
Slides available: descartes.tools

How we built a scalable
micro-service application
- lessons learned & tooling -

Nikolas Herbst,
Jóakim von Kistowski, Simon Eismann, André Bauer,
Norbert Schmitt, Johannes Grohmann, Marwin Züfle,

Samuel Kounev

ScrumScale Workshop, Oslo, Norway
June 5, 2018

Nikolas Herbst
2

How we built a scalable micro-service application

We are

Chair of Software Engineering (a.k.a. Descartes Research Group)
at the University of Würzburg, Germany, Franconia (part of Bavaria)

§ Performance Modeling and Benchmarking,
Data Center Resource Management,
Self-Aware Computing, Data Analytics

§ New: IoT, CPS, I4.0, Block chain, Ethical hacking, …

Nikolas Herbst
3

How we built a scalable micro-service application

On my research

§ Started research after diploma in 2012
at Karlsruhe Institute of Technology (KIT)

§ Research Interests:

§ Cloud Computing

§ Elasticity and Scalability

§ Auto-Scaler Benchmarking

§ Forecasting

§ …

BUNGEE
Cloud Elasticity Benchmark

���������

LIMBO

Nikolas Herbst
4

How we built a scalable micro-service application

SPEC Research

§ Provide a platform for collaborative
research efforts in the area of quantitative
system evaluation and analysis

§ Foster interactions and collaborations between
industry and academia

§ Scope: computer benchmarking, performance
evaluation, and experimental system analysis

§ Focus on standard scenarios, metrics,
benchmarks, analysis methodologies and tools

Mission Statement

Find more information on: http://research.spec.org

Working groups:
Cloud, DevOps Perf., Power, IDS & Security, Big Data

Nikolas Herbst
5

How we built a scalable micro-service application

Why TeaStore ? Our Motivation

Auto-Scaling and
Placement

§ Placement at
run-time

Performance Modeling

§ An approach for the
auto-scaling +
placement problem

§ Build or extract model

§ Use Model for
placement decision

Service

A
Service

B
Service

C

A, B, C?

?

Ordinary
Place

Queueing
Place

Queue Depository

Waiting Line Server

Queue

DeparturesArrivals

Nikolas Herbst
6

How we built a scalable micro-service application

Requirements for a Reference Application

§ Highly scalable

§ Deployment flexibility at run-time

§ Reproducible performance results

§ Complex performance behavior

§ Failover and reliable

§ Online monitoring

§ Load Profiles for realistic stress

§ Simple setup

§ Modern technology stack

Nikolas Herbst
7

How we built a scalable micro-service application

The Descartes TeaStore

Micro-Service test application

§ Five Services + Registry

§ Uses Netflix “Ribbon”
client-side load balancer

§ Swarm/Kubernetes supported,
not required

§ Pre-instrumented version with
Kieker application monitoring

§ Docker Images
§ Alternatively:

manual deployment in application
server (documentation available)

WebUI

Auth Image Recom-
mender

Reg-
istry

Database

Persis-
tence

Nikolas Herbst
8

How we built a scalable micro-service application

Services I

Registry
§ Simplified Eureka

§ Service location repository

§ Heartbeat

RegistryClient
§ Dependency for every service

§ Netflix “Ribbon”

§ Load balances for each client

WebUI
§ Servlets/Bootstrap

§ Integrates other services into UI

§ CPU + Memory + Network I/O

Authentication
§ Session + PW validation

§ SHA512 + Bcrypt

§ CPU

Nikolas Herbst
9

How we built a scalable micro-service application

Services II

ImageProvider
§ Loads images from HDD

§ 6 cache implementations

§ Memory + Storage

PersistenceProvider
§ Encapsulates DB

§ Caching + cache coherence

§ Memory

Recommender
§ Recommends

products based on history

§ 4 different algorithms

§ Memory or CPU

TraceRepository
§ AMQP Server

§ Collects traces from
all services

Nikolas Herbst
10

How we built a scalable micro-service application

TeaStore Demo

Open Source – Apache License v2

https://github.com/DescartesResearch/TeaStore

Nikolas Herbst
11

How we built a scalable micro-service application

Performance: Characteristics & Configurations

Two types of caches

§ Black-box persistence cache

§ White-box image provider cache

Different load types

§ CPU

§ I/O

§ Network

Internal state

§ Database size influences
resource demands

Load independent tasks

§ Periodic recommender retraining
(optional)

