
1

QoS-aware resource allocation and

load-balancing in enterprise Grids

using online simulation

Samuel Kounev (skounev@acm.org)

Joint work with

Ramon Nou (ramon.nou@bsc.es)

Ferran Julia (fjulia@ac.upc.edu)

Jordi Torres (torres@ac.upc.edu)

* Universität Karlsruhe (TH)

Technical University of Catalonia (UPC)

Barcelona Supercomputing Center (BSC)

mailto:skounev@acm.org

2 S. Kounev, R. Nou, F. Julia, J. Torres

Research Interests

• Platform benchmarking

• Application profiling

• Workload characterization

• System load testing

• Performance tuning and optimization

Performance
Measurement

• System architecture models

• Analysis-oriented performance models

• Performance prediction at design & deployment time

• System sizing and capacity planning

System Modeling &
Simulation

• Dynamic system models

• Online performance prediction

• Autonomic resource management

• Utility-based optimization

• Energy efficient computing

Run-time
Performance
Management

P
e
rf

o
rm

a
n
c
e
 E

n
g
in

e
e
ri
n

g

Technology Domains

• Enterprise Java

• Microsoft .NET

Distributed Component-based Systems

• Web Services

• Service-oriented Grids

Service-oriented Environments

• Message-oriented middleware

• Distributed publish/subscribe systems

• Sensor-based systems

• RFID applications

Event-based Systems

3 S. Kounev, R. Nou, F. Julia, J. Torres

4

MOTIVATION

QoS-aware Resource Management in Grid Computing

Motivation

 Grid computing gaining grounds in the enterprise domain

 Grid and SOA technologies converging

 Enterprise Grid environments highly dynamic

 Unpredictable workloads

 Non-dedicated resources

 QoS management a major challenge

 Off-line capacity planning no longer feasible

 Methods for on-the-fly performance prediction needed

 Can be used for QoS-aware resource management and

 Utility-based performance optimization

5 S. Kounev, R. Nou, F. Julia, J. Torres

6

QoS-AWARE RESOURCE

MANAGER ARCHITECTURE

Resource Manager Architecture

7 S. Kounev, R. Nou, F. Julia, J. Torres

8

Resource Manager Architecture (2)

Queueing Petri Nets

 Combine Queueing Networks and Petri Nets

 Allow integration of queues into places of PNs

 Ordinary vs. Queueing Places

 Queueing Place = Queue + Depository

 Advantages:

 Combine the modeling power and expressiveness of QNs and PNs.

 Easy to model synchronization, simultaneous resource possession, asynchronous

processing and software contention.

 Allow the integration of hardware and software aspects.

QUEUE DEPOSITORY

9 S. Kounev, R. Nou, F. Julia, J. Torres

QPME

 A performance modeling tool based on QPNs

 QPME = Queueing Petri net Modeling Environment

 QPN Editor (QPE) and Simulator (SimQPN)

 Based on Eclipse/GEF

 Provides a user-friendly graphical user interface

 http://sdq.ipd.uka.de/people/samuel_kounev/projects/QPME

10 S. Kounev, R. Nou, F. Julia, J. Torres

QPME (2)

 First version released in January 2007

 Distributed to more than 70 research organizations worldwide

 Areas of usage

 Online QoS control

 Software performance engineering

 Construction modeling and simulation area

 Satellite communications

 Dependability of safety-critical real time systems

 Computational biology, modeling biological interaction networks

 Logistics planning

 Models of information flows

11 S. Kounev, R. Nou, F. Julia, J. Torres

12

QPME Screenshot

QoS Predictor

13 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm

 New session request arrives

 Assign new session unlimited # threads on each server

 If required throughput cannot be sustained, reject request

 For each over-utilized server limit the number of threads

 If an SLA of an active session is broken, reject request

 Else if SLA of the new session broken, send counter offer

 Else accept request

14 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm

function allocation Thread }]{S[CT

constraintn utilizatio maximum (s)U

CPUs) # (e.g.capacity server P(s)

