1 Fvent-based Systems

Event-based systems are used in a variety of different
domains and their size ranges from small embedded up
to large-scale and world-wide distributed systems [24].
Nevertheless, all event-based systems have four core ele-
ments in common: Fvents, Sources, Sinks, and the Mid-
dleware [8]. Events are data elements asynchronously
transferred between components to trigger a certain be-
havior or to transfer data. They are instantiated within
sources, which are responsible to publish and emit the
event. The counterpart of a source is the sink, which re-
ceives and processes events. The communication between
sources and sinks is enabled by a communication middle-
ware supporting loosely-coupled communication among
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Fig. 1 Point-to-point Communication

distributed software components. This allows a source
to send an event and then continue working while the
event is being delivered and processed.

Although all modern event-based systems are built
using a middleware system, the implementation and ar-
chitecture can significantly differ. Using a centralized ap-
proach, the middleware is running as one central instance
all sources and sinks are connected to. Most of the event-
based middleware platforms currently used in industry
(e.g., IBM WebSphere MQ, TIBCO EMS) support the
Java Message Service (JMS) [56] standard interface for
accessing a centralized server or server cluster. In peer-
to-peer systems the middleware is integrated into the
sources and sinks as local libraries without a dedicated
server or set of servers hosting the middleware.

In event-based systems, two communication styles,
which are independent of the middleware’s architecture,
need to be differentiated. In point-to-point communi-
cation (see Figure 1), the events are sent to a speci-
fied queue associated with exactly one sink. Due to the
single queue, the interaction type is limited to many-
to-one communication. In contrast,architecture level in
publish/subscribe systems, a sink connects to the mid-
dleware system and subscribes for the events of inter-
est [14]. As illustrated in Figure 2, the middleware pro-
vides different event channels that are used to group the
events and thus simplify the subscription, as sinks only
have to connect to an event channel. These channels can
represent a certain topic (topic-based subscription) or a
certain type of events (type-based subscription). Further-
more, the subscription can include individual filtering
rules applied to the content of an event (content-based
subscription). When emitting an event, the source is re-
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Fig. 2 Publish/subscribe Communication



sponsible for selecting the corresponding channel that is
used to publish the event. The middleware forwards the
event to all sinks subscribed to this channel. For a de-
tailed introduction to event-based systems the reader is
referred to [25,51,41,23].

2.2 Software Performance Engineering

Over the last fifteen years, a number of approaches have
been proposed for integrating performance prediction
techniques into the software engineering process. Efforts
were initiated with Smith’s seminal work on Software
Performance Engineering (SPE) [55]. Since then, a num-
ber of architecture-level performance meta-models have
been developed by the performance engineering commu-
nity. The most prominent examples are the UML SPT
profile [44] and its successor, the UML MARTE pro-
file [45]. Both of them are extensions of the UML as the
de-facto standard modeling language for software archi-
tectures. All approaches support the evaluation of sys-
tem performance at design time and the comparison of
different design alternatives and deployment options.

The OMG has defined a general process for model-
based performance predictions [5]. The starting point of
this process is a model that describes the software sys-
tem itself using an established modeling language, such
as the UML. Those software models do not include any
specific information regarding the performance charac-
teristics of the modeled system, e.g., resource demands
and parameter dependencies. This information is added
in a second step. If an implementation is already avail-
able measurements of the system can be used to gather
the relevant information to annotate the model. The an-
notation can be done using one of the UML profiles men-
tioned before or using a meta-model designed specifically
for this purpose, such as KLAPER [18] or PCM [21]. The
annotated software model is used as input for a trans-
formation to a stochastic performance model such as a
layered queueing network (LQN) or a queueing Petri net
(QPN). The stochastic performance model is then eval-
uated with analysis or simulation techniques. In a final
step, the prediction results are returned as a feedback re-
lated to the original software model. A recent survey of
performance engineering models and techniques focusing
on component-based systems was published in [33].

2.8 Palladio Component Model

The Palladio Component Model (PCM) [21] is a domain-
specific modeling language for component-based soft-
ware architectures. It supports an automated transfor-
mation of architecture-level performance models to pre-

dictive performance models including LQNs [34], QPNs [38]

and simulation models [5]. PCM supports the evalua-
tion of different performance metrics, including response
time, maximum throughput, and resource utilization.

Christoph Rathfelder et al.

Repository Simulation
Model Code
System —
Model Queueing Petri

Nets
Allocation
Model
Layered
HEseUIEE Queueing Nets
i -—
Environment Palladio Model
Instance
 C——
Usage Markov Chains
Profile
—

Fig. 3 Palladio Overview

The PCM approach provides an Eclipse-based modeling
and prediction tool [2]. Further details and a technical
description can be found in [6].

The performance of a component-based software sys-
tem is influenced by four factors [5]: The implementation
of system components, the performance of external com-
ponents used, the deployment platform (e.g., hardware,
middleware, networks), and the system’s usage profile.
In PCM, all factors are modeled in specific sub-models
and thus can be managed independently. The composi-
tion of these models forms a PCM instance.

The Repository Model specifies a library of system
components and their behavior. Components provide and
require interfaces. PCM provides a description language,
called ResourceDemandingService EffectSpecification (RD-
SEFF) to specify the behavior of a component including
the resource demands and parameter dependencies. This
language provides actions to model the internal control
flow, such as Branch- or LoopActions, but also to call
other components through the required interfaces, which
are called ExternalCallActions. For a detailed descrip-
tion we refer to [6]. The System Model describes the
structure of the system by instantiating and connecting
components defined within the Repository via their pro-
vided and required interfaces. In the Allocation Model,
the components defined within the System Model are al-
located to physical resources described in the Resource-
Environment Model. The model specifies the hardware
environment the system is executed on, e.g., servers, pro-
cessor speed, network links. The Usage Model describes
the workload induced by the system’s end-users. The Us-
age Model describes the behavior of users and their invo-
cation of interfaces provided by the system. For example,
the workload may specify how many users access the sys-
tem, their input parameters, and the inter-arrival time
of requests. Usage profiles within the model represent in-
dividual user behaviors. Usually, parameter values have
an influence on the software’s behavior and the resource
demands. However, it is often not possible to explicitly
model these dependencies. With StochasticExpressions
(StoEx), PCM offers a language to describe direct pa-
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rameter dependencies based on boolean and mathemati-
cal operations, but also multiple probability distribution
functions to abstract complex or unknown parameter de-
pendencies.

As illustrated in Figure 3, the combination of the pre-
viously described models builds an instance of a PCM
model, which then can be transformed into multiple pre-
diction techniques. The transformation and the execu-
tion of the prediction is encapsulated within the Palladio
tool and transparent for the software architect. The pre-
diction results, e.g., resource utilization, response times
or throughput for individual components as well as the
whole system are visualized and returned to the archi-
tect.

3 Modeling Event-based Communication

Modeling event-based communication is a neglected fac-
tor in most architecture-level performance models. Al-
though some of them already support to specify asyn-
chronous method calls [33], the queuing effects and the
specification of publish/subscribe systems is not sup-
ported. In the following, we exemplarily describe the
meta-model abstractions required for modeling event-
based communication at the architecture level using PCM
as a representative meta-model of component-based sys-
tems. Although, we demonstrate our extensions in the
context of PCM, as one of the most advanced modeling
and prediction tools, the general approach is not limited
to PCM and can, with slight adaptations, be applied to
most modeling and performance prediction approach for
component-based systems.

In [29], we have already described the elements re-
quired for modeling events, sink and source roles of com-
ponents, as well as direct connectors between compo-
nents. However, to keep this paper self-contained, we
first give an overview on these elements before present-
ing the new extensions enabling the modeling of pub-
lish /subscribe interactions between components and the
specification of sink-specific filtering rules.

8.1 Interfaces and Fvents

In component-based systems, interfaces describe the con-
tract between two components. In synchronous RPC-
style communications, interfaces, called OperationIn-
terface, combine a set of OperationSignatures. These
signatures describe operations required by one compo-
nent and provided by another. In event-based commu-
nication, the contract does not describe a set of oper-
ations that can be called but rather the event types
a component can emit or receive and process. To de-
scribe the individual events produced or consumed by
a component, we specify a meta-model element named
EventType. Events often contain a payload that can
be a simple value as well as a complex data type. To

Operation
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Fig. 4 Component and Roles

enable modeling of an event’s payload, the EventType
contains a Parameter, which is a PCM element used to
specify the performance-relevant characteristics of sim-
ple or complex datatypes. Furthermore, we introduce the
EventGroup as a specialization of the abstract Interface
to group EventTypes.