Startup behavior

§ Auth and WebUI start “instantly”

§ Recommender needs
training on startup

§ Image Provider creates
images on startup

Configuration options

§ Recommender algorithms

§ Recommender retraining interval

§ Image Provider cache
implementations

§ Database size

Nikolas Herbst
12

How we built a scalable micro-service application

Load and Usage Profile

HTTP load generator

Supports load intensity profiles

§ Can be created manually

§ Or using LIMBO
(more later)

Scriptable user behavior
§ Uses LUA scripting

language

§ e.g. “Browse” Profile on
Github

Example load intensity profile:

“Browse” user profile:

Nikolas Herbst
13

How we built a scalable micro-service application

Does it scale?

First stress tests:
§ Very limited scalability due to

communication overhead !

§ Image provider service was network bound
(no caching)

§ All services: running out of ports and connections
due to standard Java networking (connections, sockets)

à Okay, let us reuse connections via connection pooling

à Introduce image caching (service instance & client side)

Nikolas Herbst
14

How we built a scalable micro-service application

Does it scale? (II)

Second version stress test:
§ Somewhat better scalability,

still not sufficient

§ Performance variability

§ Connection pool size configuration important,
but specific for service type, platform and load

à not a good idea to set a default in a service container image

à Okay, think and re-implement one more time…

Nikolas Herbst
15

How we built a scalable micro-service application

Does it scale? (III)

Third version towards scalability:

§ Asynchronous communication

§ Based on Java NIO APIs
(multi-plexed, non-blocking I/O)
§ Leverages network card HW features

§ Managed buffers, worker and thread pools

§ Channel listener concept for Java servelets

Frameworks: Undertow (JBoss) or Grizzly NIO (Glassfish)
https://javaee.github.io/grizzly/

Nikolas Herbst
16

How we built a scalable micro-service application

Does it scale? (IV)

Up to 9 Servers a 8 physical cores
(16 with HT)

à almost 7 000 req/s – linear
(8th server had old OS version)

Nikolas Herbst
17

How we built a scalable micro-service application

Example: Energy Efficiency of Placements

Placement 1 Placement 2

16 cores

Web
UI

Per-
sist.

Auth

Img

8 cores

Web
UI

Rec-
omm.

Per-
sist.

Auth

Img

16 cores

Web
UI

Per-
sist.

Auth

Img

8 cores

Web
UI

Per-
sist.

Auth

Img

Rec-
omm.

Max 1011.9 Tr/s

Max 179.6 W

Geo 4.4 Tr/J

Max 1067.7 Tr/s

Max 187.0 W

Geo 4.3 Tr/J

Nikolas Herbst
18

How we built a scalable micro-service application

Auto-Scaling TeaStore

0 50 100 150 200 250 300 350 400
0

10

20

30

Vi

rtu
al

 M
ac

hi
ne

s Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

100

200

Re
q.

 /
Se

co
nd Sent Requests SLO conformance SLO violations

Slow provisioning

SLO violations

Nikolas Herbst
19

How we built a scalable micro-service application

Auto-Scaling TeaStore

0 50 100 150 200 250 300 350 400
0

10

20

30

Vi

rtu
al

 M
ac

hi
ne

s Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

100

200

Re
q.

 /
Se

co
nd Sent Requests SLO conformance SLO violations

0 50 100 150 200 250 300 350 400
0

10

20

30

Vi

rtu
al

 M
ac

hi
ne

s Presentation Tier

demand supply

0 50 100 150 200 250 300 350 400
Minutes

0

100

200

Re
q.

 /
Se

co
nd Sent Requests SLO conformance SLO violations

Proactive provisioning

Few SLO violations

Nikolas Herbst
20

How we built a scalable micro-service application

LIMBO
Load Profile Models

http://descartes.tools/limbo

LIMBO

Nikolas Herbst
21

How we built a scalable micro-service application

Load Profile Description
W

or
kl

oa
d

U
ni

ts

Time

 + / × + / × + / × + / ×

 + / ×

Seasonal

Trends &
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×

Nikolas Herbst
22

How we built a scalable micro-service application

Descartes Load Intensity Model

Nikolas Herbst
23

How we built a scalable micro-service application

LIMBO toolkit

wizard

EMF editor

time series generation

http://descartes.tools/limbo

extractors

plotter

Nikolas Herbst
24

How we built a scalable micro-service application

TELESCOPE
Forecasting the future workload

���������
http://descartes.tools/telescope

à Released in May 2018 as R package on Github ß

Nikolas Herbst
25

How we built a scalable micro-service application

Telescope Approach

Remainder
Forecasting &
Composition

5

Decomposition
Task

Season & Trend
Forecasting

Learning of
Categorical
Information

Preprocessing
Removal of Anomalies
- AnomalyDetection -

Time Series
Decomposition

- STL -

Season
Forecasting

- STL based -

Boosted Random
Trees with Covariates

- XGBoost -

Raw Input Values

Forecast
Output

Trend RemainderSeason

Trend
Forecasting

- ARIMA -

Clustering of
Single Periods

- k-Means -

Centroid
Forecasting

- ANN -

Frequency
Determination

- FFT - 1

3

4

2

Nikolas Herbst
26

How we built a scalable micro-service application

Preprocessing

Frequency Estimation:

§ Periodograms for rough
estimation

§ List of common frequencies

Anomaly Detection:
§ Generalized extreme

studentized deviate
test (ESD) on the
remainder

§ Replace anomaly by
mean of non-anomaly
neighbors

1

Nikolas Herbst
27

How we built a scalable micro-service application

Learning Categorical Information

Calculate Characteristics

Create Feature Space K-Means Clustering

Cluster Labels

ANN Forecast of Cluster
Labels

1 1 1 1 1 2 2 1 1

2

Nikolas Herbst
28

How we built a scalable micro-service application

Decomposition & Forecasting

Learning of Categorical
Information Cluster Label Forecast

STL Decomposition

Time Series History

Season
Trend

R
em

ainde
r

Input
4

3 5

Nikolas Herbst
29

How we built a scalable micro-service application

Estimating Decomposition Type

STL once on original and once on logarithmized time series

Calculate:

§ Sum of squares of the auto-correlation on remainder

§ Range between first and third quantile of the remainder

§ Sum of squares of the remainder

Majority decision

3

Nikolas Herbst
30

How we built a scalable micro-service application

Learning of Categorical
Information Cluster Label Forecast

Final Forecast

STL Decomposition

Trend Forecast

Season Forecast

Time Series History

Decomposition & Forecasting4
3 5

Nikolas Herbst
31

How we built a scalable micro-service application

Example: IBM Trace

Start of the horizon
Original values
Telescope forecast
tBATS forecast

Forecaster MASE Time

Telescope 0.842 6.248

tBATS 4.547 33.360

SVM 6.557 2.344

XGBoost 7.683 0.172

ARIMA 7.828 87.016

ANN 18.678 10.938

ETS 23.389 0.984

Nikolas Herbst
32

How we built a scalable micro-service application

Example: Airline Passengers Trace

Start of the horizon
Original values
Telescope forecast
tBATS forecast

Forecaster MASE Time

Telescope 0.353 1.671

tBATS 0.520 11.641

ARIMA 0.638 3.248

ETS 0.652 2.266

ANN 0.711 0.375

XGBoost 1.261 0.102

SVM 6.758 0.094

Nikolas Herbst
33

How we built a scalable micro-service application

Measures for 56 Time Series

§ High and stable accuracy for multi-step forecasting

§ Comparably short time-to-result

Forecaster Ø MASE 𝝈 MASE Ø MAPE Ø Time
Telescope 1.503 1.619 25.217 9.032
tBATS 1.791 3.112 25.107 56.334
ARIMA 2.022 2.405 43.194 177.288
ANN 2.072 3.206 67.176 77.948
XGBoost 2.251 2.017 47.779 0.167
ETS 2.638 4.288 81.816 2.184
SVM 5.334 6.254 64.306 24.608

Nikolas Herbst
34

How we built a scalable micro-service application

LIBREDE
Estimating Resource Demands

http://descartes.tools/LibReDE

“A resource demand is the time a unit of work
(e.g., request or internal action) spends obtaining service from a
resource (e.g., CPU or hard disk) in a system.” S. Spinner 2015

Nikolas Herbst
35

How we built a scalable micro-service application

How to quantify resource demands?

Direct Measurement

Requires specialized infrastructure
to monitor low-level statistics.

Examples:

• TimerMeter [Kuperberg09]
+ ByCounter [Kuperberg08]

• Brunnert et al. [Brunnert13]

• Magpie [Barham04]

Statistical Estimation

Use of statistical techniques on
high-level monitoring statistics.

Examples:

• Linear regression [Kraft09]

• Kalman filtering [Wang12]

• Nonlinear optimization [Kumar09]

• Maximum likelihood estimation
[Kraft09]

Nikolas Herbst
36

How we built a scalable micro-service application

Why should I use statistical estimation?

Direct measurements infeasible

• Only aggregate resource usage statistics available

• Unaccounted work in system or background threads

Direct measurements too expensive
• Monitoring of production system

• Heterogeneous software stacks

Coarse-grained models
• Trade-off analysis speed vs. prediction accuracy

• Usage of performance models at system runtime

Nikolas Herbst
37

How we built a scalable micro-service application

Challenges

Approximation Techniques

Linear Regression

Kalman Filter

Nonlinear Optimization

Maximum Likelihood Estimtion
and many more approaches…

Different
Preconditions

Varying
Robustness

Computational
Complexity

Implementations
not available

What is the best approach for a given scenario?

Nikolas Herbst
38

How we built a scalable micro-service application

LibReDE Usage

Standalone version for offline analysis

Java library for online analysis

.csv.csv.csv

or

Measurement traces Estimated Demands

.csv.csv.csv

Monitoring tools

Custom application

Nikolas Herbst
39

How we built a scalable micro-service application

Estimation Process

Create estimation
model

Setup estimation
approaches

Load monitoring data

Output results

Run estimation
approach(es)

Cross-Validation

Validation Sets

Training Sets

• EMF-based model
• Graphical eclipse editor

• Derive estimation problem(s)
• Check pre-conditions

Evaluate
accuracy

Nikolas Herbst
40

How we built a scalable micro-service application

Estimation

• 6 estimation approaches
• Extension point

• Parameters of
underlying statistical
techniques

Time interval settings

Nikolas Herbst
41

How we built a scalable micro-service application

Key take away points

If you can, build you application from
micro-services with restful interfaces

§ Flexibility, portability of containers

§ Maintainability, reusability

Netflix offers a state of the art software stack
§ Netflix Eureka service registry

§ Netflix Ribbon service load-balancer with reliability features

Asynchronous communication frameworks in high demand
§ E.g. Java NIO implementations:

JBoss Undertow or Glassfish Grizzly

Nikolas Herbst
42

How we built a scalable micro-service application

Contact:

nikolas.herbst@uni-wuerzburg.de

https://go.uni-wuerzburg.de/herbst

Thank You!
https://github.com/DescartesResearch/TeaStore