3.2 Sink and Source Roles

Our approach is aligned with the general PCM con-
cept for providing and requiring component functional-
ity. The PCM meta-model contains an abstract Provi-
dedRole and an abstract RequiredRole element, which
describe the roles of a component within a component
connection. A component receiving events provides func-
tionality to process them. Thus the SinkRole is a spe-
cialized ProvidedRole. As described in Section 3.3, each
SinkRole is connected with a dedicated event handler
specification and references the EventGroup and thus
EventTypes that can be processed. The counterpart is
the SourceRole, which is a specialization of a Required-
Role. It refers the component able to emit events of the
types described by the referenced EventGroup. Figure 4
illustrates the different roles a component can contain.

3.3 Behavior

The meta-model extensions, we presented above, cover
only the static aspects of a component. In order to reflect
the behavioral aspects, we define elements reflecting the
creation and publishing of events as well as their pro-
cessing.

In PCM, the behavior of a component is modeled
with RDSEFFs as described in Section 2.3. We defined
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a new element representing the instantiation of an event
as part of the behavior description, named EmitEvent-
Action. It references the SourceRole of the component
that should be used to publish the event. Additionally, it
includes a VariableCharacterization used to specify
the event’s value and its performance relevant character-
istics. In PCM, VariableCharacterizations are used
to specify the instantiation and the value assignment to
variables and parameters.

To model and specify the event processing within a
component, we introduce a concept analogue to the spec-
ification of provided functionality based on Operation-
alInterfaces. As illustrated in Figure 5, a component
includes for each SinkRole a RDSEFF specifying the pro-
cessing of events received through this role.

3.4 Event Channels

The publish/subscribe communication, often used in e-
vent-based systems, introduces a higher decoupling of
components [14]. In order to support point-to-point as
well as publish/subscribe communication, we defined a
new meta-model element named EventChannel. Chan-
nels enable the many-to-many communication as sources
and sinks can independently be connected to a chan-
nel. An EventChannel refers to an EventGroup and all
connected Sink- and SourceRoles must support this
EventGroup which ensures type-safe processing of events.
The EventChannel is part of a PCM System Model and
thus can be explicitly deployed on a dedicated or shared
resource. In addition to the decoupling, the event chan-
nels used in publish/subscribe (see Figure 2) can also
be used to structure the system at the architecture level
by grouping events from different sources into one chan-
nel instead of several direct connections from sources to
sinks.

3.5 Connectors

In the System Model, the architect defines the system
architecture by instantiating components and connect-
ing their provided and required interfaces respectively
sources and sinks of a component. In PCM, component
instances are called AssemblyContexts.

In order to support event-based communication, we
specified new component connectors. In the existing op-
erational case, only one-to-one connections were allowed.
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In the new event-based scenario, sinks are able to handle
events that are emitted by one or more sources and the
events of one source can be received and processed by
zero, one or many sinks in parallel.
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Fig. 6 Event Channel and Connectors

In addition to the AssemblyEventConnector describ-
ing direct point-to-point connections, we define two new
types of connectors for modeling publish /subscribe com-
munication, namely ChannelSourceConnectors and Chan-
nelSinkConnectors, which are illustrated in Figure 6.
Both connectors refer to an EventChannel, to an Assem-
blyContext, and to the belonging SourceRole respec-
tively SinkRole.

To specify sink-specific filtering rules, we extended
the AssemblyEventConnector and the ChannelSink-
Connectors with an additional StochasticExpression
based on PCM’s StoEx language as FilteringRule. In
addition to value-based filtering rules like “event .BYTE-
SIZE <= 1000”, which filters out large messages, or “ev-
ent.TYPE == ERROR”, which selects only error messages,
PCMs StoEx language supports probabilistic expressions,
e.g., 80% of the generated events should be forwarded
to the sink. Probabilistic filters enable modeling unre-
liable event processing as well as abstracting from con-
crete value dependencies or load balancing strategies.

4 Platform-Aware Refinement Transformation

The meta-model elements introduced in the previous
section enable software architects to model event-based
communication in component-based systems at the ar-
chitecture-level. The extensions allow an explicit mod-
eling of one-to-many, many-to-one as well as many-to-
many interactions between components while abstract-
ing platform-specific details of the underlying communi-
cation middleware. This abstraction of communication
and implementation details is aligned with the notion of
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a platform-independent model (PIM) as defined by the
OMG [43].

In order to derive a platform-specific model (PSM)
that contains platform-specific details about the behav-
ior of the underlying communication middleware, the ar-
chitecture model is refined by applying a two-step trans-
formation as depicted in Figure 7. First, a platform-
independent event processing chain is integrated. This
refinement step substitutes the new meta-model elements
with several components representing the different event
processing steps executed inside the transmission sys-
tem. The next step of the transformation integrates mid-
dleware-specific components specified in a dedicated mid-
dleware model capturing the performance relevant influ-
ence factors of the employed communication middleware.
Since the middleware models are independent of the sys-
tem architecture model, they are stored in a middleware
repository and can be reused in multiple system evalua-
tions. The resulting model serves as input for all existing
prediction techniques, available for the original version
of PCM, as all new elements are substituted.

In the following, we first describe the generic event
processing chain that provides a skeleton to integrate
platform-specific components representing the different
event processing activities within the transmission sys-
tem. Second, we provide an illustration of the two-step
transformation explaining the refinement into the beha-
vior-equivalent model as well as the merging with the
middleware model. For a detailed description and for-
malization of the transformation we refer to [47].

send event to
transmission system

. replicate filtering /sink-
receive . e
event and split specific
event )
control flow processing

Source

send event
to sink

receive
event

Transmission
System

Sink

Fig. 8 Generic Event Processing Chain

4.1 Event Processing Chain

The generic event processing chain, illustrated in Fig-
ure 8, consists of six processing stages that are common
for event-based systems. The execution of the different
stages is distributed among the involved source and sink
components and the transmission system. Given that the
processing chain is defined to be platform-independent,
it does not include any concrete resource demanding
behavior, however, it provides placeholders to integrate
such platform-specific behavior that is executed within
the various stages.

The first stage, send event to transmission system, is
performed on the source-side and includes the commu-
nication activities to hand-over the event to the trans-
mission system. This stage is usually performed within a
local library, which encapsulates the communication and
includes activities like marshaling, compression, or en-
cryption on the source-side. In the parallel receive event
stage, the event is received by the transmission system,
which includes the communication with the source com-
ponent and possibly additional activities such as the de-
marshaling required to acknowledge the correct receipt
of the event.

Asynchronous many-to-many communication between
components is one of the main characteristics of event-
based interactions. In the generic event-processing chain,
this behavior is reflected by the replicate event and split
control flow processing stage. While providing a cloned
instance of the event to each connected sink, the con-
trol flow between sources and sinks is decoupled and the
cloned events are forwarded to the sinks in parallel. The
remaining activities of the event processing chain are ex-
ecuted in parallel and independently for each connected
sink.

After splitting the control flow, the generic event pro-
cessing chain contains the sink-specific filtering based on
the filtering conditions defined within the connectors. If
the event matches the defined filtering conditions for a
given sink, the event is further processed. Otherwise,
the event processing for the respective sink is termi-
nated. In addition to the filtering, which is considered as
platform-independent logic, the filtering stage allows to



integrate additional platform-specific processing such as
data conversion, deserialization, or decompression. Such
platform-specific activities are described as part of the
middleware model which is later integrated when deriv-
ing the final platform-specific model.

Similarly to the communication between the source
and the transmission system, which is reflected by the
first two stages of the event processing chain, the com-
munication between the transmission system and the
sinks is split into two stages. The send event to sink
stage encapsulates the communication aspects the trans-
mission system is responsible for while allowing the in-
tegration of platform-specific marshaling or serialization
operations. The receive event stage is the counterpart
stage on the sink-side usually executed in parallel by a
local library encapsulating the communication with the
transmission system.

The presented platform-independent event-processing
chain is the foundation for the platform-independent re-
finement transformation presented in the following sec-
tion.

4.2 Platform-independent Refinement

The platform-independent refinement, which is the first
step of our two-step transformation, substitutes the event-
based interactions modeled at the architecture-level with
a chain of components. Each of these components is
responsible for exactly one of the presented processing
stages. In the following, we present the transformation of
source and sink components to illustrate our approach.

Point-to-point and publish /subscribe interactions are
modeled differently at the architecture level. In the first
case, direct connectors between sources and sinks are
used while in the second case sources and sinks are con-
nected through intermediary event channels. In the fol-
lowing, we first give an overview on the refinement of
direct point-to-point connectors followed by an explana-
tion of the differences in case of publish/subscribe con-
nections.

4.3 Refinement of Point-to-Point Connectors

Figure 9 presents an illustration of the refinement of a
source component connected with two sink components
using direct point-to-point connectors. The SourceRole
as part of component A is replaced by a required oper-
ation interface resulting in a synchronous call initiating
the event processing chain. This interface is connected
with the provided operational interface of the newly in-
troduced SourcePort component, which represents the
local library encapsulating the communication with the
transmission system as part of the send event to trans-
mission system stage. The SourcePort is always de-
ployed on the same node as the source component itself.
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Fig. 9 Refinement of a Source with Point-to-Point Connec-
tors

The SourceCommunication component inside the trans-

mission system receives the emitted event from the Sour-
cePort component. The SourceCommunication compo-
nent provides a skeleton to integrate platform specific-
components describing the resource demands for receiv-
ing and processing the event.

The EventDistribution component is responsible
for replicating the event and splitting the control flow
for each connected sink. The component contains an
individual OperationRequiredRole for each connected
sink. To realize the asynchronous and decoupled behav-
ior of event-based communication, the behavior descrip-
tion of the EventDistribution component makes use of
an asynchronous fork. Each ForkBehaviour includes an
ExternalCallAction associated with one of the newly
added required interfaces. As the number of required in-
terfaces and forks depends on the number of connected
sinks, the EventDistribution component is individu-
ally generated for each source.

Each of the required interfaces is connected with a
sink-specific EventFilter component. In contrast to the
other components, which directly call the next compo-
nent in the chain of responsibility, the EventFilter com-
ponents include a BranchAction to call the next compo-
nent only if the filtering rule defined as a stochastic ex-
pression (StoEx) evaluates to true. Otherwise, the event
processing for this specific sink is terminated.

Similarly to the transformation of sources, each Sink-
Role is replaced with a provided operational interface
and two additional components as illustrated in Fig-
ure 10. SinkCommunication is the first component in
the event processing chain resulting from this refinement
and it provides a skeleton to integrate relevant resource

Architecture level

e O—| ziz;‘rlr(lmuniutiig |"0'—| SinkPort d |_—©‘| B E|

Transmission System Sink-side

Refined platform-independent model

Fig. 10 Transformation of a Sink
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demanding behavior of the transmission system when
communicating with the respective sink. The counter-
part of SinkCommunication is the SinkPort component
abstracting the local library of the sink component and
its local resource demanding behavior at the sink side.
In addition to the introduced provided operational inter-
face, the sink component is modified to handle the in-
coming operation calls of the transmission system when
events are delivered. The existing RDSEFFs of the com-
ponent are linked to the respective Signatures of the
OperationalInterfaces they are defined for.

To support peer-to-peer-based as well as centralized
middleware systems, the components representing the
transmission system are deployed differently depending
on the specification of a central ResourceContainer host-
ing the transmission system. If the ResourceEnvironment
contains such a specification, the components are de-
ployed on this node otherwise they are deployed on the
resource container hosting the source component.

4.4 Refinement of Fvent Channels

As shown in Figure 11, the transformation of publish/sub-
scribe connections using EventChannels is quite similar

to point-to-point connections and differs only in the ex-

plicit deployment of channels to dedicated Resource-

Containers. For each source, the transformation gener-

ates an instance of a SourcePort component deployed on

the same ResourceContainer as the respective source,

while the middleware components are instantiated once

per EventChannel and deployed on the respective Re-

sourceContainer associated with the channel.
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Fig. 11 Refinement of Event Channels

4.5 Merging with Platform-specific Middleware
Components

From a modeling point of view, the general event-based
connections between components and the specific mid-
dleware used for the technical implementation are at two
different levels of abstraction. For this reasons, we sep-
arated the platform-specific behavior and resource de-
mands of a middleware implementation using a sepa-
rate middleware repository. The middleware repository,

Refined platform-independent model
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Fig. 12 Examples of Middleware Models and their Weaving

which is also based on PCM, includes six predefined op-
erational interfaces, namely IMiddlewareSourcePort,
IMiddlewareSourceCommunication, IMiddlewareEvent-
Distribution, IMiddlewareFilter, IMiddlewareSink-
Communication and IMiddlewareSinkPort. The mid-
dleware repository can contain a dedicated component
for each interface but also allows to specify only one
component providing all interfaces. Figure 12 illustrates
possible exemplary alternatives.

The integration of the platform-specific components
into the platform-independent processing chain consists
of several steps. The first step is the identification and
localization of components providing one or more of the
middleware interfaces. Second, the components repre-
senting the platform-independent event processing are
extended to invoke the corresponding middleware com-
ponent. As third step, the deployment of the middle-
ware components is generated. They are deployed on
the same resource container as the respective platform-
independent component. The transformation ensures that
each resource container contains at most one instance
of each middleware component, which is shared between
the platform-independent components. Finally, the merg-
ing transformation generates the connectors between the
new required interfaces of the event processing compo-
nents with the provided interfaces of the middleware
component instance on the same resource container. The
result of the model merging is the refined platform-specific
model that serves as input for different existing analysis
and prediction techniques defined for the original PCM.
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4.6 Implementation

To perform the evaluation described in the following, we
implemented our approach as part of the Palladio tool.
We applied the presented model extension to the Ecore-
based PCM meta-model. Based on the meta-model, we
used the capabilities of the Exlipse Modeling Framework
(EMF) to generate basic tree editors and and the code
for manipulating model instances. Although, these ed-
itors provide functionality to create and change model
instances, they are not useable to build models of real-
istic systems with multiple connections and references.
For this reason, we extended the graphical editors of
the Palladio tool using the Eclipse Graphical Modeling
Framework (GMF) to support the modeling of event-
based communication as shown in Figure 13. The re-
finement model-to-model transformation is implemented
with the transformation language QVTO. We integrated
the transformation into the prediction workflow. It is
automatically executed if event-based communication is
used in the model. Finally, we extended the performance
prediction dialog to allow the selection of the middleware
repository.
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Fig. 13 Screenshot of the Palladio Tool

5 Evaluation

The goal of our approach is to i) improve the model-
ing of event-based communication at the architecture
level and ii) enable the performance prediction using
architecture-level models. To validate the applicability
of our approach we first analyzed the achieved effort re-
duction of our approach compared to the use of the orig-
inal PCM with modeling workarounds as shown in [48].
Second, we applied our approach to evaluate the perfor-
mance of different design alternatives and deployment
options and evaluated the effort required to adapt the
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models. To evaluate the prediction accuracy and the ap-
plicability to different software domains, we selected two
real-world systems representing different types and do-
mains of event-based systems. The first case study is
based on the traffic monitoring system developed within
the TIME research project [3] to monitor the traffic
in the City of Cambridge. It is based on a decentral-
ized peer-to-peer middleware SBUS [27]. As a repre-
sentative application for business information systems
based on a centralized middleware with point-to-point
as well as publish/subscribe communication, we selected
the SPECjms2007 benchmark [52].

5.1 Reduced Modeling Effort

The original PCM meta-model did not provide any el-
ements specific to events and event-based communica-
tion. As shown in a previous case study [50] based on a
subset of the traffic monitoring system, it is possible to
conduct PCM-based performance predictions using a set
of workarounds. These workarounds enabled the archi-
tect to setup performance equivalent structures. How-
ever, their modeling is very time consuming and they
lead to a semantically incorrect model as they are based
on synchronous interfaces combined with forks to em-
ulate asynchronous behavior. With the presented ap-
proach, we introduce new meta-model elements for ex-
plicit modeling of events, source and sink roles, event
channels as well as related connectors. While there is no
quantitative quality index for such a difference, it can
be clearly stated that there is an improvement on the
coverage of event-related elements. Figures 14(a) and
14(b) present an event-based point-to-point connection
using the workaround and respectively using our meta-
model extension. Although, they are performance equiv-
alent, the semantics of the models are different. Using
the workaround-based synchronous interfaces combined
with forks, at the architecture-level event-based and RPC-
style connection can not be distinguished. In contrast,
the new elements allow an architect to explicitly differen-
tiate between synchronous call-return behavior and the
fire-and-forget behavior of event-based communication.
In addition to enabling the semantically correct mod-
eling of event-based communication, the new elements
significantly reduce the modeling effort. We tracked the
effort for three different scenarios. In the first scenario,
a new sink is added to an existing connection while in
the second one a new source is added. In the third sce-
nario, a completely new point-to-point connection be-
tween a source and a sink is created. We tracked the
effort in terms of the number of elements that must
be created without considering the time required for
the creation of the individual elements. This was done
to avoid the influence of the individual experience and
training of the architects in the usage of Eclipse mod-
eling tools in general and the Palladio tools in partic-
ular. Adding an additional sink was reduced to create
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Fig. 14 Comparison of Source and Sink Modeling

only one element instead of 14 with the old approach
(effort reduction 92.8%). The manual modeling reuses
existing components as much as possible, but as already
mention in Section 4.2, adding a new sink requires for
example the extension of the component splitting the
control-flow with an additional required interface and
the included behavioral specification with an additional
fork. The effort for adding an additional source was re-
duced from 35 to 6 elements (effort reduction 82.8%).
Most of the manual effort was required for specifying
the VariableUsages and VariableCharacterisations
that forward the event’s content through the different
components. For a completely new connection, the re-
quired effort was reduced from 59 to only 11 elements
with the new approach, which is an effort reduction of
81.3%.

Change Scenario New Workaround Effort
# elem. # elem. Reduction
Add Sink 1 14 92,8%
Add Source 6 35 82,8%
New Connection 11 59 81,3%

Table 1 Reduction of Modeling Effort

The results listed in Table 1 are clear indicators for
the reduced effort to model event-based communication
between components. Even without measuring the time
required per element creation in an empirical study, the
results of the metric highlight the benefits of the new
approach.

5.2 Accuracy of Prediction Results

Beside the effort required to create the performance mod-
els for a specific system, the accuracy of the prediction
results is one of the most important characteristics of
model-based performance predictions. In the following,
we introduce two real-world case studies, representing

different domains and communication types. The first
case study is using a distributed traffic monitoring sys-
tem based on a decentralized middleware with point-to-
point communications only. In addition to the prediction
accuracy, we also present the variability and adaptabil-
ity of the models conducting performance prediction for
different system evolution stages and design alternatives.
The second case study is based on the SPECjms2007
benchmark using a centralized middleware with point-
to-point as well as publish/subscribe communication.

5.2.1 Traffic Monitoring Case Study The system under
study is a traffic monitoring application based on results
of the TIME project (Transport Information Monitoring
Environment) [3] at the University of Cambridge. It con-
sists of several components emitting and consuming dif-
ferent types of events. The system is based on the novel
component-based middleware SBUS, which was also de-
veloped as part of the TIME project. The SBUS frame-
work encapsulates the communication between compo-
nents and thus enables easy reconfiguration of compo-
nent connections and deployment options without af-
fecting the component’s implementation. After a short
introduction of SBUS, we present the different compo-
nents the traffic monitoring system consists of. Finally,
we apply our approach and demonstrate the evaluation
of different design alternatives and deployment options.
For each of the three scenarios, we describe the required
adaptations of the architecture-level models and com-
pare the predicted performance metrics with measure-
ments conducted in our testbed.

SBUS middleware The SBUS middleware is based on
a peer-to-peer architecture and supports point-to-point
event-based communication including continuous streams
of data (e.g., from sensors), asynchronous events, and
synchronous remote procedure calls (RPC). In SBUS,
each component is as illustrated in Figure 15 divided
into a wrapper, provided by the SBUS framework, and
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the component’s functionality itself. The wrapper man-
ages all communication between components, including
handling the network, registration of event sinks and
sources, and marshaling of data. With SBUS, sources
and sinks can be connected during run-time without any
influences on the component’s internal implementation.
This allows to build highly adaptable systems which can
be extended and adapted at run-time. The basic entity of
SBUS is the component, which can define multiple com-
munication endpoints. Each endpoint can be a client, a
server, a source, or a sink port. Clients and servers im-
plement RPC functionality, providing synchronous re-
quest/reply communication, and are attached in many-
to-one relationships. On the other hand, streams of events
emitted from source endpoints are received by sink end-
points in a many-to-many fashion.

Thanks to the SBUS middleware, which completely
encapsulates the communication between components,
the deployment of components as well as their connec-
tions can be changed with almost no effort. However, the
influence of such changes on the system performance are
hard to estimate.

Traffic Monitoring Application The traffic monitoring
application we studied consists of 8 different types of
SBUS components (see Figure 16).

As described in [15], street lamps are equipped with
cameras. These cameras only collect anonymized sta-
tistical data. We extended this scenario with cameras
that take pictures of each vehicle on the street. Each of
these cameras is equipped with an SBUS component (the
Cam component), which is responsible to send the pic-
ture combined with position information of the camera
and a timestamp in the form of an event to all connected
sinks.

The License Plate Recognition (LPR) component,
which we added to the traffic monitoring scenario, can be
connected to one or more Cam components. The imple-
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Fig. 16 Overview of Case Study Components
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mentation of our LPR components uses the JavaANPR
library [36] to detect license plate numbers of observed
vehicles. The recognized number combined with the time-
stamp and the location information received from the
Cam component is then published as an event.

One component consuming the events of detected li-
cense plate numbers is the Speeding component. The
component calculates the speed of a vehicle based on
the distance between two cameras and the elapsed time
between the two pictures.

Another component processing the events emitted by
the LPR component is the Toll component. Assuming
all arterial roads are equipped with Cam components,
the Toll component determines the toll fee that must be
payed for entering the city.

The ACIS component produces a stream of events,
each containing a bus ID, a location, and the timestamp
of the measurement. This data is collected by a set of
sensors (in our case, GPS coupled with a proprietary
radio network) to note the locations of buses and report
them as they change.

The Location Storage component maintains a state
that describes, for a set of objects, the most recent loca-
tion that was reported for each of them. The input is a
stream of events consisting of name/location pairs with
timestamps, making ACIS a suitable event source.

In the city of Cambridge, the city’s traffic lights are
controlled by a SCOOT system [26], designed to sched-
ule green and red lights to optimize the use of the road
network. The SCOOT component is a wrapper of this
system. It supplies a source endpoint emitting a stream
of events corresponding to light status changes (red to
green and green to red), a second source endpoint emit-
ting a stream of events that reflects SCOOT’s measure-
ments of the traffic flow, and two RPC endpoints that
allow retrieving information about junctions.

The Bus Prozimity component receives a stream of
events reflecting when lights turn from green to red. This
stream is emitted by the SCOOT component. Upon such
a trigger, the SCOOT component’s RPC facility is used
to determine the location of the light that just turned
red. This is collated with current bus locations (stored in
a relational database by the location storage component)
to find which buses are nearby.

Performance Model The parametrization of PCM al-
lows us to specify a Repository with reusable components
that can be instantiated multiple times. This enables the
modeling and evaluation of different system alternatives
without changing the specifications of the components.
To connect the components with the Usage Model, which
specifies the rate of incoming events, we need some addi-
tional trigger interfaces. Thus, in addition to the event
sinks and sources in Figure 16, the three components
ACIS, SCOOT, and Cam provide such additional trig-
ger interfaces. Except for the LPR, the resource demands
of the components are nearly constant and independent
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of the data values included in the event. This allows us to
model them as fixed demands in an InternalAction of
the respective RDSEFF. For each component, we mea-
sured the internal processing time under low system load
and derived the resource demands. Measurements with
different pictures showed, that the resource demands re-
quired by the LPR component highly depend on the con-
tent of the picture. PCM allows to specify parameter
dependencies, however, it is not possible to quantify the
content of a picture. Thus, we modeled the resource de-
mand using a probability distribution. We systematically
analyzed a set of 100 different pictures. For each image,
we measured the mean processing time required by the
recognition algorithm over 200 detection runs. The stan-
dard deviation was less then 2% of the mean value for
all measurements. The measurements indicated that the
processing of pictures that can be successfully recognized
is nearly log-normal distributed (p = 12.23,0 = 0.146).
Pictures where no license plate could be detected have a
significantly higher but fixed processing time of 109.2ms.
To represent this behavior in the RDSEFF of the LPR
component, we used a BranchAction. One branch con-
tains an InternalAction with the fixed demand for un-
detected images and the other one contains a log-normal
distribution which we fitted to the measurements for suc-
cessfully detected images.

The SBUS-specific Middleware Repository contains
one component representing event sources and one repre-
senting event sinks. Both components include a semaphore
to model the single threaded behavior of the SBUS im-
plementation. Furthermore, the RDSEFFs include In-
ternalActions to represent the resource demands re-
quired within the SBUS middleware. We instrumented
the SBUS implementation to measure the processing
time in the different event processing stages. In order
to derive the CPU demand for each InternalAction, we
extended the SBUS framework with several sensors that
collect the time spent within a component itself, within
the library to communicate with the wrapper, and within
the wrapper to communicate with the library and the re-
ceiving component. For each component, we ran exper-
iments and measured the time spent in the component,
the library, and the wrapper under low workload condi-
tions. We took the mean value over more than 10 000
measurements whose variation was negligible.

In the System Model, the components are instanti-
ated and connected with each other depending on the
design alternatives that should be analyzed.

According to the deployment option that should be
analyzed, we use the Allocation Model to describe the
allocation of components on individual hardware nodes.
In our case study, the ResourceEnvironment describes
our test environment, which consists of 8 Resource-
Containers, each containing one ProcessingResource
representing the CPU. We selected processor sharing on
4 cores as SchedulingPolicy, as all machines in our
testbed are equipped with quad-core CPUs. The Re-

sourceContainers are connected by a LinkingResource
with a throughput of 1 GBit/s. The mapping of com-
ponents to hardware nodes is adapted according to the
individual deployment options in the scenarios.

The Usage Model consists of three different types of
scenarios, which are executed in parallel. Two UsageBe-
haviours are used to trigger SCOOT and ACIS to emit
events. For both behaviors, we specify an OpenWorkload
with an exponentially distributed inter-arrival time with
a mean value of 200ms. Additionally, we introduce a U-
sageBehaviour for each street equipped with two cam-
eras. In these behaviors, the two calls of the cameras
are separated by a DelayAction. With this equally dis-
tributed delay, we simulate the driving time of a vehicle
from the first camera to the second one. Each Cam call
includes the specification of the image size. Similar to
the other behaviors, we use an exponentially distributed
inter-arrival time for the first camera.

FEvaluation Experiments To evaluate the prediction ac-
curacy, we deployed the traffic monitoring application
in different scenarios representing different evolutionary
stages of the system and possible design alternatives in
our testbed. We extended the implementations of SCOOT,
ACIS and Cam with configurable and scalable event-
generators. The events emitted by SCOOT and ACIS
are based on an event stream recorded in the City of
Cambridge. The event generator added to the Cam com-
ponent uses a set of real pictures of different vehicles
including their license plates. All event generators have
in common that the event rate can be defined using a
configuration file.

Our experimental environment (see Fig. 17) consisted
of 12 identical machines, each equipped with a 2.4 GHz
Intel Core 2 Quad Q6600 CPU, 8 GB main memory, and
two 500 GB SATA II disks. All machines were running
Ubuntu Linux version 8.04 and were connected through
a GBit LAN. Our implementation of the components
allow to replay a predefined event stream with a spec-
ified event-rate. This allows us to analyze the different
deployment options under different load situations.

A single run of the prediction series simulates about
100000 pictures and its execution lasts about 3 minutes.
On a real system, measuring such a set of data will last
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Fig. 17 Experiment Testbed
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up to 5 hours and longer. For this reason, we had to limit
the number of experiment runs and workload scenarios.
For each scenario, we conducted up to seven experiments
which cover the whole range from low to high load on
the system. In the following, we describe the required
changes to reflect the different design and deployment
options in architecture-level models and present the re-
sults of these measurements compared to the predicted
values.

Scenario 1: Deployment Variations In this scenario,
three streets are equipped with cameras to monitor the
traffic and two servers are available on which the sys-
tem components can be deployed. The performance pre-
dictions are used to evaluate two different deployment
options, namely all processing components on one sys-
tem (AllOnOne Deployment) and LPR separated from
the other processing components (Distributed Deploy-
ment). Thanks to the separation of the Repository Model
and System Model, the instantiation and connections of
the components can be done with little effort. Combined
with the effort for specifying the component deployment
and the Usage Model, the model was created in less than
30 minutes.

Figure 19(a) visualizes the predicted and measured
mean CPU utilization of the machines hosting the LPR
component as well as the machine hosting the remain-
ing components in the distributed deployment. Over-
all, the mean prediction error of the CPU utilization
in this scenario is less than 5%. In both deployment op-
tions, the prediction error increases with higher CPU
load, which can be explained by caching effects since
the algorithm used within the LPR component is very
memory-intensive and the high CPU load leads to in-
creasing number of context switches during execution.
The measured utilization under the highest load in both
options is lower than expected. The analysis of through-
put measurements shows that images were queued up
and not processed by the LPR component, if the CPU
utilization is higher than 80%. This is an indicator for
an overloaded and unstable system state. We conducted
some more experiments running the system continuously
over several hours as well as with an increased event rate.
In both cases, the system crashed and completely halted.
This confirms our assumption of an overloaded and un-
stable system state.

Scenario 2: New Components As all arterial roads in
and out of the city centre are equipped with cameras, it
is possible to monitor vehicles entering and leaving the
inner city. This allows to build up an automated toll col-
lection system, represented by the Toll component as a
second component processing the events emitted by the
LPR component. It induces additional load on the CPU,
which was not foreseen in the previous scenarios. To in-
crease the system’s throughput, additional hardware is
added and it is now possible to run three independent
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Fig. 18 Scenario 2: Centralized Deployment

instances of LPR on different nodes. We again evaluated
two deployment options. In both options, three individ-
ual instances of LPR are running on different nodes, each
responsible for the events of two cameras. In the first
case, all other components are running on one node (see
Figure 18) (Centralized Deployment) and in the second
case Speeding and Toll are deployed with three sepa-
rate instances and co-located with the LPR instances on
the three nodes (Decentralized Deployment). The mod-
els defined within the previous scenario can be reused
and only small changes were required. These changes
took less than 20 minutes.

Figure 19(b) shows the predicted and measured mean
utilization of the machines that host the LPR compo-
nent for both deployment options. Additionally, it in-
cludes the utilization of the machine hosting the process-
ing components in the centralized deployment options.
We leave out the values for the decentralized deploy-
ment options, as they are independent of the image fre-
quency. Overall, the mean prediction error for the CPU
utilization of the machine hosting the LPR component
was 11.52% and never exceeded 20%. Additionally, we
compared the measured and predicted processing time
within the LPR component. The results are listed in
Table 2 and visualized in Figure 19(d). Under the high-
est workload, the decentralized deployment option was
overloaded and thus, no values are presented in the table
and the figure. Due to the caching effects, which can not
be predicted by the model, the prediction error increases
with higher event rates respectively higher CPU utiliza-
tion. However, the mean prediction error is still below
20%.

Scenario 3: Upgraded Hardware In this last scenario,
the existing cameras can be replaced by a newer and
improved version. The new cameras are able to take pic-
tures with higher resolution and improved quality. With
the improved quality, the detection error ratio can be re-
duced from 30% to 5%. It is known, that the resource de-
mands for processing pictures with undetectable license
plates are significantly higher than for successfully rec-
ognized license plates. However, the resource demands
also depend on the image size. In this scenario, the im-
pact of introducing the new camera version on the overall
system performance is evaluated. This evaluation allows



Modeling Event-based Communication in Component-based Software Architectures for Performance Predictions 15

Table 2 Scenario 2: LPR Mean Processing Time

Image rate per Cam [1/s]: ] 04 Jo67] 1 [143] 2 [ 25 [3.33
Measurement(centralized) [s]: 0.47 | 0.48 | 0.49 | 0.55 | 0.66 | 0.84 | 1.99
Prediction (centralized) [s]: 0.41 | 0.47 | 0.44 | 0.43 | 0.52 | 0.59 | 0.96

Error (centralized) [%)]:

[12.4] 2.0 [10.0 [ 21.7 [ 21.7 [ 30.4 | 52.1

Measurement (decentralized) [s]: || 0.49

0.48 | 0.52 | 0.57 | 0.68 | 1.09 -

0.44

Prediction (decentralized) [s]:

0.47 |1 044 | 0.44 | 049 | 0.73 -

Error (decentralized) [%]:
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Fig. 19 Predicted and Measured Values of CPU Utilization and Processing Time

to decide if the investment into new cameras will im-
prove the system performance. Similar to the previous
scenario, we evaluate a centralized and a decentralized
deployment of the Toll and Speeding components. To
represent the new cameras in the prediction model, only
two model parameters, the size of an image and the prob-
ability of an unsuccessful detection, must be changed.
Additionally, the new Cam and LPR instances must be
added to the composition and allocation models. Never-
theless, the required modeling time was less then 10 min-
utes. The results of the measurements and predictions of
the mean CPU utilization of the machines hosting an in-
stance of the LPR component are shown in Figure 19(c).
Again, the prediction error increases with higher load
due to the caching effects induced by the memory inten-
sive algorithm of the LPR. However, the mean prediction

error is only 5.56%. We also analyzed the measured and
predicted mean processing time within the LPR compo-
nent. In Figure 19(e), we present the processing times of
LPR in the scenarios using the improved cameras. The
mean prediction error is 5.36% and never exceeded 15%.
Similar to Scenario 1, the measured CPU utilization and
processing time in the decentralized deployment option
are lower than expected as events are queued up again.
The results for an even higher load which completely
overloaded the system are not included.

Summary The different scenarios modeled and evalu-
ated within the traffic monitoring case study, highlight
the high adaptability of the model, enabling the easy
evaluation of different design and deployment alterna-
tives. As already mentioned in the different scenarios,
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the required adaptation of the models can be done in
less than 30 minutes in all cases. The modeling effort
is negligible low compared to the specification of com-
pletely new performance models as required by many ex-
isting prediction techniques, and especially compared to
setting up a test system to measure the effect of the con-
sidered changes. Furthermore, the execution of one sim-
ulation run, which consists of 100000 simulated events,
takes about 3 minutes on a MacBook Pro with a Core i7
processor and 8 GB RAM. Assuming the highest event
rate of five images per camera per second, this corre-
sponds to a time span of 2.7 hours to collect the same
amount of measurements in the testbed. Overall, the pre-
diction error is less than 20% in most cases.

5.2.2 SPECjms2007 Benchmark The SPECjms2007

benchmark is based on a supply chain management sce-
nario designed to be representative for real-world event-
based applications. The benchmark was developed by
SPEC’s Java Subcommittee with the participation of
IBM, Sun, Oracle, BEA Systems, Sybase, Apache, JBoss
and TU Darmstadt. The benchmark workload comprises
a set of supply chain interactions that represent a com-
plex transaction mix exercising both point-to-point and
publish/subscribe messaging including one-to-one, one-
to-many and many-to-many communication [52]. The
benchmark covers the major message types used in prac-
tice including messages of different sizes and different
delivery modes, e.g., persistent vs. non-persistent and
transactional vs. non-transactional. Due to its complex-
ity and mix of interaction and workloads, SPECjms2007
is an ideal case study to demonstrate the applicability
and expressiveness of our approach and allows us to eval-
uate the accuracy of the prediction results in complex
and realistic scenarios with different workload mixes.

Scenario The application scenario is a supply chain
management system of a supermarket company where
RFID technology is used to track the flow of goods. The
participants involved can be grouped into four roles:

1. Supermarkets (SMs) that sell goods to end customers,

2. Distribution Centers (DCs) that supply the super-
market stores,

3. Suppliers (SPs) that deliver goods to the distribution
centers and

4. Company Headquarters (HQ) responsible for manag-
ing the accounting of the company.

SPECjms2007 implements seven interactions between the
participants in the supply chain:

Order/shipment handling between SM and DC
Order/shipment handling between DC and SP
Price updates sent from HQ to SMs

Inventory management inside SMs

Sales statistics sent from SMs to HQ

New product announcements sent from HQ to SMs
Credit card hot lists sent from HQ to SMs

BN
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The workflow of the seven interactions is shown in
Figure 20. Interactions 1, 4 and 5 exercise point-to-point
messaging whereas interactions 3, 6 and 7 exercise pub-
lish /subscribe messaging. Interaction 2 contains both
point-to-point and publish/subscribe messaging. A brief
description of Interaction 2, which includes both point-
to-point and publish/subscribe messaging, illustrates the
complexity of the workload. The interaction is triggered
when goods in a DC are depleted and the DC has to
order from a SP to refill stock: i) a DC sends a call for
offers to all SPs that supply the required types of goods,
i) SPs send offers to the DC, iii) the DC selects a SP
and sends a purchase order to it, iv) the SP ships the
ordered goods sending a confirmation and an invoice,
v) the shipment is registered by RFID readers upon en-
tering the DC’s warehouse, vi) the DC sends a delivery
confirmation to the SP, vii) the DC sends transaction
statistics to the HQ.

In this case study, we have intentionally slightly de-
viated from the standard system topology to avoid pre-
senting performance results that may be compared against
standard SPECjms2007 results. The latter is prohibited
by the SPECjms2007 run and reporting rules. To this
end, we use a topology based on the benchmark’s verti-
cal topology with 10 DC and HQ instances each set to
10. We studied the following workload scenarios:

— Scenario 1: A mix of all seven interactions exercising
both point-to-point and publish/subscribe messag-
ing.

— Scenario 2: A mix of interactions 4 and 5 focused on
point-to-point messaging.

— Scenario 8: A mix of interactions 3, 6 and 7 focused
on publish/subscribe messaging.

Table 3 provides a detailed workload characterization
of the three scenarios to illustrate the differences in terms
of transaction mix and message size distribution.

Prediction Model 1In the Repository Model each partici-
pant of the interactions is modeled as a separate compo-
nent. Additionally, we specified the different event types
that are used in the interactions and specified the emit-
ted and accepted events for each component. The focus
of SPECjms2007 is the evaluation of the underlying com-
munication middleware. Thus, in contrast to the traffic
monitoring case study, the business logic of the differ-
ent component implementations is simplified to reduce
the influences of the component implementations on the
overall system performance. Similar to the traffic moni-
toring case study, we added interfaces to trigger the in-
teraction.

As the SPECjms2007 benchmark focuses on evalu-
ating the performance of the message-oriented middle-
ware, the specification and calibration of the Middle-
ware Repository is an important factor for the accu-
racy of the prediction results. For each event type, we
identified the resource demands for the CPU, HDD and
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Table 3 Scenario Transaction Mix

Christoph Rathfelder et al.

SPECjms 2007 Driver

Sun Fire X4440 x64 Server

4 x 4-Core Opteron 8356 2.3 GHz
64 GB RAM, 8x146 GB RAID 10
Debian Linux 2.6.26

JMS Server

2 x4-Core Intel Xeon 2.33 GHz
16 GB RAM, 4 SAS RAID 0
Windows 2003 Server 64bit

SPECjms2007 Driver

Sun Sparc Enterprise T5120
8-Core T2 1.2 GHz

32 GB RAM, 2x146 GB RAID 0
Solaris 10 10/08 SPARC

SPECjms2007 Driver

1BM x3850 Server

4 x 2-Core Intel Xeon 3.5 GHz
16 GB, 6 SAS RAID 10

Debian Linux 2.6.26

Sec. 1 Sc. 2 | Se. 3
In Out All

No. of Msg.
P2P
-P/T 49.2% | 40.7% | 44.6% | 21.0% -
- NP/NT 47.2% | 39.0% | 42.8% | 79.0% -
Pub/Sub
-PT 1.8% 6.0% 4.1% - | 17.0%
- NP/NT 1.7% | 14.2% | 8.5% - | 83.0%
Owverall
-PT 51.1% | 46.7% | 48.7% | 21.0% | 17.0%
- NT/NP 48.9% | 53.3% | 51.3% | 79.0% | 83.0%
Traffic
P2P
-P/T 32.2% | 29.5% | 30.8% | 11.0% -
- NP/NT 66.6% | 61.0% | 63.5% | 89.0% -
Pub/Sub
-PT 0.5% 2.3% 1.6% - 3.0%
- NP/NT 0.8% 7.2% 4.1% - | 97.0%
Overall
-PT 32.7% | 31.8% | 32.4% | 11.0% 3.0%
- NT/NP 67.3% | 68.2% | 67.6% | 89.0% | 97.0%
Avg. Size (in KBytes)
P2P
-P/T 2.13 2.31 -
- NP/NT 4.59 5.27 -
Pub/Sub
-PT 1.11 - 0.24
- NP/NT 1.49 - 1.49
Overall
-PT 2.00 2.31 0.24
- NT/NP 3.76 5.27 1.49

For Scenario 2 €3: In = Out.

LAN resources. We estimated the demands by running
the interactions in isolation and measuring the utiliza-
tion of the respective resources using OS tools on the
sender, middleware and sink sides. For interactions con-
sisting of multiple messages, the demands of the indi-
vidual messages were estimated by considering their rel-
ative fraction of the whole interaction. To derive the de-
mands of notification messages, we repeated the exper-
iments with different numbers of subscribers and used
linear regression to estimate the service demands. To re-
flect the resource demands on the source side, we spec-
ified the component JMSSource providing the interface
handleSourcePort with an RDSEFF containing the e-
vent type dependent resource demands modeled within a
GuardedBranchAction. Similarly, we defined a JMSSink
component, reflecting the event type specific resource
demands induced on the receiver side. In the JMSServer
component, which reflects the middleware, we need to
distinguish between the resource demands induced by a
message received from sources and the messages sent to
all subscribed sinks. Especially in case of publish/sub-
scribe communication, this separation is essential, as the

Fig. 21 Experimental Environment

resource demands for forwarding messages to the sub-
scribed sinks depend on the number of subscribed sinks.
For this reason, we specified two RDSEFFs within the
JMSServer component. One implements the handleDis-
tributionPreparation interface. It includes the event
type and size dependent resource demands on the CPU,
HDD and LAN required for processing the message re-
ceived from a source. The other RDSEFF implements
the handleSender interface and contains the resource
demands required for delivering the message to one of
the subscribed sinks.

Corresponding to the SPECjms2007 system topol-
ogy, we instantiated each component (SM, DC, HQ, and
SP) several times within the System Model. Accord-
ing to the different interactions (see Figure 20), we con-
nected the different component instances. In case of point-
to-point communication, we used the direct point-to-
point connector between sources and sinks. In case of
publish /subscribe communication we first defined the re-
spective EventChannel and than connected sources and
sinks with this channel.

The Resource Environment consists of several Re-
sourceContainers. We defined the available resources
according to the hardware available in our testbed (see
Figure 21). For example, the ResourceContainer host-
ing the middleware includes a ProcessingResource with
processor sharing scheduling on 8 cores to model the
CPU and two first-come-first-serve resources for the LAN
and HDD. In the allocation model, we deployed the dif-
ferent components on the corresponding ResourceCon-
tainer. The deployment of the middleware components
on the middleware container is automatically done by
the transformation described in Section 4.5.

In the Usage Model, we specified a dedicated Usage-
Profile for each interaction. Within each of these Us-
ageProfiles, we added a call to the trigger interfaces
we specified within the Repository Model. Using separate
UsageProfiles enables us to specify individual rates for
each interaction or completely deactivate them if neces-
sary.

FEvaluation Ezrperiments To evaluate the accuracy of
our modeling approach, we conducted an experimental
analysis of the modeled application in the environment
depicted in Figure 21. A leading commercial message-
oriented middleware platform was used as a JMS server
installed on a machine with two quad-core Intel Xeon
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Fig. 22 Server CPU Utilization for Customized Vertical
Topology

2.33 GHz CPUs and 16 GB of main memory. The server
was operated in a 64-bit 1.5 JVM with 8GB of heap
space. A RAID 0 disk array comprised of four disk drives
was used for maximum performance. The JMS Server
was configured to use a file-based store for persistent
messages with a 3.8 GB message buffer. The workload
drivers were distributed across three machines: i) one
Sun Fire X4440 x64 server with four quad-core Opteron
2.3 GHz CPUs and 64 GB of main memory, ii) one
Sun Sparc Enterprise T5120 server with one 8-core T2
1.2 GHz CPU and 32 GB of main memory and iii) one
IBM x3850 server with four dual-core Intel Xeon 3.5 GHz
CPUs and 16 GB of main memory. All machines were
connected to a 1 GBit network.

In each case, the model was analyzed using simu-
lation with at least 100000 simulated transactions in
each simulation run. The SPECjms2007 benchmark pro-
vides a central parameter named BASE to configure
the induced workloads. Figure 22 shows the predicted
and measured CPU utilization of the message-oriented
middleware server for the considered customized verti-
cal topology when varying the BASE between 100 and
700. As we can see, the model predicts the server CPU
utilization very accurately as the workload is scaled. In
the following, we present a more detailed evaluation of
the three scenarios under different load intensities con-
sidering further performance metrics such as interaction
throughput and completion time.

The detailed results for the scenarios are presented
in Table 4 and illustrated in Figure 23. For each sce-
nario, we consider two workload intensities correspond-
ing to medium and high load conditions configured us-
ing the BASFE parameter. The first scenario represents
the vertical interaction mix for BASE 300 and 550, re-
spectively. The second scenario is a mix of interaction 4
and 5 focused on point-to-point communication, while
the third scenario is a mix of interaction 3, 6 and 7
focused on publish/subscribe communication. For each
scenario, the interaction rates and the average interac-
tion completion times are shown. The interaction com-

Table 4 Detailed Results for Scenario 1,2 and 3

(a) Scenario 1

Input Inter- Rate | Avg. Completion T (ms)
BASE action | p. sec | Model | Meas. (95% c.i.)
1 226.36 8.41 10.17 +/- 0.68

2 66.9 9.18 15.10 +/- 0.71

3 14.92 2.9 3.49 4 /- 0.41

300 4 483.4 1.89 2.76 4+/- 0.31
med. load 5 1734.7 1.79 1.97 +/- 0.27
6 43.45 0.72 1.96 +/- 0.29

7 30.65 0.87 2.10 +/- 0.24

1 418.1 25.51 25.19 +/- 2.56

2 120.15 30.12 28.27 +/- 2.05

3 26.0 6.36 7.20 +/- 0.67

550 4 887.5 5.09 7.35 +/- 0.89
high load | 5 | 3189.4 | 4.94 6.52 +/- 1.13
6 81.73 3.77 3.26 +/- 0.26

7 56.9 3.89 3.67 +/- 0.34

(b) Scenario 2

Input Inter- Rate | Avg. Completion T (ms)
BASE action p. sec | Model | Meas. (95% c.i.)
600 4 977.8 1.89 2.66 +/- 0.04
med. load 5 3474.8 1.80 1.54 +/- 0.10
800 4 1289.1 2.82 3.75 4+/- 0.17
high load 5 4637.62 2.75 2.62 +/- 0.20

(c) Scenario 3

Input Inter- Rate | Avg. Completion T (ms)
BASE action p. sec | Model | Meas. (95% c.i.)
6000 3 304.1 2.89 3.22 4+/- 0.09
med. load 6 852.2 0.72 0.95 +/- 0.23
7 617.9 0.87 1.31 +/- 0.35
10000 3 498.3 3.81 6.75 +/- 0.30
high load 6 1418.2 1.37 1.44 +/- 0.07
7 | 102553 | 153 2.22 +/- 0.10

pletion time is defined as the time between the beginning
of the interaction and the time when the last message
has been processed. The difference between the predicted
and measured interaction rates was negligible (with an
error below 1%) and therefore we only show the pre-
dicted interaction rates. For completion times, we show
both, the predicted and measured mean values, where
for the latter we provide a 95% confidence interval from
5 repetitions of each experiment. Given that the mea-
sured mean values were computed from a large number
of observations, their respective confidence intervals were
quite narrow. The prediction error was less than 25% in
most cases. Especially in the cases where the interac-
tion completion times are below 3 ms, e.g., for interac-
tion 6 and 7 in the first scenario, the prediction error
was higher. In such cases, a small absolute difference of
1 ms between the measured and predicted values (e.g.,
due to some synchronization aspects not captured by the
model) appears high when considered as a percentage of
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Fig. 23 Predicted and Measured Completion Time

the respective mean value given that the latter is very
low. However, when considered as an absolute value, the
error is still quite small.

Figure 23 depicts the predicted and measured inter-
action completion times for the three scenarios. The re-
sults reveal the accuracy of the model when considering
different types of messaging. For point-to-point messag-
ing, the modeling error is independent of whether per-
sistent or non-persistent messages are sent. However, for
the publish /subscribe case under high load (Scenario 3),
the modeling error is much higher for the case of persis-
tent messages than for the case of non-persistent mes-
sages. In scenario 1 where all interactions are running at
the same time, interaction 1 and 2 exhibited the highest
modeling error (with exception of the interactions with
very low completion times). This is due to the fact that
each of these interactions comprise a complex chain of
multiple messages of different types and sizes. Finally,
looking at the mean completion time over all interac-
tions, we see that the prediction is optimistic as the pre-
dicted completion times are lower than the measured
ones. This behavior is typical for performance models
in general since no matter how representative they are,
they normally cannot capture all factors causing delays
in the system.

(c) Scenario 3

Summary In summary, the model proved to be very ac-
curate in predicting the system performance, especially
considering the size and complexity of the system that
was modeled. The prediction error does not exceed 20%
in most cases. As discussed above, in cases where in-
teraction completion times were below 3 ms, the rela-
tive prediction error was higher. Nevertheless, the abso-
lute prediction error was less than 2ms. The case study
demonstrates that the proposed modeling and prediction
approach is applicable for complex and realistic indus-
trial systems. In contrast to the traffic monitoring case
study, the SPECjms2007 benchmark allows us to evalu-
ate the modeling and prediction of point-to-point as well
as publish/subscribe communication and even provides
scenarios with mixed workloads.

5.2.8 Overall Evaluation Summary Architecture level
performance models as presented, enable the evaluation
of different design and deployment options at design
time with very low effort as the adaptation of the mod-
els can be done supported by the graphical editors in
few minutes. With the presented extensions combined
with the automated transformation, the modeling ef-
fort to reflect event-based communication in the per-
formance model could be reduced significantly by more
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than 80% compared to the original PCM not support-
ing the explicit modeling of event-based communication.
We demonstrated the applicability of our approach sup-
porting the evaluation of different design and deploy-
ment questions typically for event-based systems. Ad-
ditionally, we demonstrated the ability of our approach
to handle complex systems with different communication
styles and workload mixes within the SPECjms2007 case
study. In both case studies, the prediction accuracy was
less then 20% in most cases. With the aim of evaluating
and comparing different design and deployment alterna-
tives at design time, the accuracy is more than accept-
able [39]. At system deployment and run-time, the pre-
diction models help to detect system bottlenecks and to
ensure that sufficient resources are allocated to meet per-
formance and QoS requirements. Considering that nowa-
days systems are normally over-provisioned by a factor
of two or more [28], the accuracy of our prediction re-
sults are sufficient to improve the capacity planning and
run-time management of event-based systems.

6 Related Work

The work related to the results presented in this pa-
per can be classified into two areas: i) architecture-level
performance meta-models for component-based systems
and ii) performance analysis techniques specialized for
event-based systems.

Following the SPE [55] approach, a number of ar-
chitecture-level performance meta-models have been de-
veloped. Often, they are based on the UML as the de
facto standard modeling language for software architec-
tures like the UML SPT profile [44] and its successor
the UML MARTE profile [45]. Architecture-level perfor-
mance models are built during system development and
are used at design and deployment time to evaluate al-
ternative system designs and/or predict the system per-
formance for capacity planning purposes.

In recent years, with the increasing adoption of com-
ponent-based software engineering, the performance eval-
uation community has focused on adapting and extend-
ing conventional SPE techniques to support component-
based systems, which are typically used for building mod-
ern software systems. A recent survey of methods for
component-based performance-engineering was published
in [33].

Several approaches use model transformations to de-
rive performance prediction models (e.g., [37,46,13,6]).
Cortellessa et al. surveyed three performance meta-mo-
dels in [10] leading to a conceptual MDA framework of
different model transformations for the prediction of dif-
ferent extra-functional properties [12,11]. The influence
of certain architectural patterns on the system perfor-
mance and their integration into prediction models was
studied by Petriu [46,19] and Gomaa [17].

Petriu et al. [46,19] modeled the pipe-and-filter and
client-server architectural patterns using the UML. The

models are transformed into LQNs using graph transfor-
mations as well as XSLT transformations. Gomaa and
Menasce [17] developed performance models for compo-
nent interconnections in client/server systems based on
typical interconnection patterns.

Happe et al. [20] present a method for modeling
message-oriented middleware systems using performance
completions. Model-to-model transformations are used
to integrate low-level details of the message-oriented mid-
dleware system into high-level software architecture mod-
els. A case study based on parts of the SPECjms2007
workload is presented as a validation of the approach.
However, this approach only allows to model point-to-
point connections using JMS queues.

In [57], Verdickt et al. present a framework to auto-
matically include the impact of the CORBA middleware
on the performance of distributed systems. Transfor-
mations map high-level middleware-independent UML
models to UML models with middleware-specific infor-
mation. The work focuses on the influence of Remote
Procedure Calls (RPCs) as implemented in CORBA,
Java RMI, and SOAP. The influence of service param-
eters on the performance was not considered. For ex-
ample, the prediction model for marshaling and de-mar-
shaling of service calls in [57] neglects the influence of
the service’s parameters.

The Platform-independent Component Modeling Lan-
guage (PICML)[4] is part of the Component Synthe-
sis with Model Integrated Computing (CoSMIC) mod-
eling tool [16], developed at the Vanderbilt University.
PICML provides a language to describe components in
a platform-independent way. Different automated trans-
formations are used to generate platform-specific code
skeletons, deployment descriptors, and configuration files.
As the main goal of CoSMIC and PICML is the gen-
eration of implementation artifacts, it lacks several in-
formations required for performance predictions, like an
explicit usage model of the system or a description of
the component internal behavior. Furthermore, PICML
only supports direct connections between components
and does not provide meta-model elements to model
event channels or a central event bus.

In the following, we present an overview of existing
performance modeling and analysis techniques special-
ized for event-based systems. A survey of techniques for
benchmarking and performance modeling of event-based
systems was published in [31].

In [35], an approach to predicting the performance of
messaging applications based on Java EE is proposed.
The prediction is carried out during application design,
without access to the application implementation. This
is achieved by modeling the interactions among mes-
saging components using queueing network models, cal-
ibrating the performance models with architecture at-
tributes, and populating the model parameters using
a lightweight application-independent benchmark. How-
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ever, again the workloads considered do not include mul-
tiple message exchanges or interaction mixes.

Sachs et al. [53,51] present a modeling approach based
on an extend QPN formalism simplifying the modeling of
software resources like queues and event channels. A set
of modeling patterns supports the architect in specifying
a QPN-based performance models. These patterns map
architecture-level elements (e.g., event queues, publish/
subscribe communication, or thread pools) to QPN sub-
models, that are later composed to built the system’s
performance model. The approach is demonstrated and
validated using the SPECjms2007 benchmark as repre-
sentative case study.

In [22], an analytical model of the message processing
time and throughput of the WebSphereMQ JMS server
is presented and validated through measurements. The
message throughput in the presence of filters is studied
and it is shown that the message replication grade and
the number of installed filters have a significant impact
on the server throughput. Several similar studies using
Sun Java System MQ, FioranoMQ, ActiveMQ, and BEA
WebLogic JMS server were published. A more in-depth
analysis of the message waiting time for the FioranoMQ
JMS server is presented in [40]. The authors study the
message waiting time based on an M/G/1—oo queue ap-
proximation and perform a sensitivity analysis with re-
spect to the variability of the message replication grade.
They derive formulas for the first two moments of the
message waiting time based on different distributions
(deterministic, Bernoulli and binomial) of the replica-
tion grade. These publications, however, only consider
the overall message throughput and latency and do not
provide any means to model event-based communication
and message flows.

Several performance modeling techniques specifically
targeted at distributed publish/subscribe systems exist
in the literature. However, these techniques are normally
focused on modeling the routing of events through dis-
tributed broker topologies from publishers to subscribers
as opposed to modeling interactions and message flows
between communicating components in event-based sys-
tems. In [42] an analytical model of publish/subscribe
systems that use hierarchical identity-based routing is
presented. The model is based on continuous time birth-
death Markov chains. This work, however, only consid-
ers routing table sizes and message rates as metrics and
the proposed approach suffers from several restrictive as-
sumptions limiting its practical applicability. In [32,31],
a methodology for workload characterization and per-
formance modeling of distributed event-based systems
is presented. A workload model of a generic system is
developed and analytical analysis techniques are used to
characterize the system traffic and to estimate the mean
notification delivery latency. For more accurate perfor-
mance prediction queueing Petri net models are used.
While the results are promising, the technique relies on
monitoring data obtained from the system during oper-
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ation which limits its applicability for design-time pre-
dictions.

7 Conclusion and Outlook

In this paper we presented i) a modeling approach for
event-based communication at the architecture level ex-
emplarily implemented based on PCM, ii) a two-step
transformation approach enabling the performance pre-
diction of the system including the consideration of plat-
form-specific middleware influence factors, and iii) a de-
tailed evaluation of the presented approach based on two
real-world case studies representing different domains of
event-based systems.

The presented meta-model elements allow architects
to model event-based systems at the architecture lev-
els. Introducing events as first class entity enables the
architect to specify individual source and sink ports for
components. The presented approach enables to differen-
tiate between direct point-to-point and decoupled pub-
lish /subscribe communication using dedicated event chan-
nels.

The developed two-step transformation refines the
event-based connections between components. The trans-
formation is partitioned into a platform-independent and
a platform-specific part. In the first part, the new ele-
ments are transformed to a set of elements, following
a generic event processing chain. In the second step,
platform-specific components located in a separate mid-
dleware repository are woven into the prediction model.
Due to this separation, the influence of using different
middleware systems can be analyzed by simply select-
ing another middleware repository and the system itself
can be modeled independent of the underlying middle-
ware. Furthermore, the transformation allows a semanti-
cally correct modeling of event-based communication us-
ing the introduced meta-model elements while still sup-
porting all existing prediction techniques such as simu-
lation [6], LQNs [34] or QPNs [38].

We evaluated our approach based on two represen-
tative real-world case studies: A distributed traffic mon-
itoring system built on top of the peer-to-peer middle-
ware SBUS and the SPECjms2007 benchmark, a repre-
sentative supply chain system using a centralized mid-
dleware supporting the JMS standard with complex and
varying workload mixes. The results show, that using
the presented meta-model elements the modeling effort
is reduced by more than 80%. Applying our approach to
different design and deployment alternatives of the traf-
fic monitoring case study, allows us to demonstrated the
adaptability of the models and applicability of our ap-
proach to support an architect in evaluating different de-
sign decisions. The prediction error was less than 20% in
most cases for both case studies. This demonstrates that
the presented modeling and prediction approach can be
applied at design time, to evaluate and compare differ-
ent design alternatives, as well as at deployment time, to
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analyze different deployment options and to determine
the required hardware resources.

The results presented in this paper form the basis
for several areas of future work. In the presented meta-
model elements, filtering of events has to be modeled
manually in the behavior model of the sink. The pre-
sented approach requires the existence of a platform-
specific middleware repository. The Performance Cock-
pit approach [58] uses automated experiments to derive
parameterized resource demands for components. As a
next step, we plan to define a set of experiments an au-
tomated generation of the middleware repository model
using the Performance Cockpit. Furthermore, our cur-
rent and future research focuses on the idea of mak-
ing architecture-level performance models usable at run-
time. The Descartes Research Group [1] is working on
enhancing design-time models to capture dynamic as-
pects of the environment and making them an integral
part of the system [30]. To achieve this, the execution
environment should be enhanced with functionality to
track dynamic changes and automatically maintain the
prediction models during operation. The initial models
can either be built manually during system design as
presented in this paper or they can be extracted at run-
time based on online monitoring and measurement data
as advocated in [7].
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