: SsFor

),,(c wheresessionsclient Active }c,...,c,{cC

server aby offered Services]2[

offered Services },...,,{

servers Grid },...,,{

0

il21

21

21

V

n

m

SF

V

sssS

15 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm (2)

ε}(s)AF(s)υS: {sI

c

c

TT),(

P(s) (s))U(s)U((s)A

also Define

(s))P:Ss((c)P(c)P:Cc

iff acceptable is Tion Configurat

(s)U(s) Uas Ssfor (s)P

][(c)R as C cfor (c)P

][(c)X as Ccfor (c)P

predicates following theDefine

TT

T
U

T
R

T
X

TT
U

TT
R

TT
X

16 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm (3)

17 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Characterization On-The-Fly

 What if no service workload model is available?

 Assumptions

 Each service executes CPU-intensive business logic

 No internal parallelism

 Might call external third-party services

 Basic algorithm for estimating the CPU service times

 Monitor service response time on each server

 Iteratively, set estimate to lowest observed response time

 Enhanced algorithm

 Monitor CPU utilization

 Break down the measured response time into

 Time spent using the CPU

 Time spent waiting for external calls

18 S. Kounev, R. Nou, F. Julia, J. Torres

Dynamic Reconfiguration

 Increasing use of virtualized servers

 Servers often available for launching on demand

 If the QoS requested by a client cannot be provided

 Launch an additional server dynamically

 After a server failure

 Reconfigure all sessions that had threads on the failed server

 Some sessions might have to be canceled

 Extended resource allocation algorithm to support the above

 Algorithms can be easily enhanced to take into account

 Costs associated with launching new servers

 Revenue gained from new customer sessions

 Costs incurred when breaking customer SLAs

19 S. Kounev, R. Nou, F. Julia, J. Torres

20

CASE STUDY

Experimental Setup 1

21 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Used

 Assume three services available

 Each service

 executes CPU-intensive business logic

 might call external third-party services

 Service workload model

 Workload model stored in service registry

Service Service 1 Service 2 Service 3

CPU resource demand on 2-way server 6.89 4.79 5.84

CPU resource demand on 4-way server 7.72 5.68 6.49

External Service Provider Time 2.00 3.00 0.00

22 S. Kounev, R. Nou, F. Julia, J. Torres

Experimental Setup 2

8-way Pentium Xeon

2.60 GHz, 9 GB, 64 bit,

Xen hypervisor

4-way Pentium Xeon

3.16 GHz, 10 GB, 64 bit,

Xen hypervisor

23 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Model

 One CPU on each server assigned to Domain-0

 Rest of the CPUs each assigned to one Grid server

 Service workload model

24 S. Kounev, R. Nou, F. Julia, J. Torres

Grid Server Model

26 S. Kounev, R. Nou, F. Julia, J. Torres

Model Validation & Calibration

 Model failed initial validation attempt

 Service execution trace (BSC-MF / Paraver)

 Calibrated model by adding the 1 sec delay

27 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 1

 Used experimental setup 1

 16 session requests

 Run until all sessions complete

 Each session has 20-120 service requests (avg. 65)

 SLAs between 16 and 30 sec

 90% maximum server utilization constraint

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced

 With QoS Control

 QoS-aware resource manager used

28 S. Kounev, R. Nou, F. Julia, J. Torres

CPU Utilization – Without QoS Control

29 S. Kounev, R. Nou, F. Julia, J. Torres

CPU Utilization – With QoS Control

30 S. Kounev, R. Nou, F. Julia, J. Torres

Average Session Response Times

SLAs

 SLAs

31 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 2

 Used experimental setup 1

 99 session requests executed over period of 2 hours

 Run until all sessions complete

 Average session duration 18 minutes (92 requests)

 90% maximum server utilization constraint

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced

 Reject session requests when servers saturated

 With QoS Control

 QoS-aware admission control enforced

33 S. Kounev, R. Nou, F. Julia, J. Torres

34

Average Session Response Times

Scenario 3: Workload Characterization

On-The-Fly

 Used experimental setup 2

 85 sessions run over 2 hours

 Repeated for four configurations

1. Overload control: reject new session requests when server utilization

exceeds a specified threshold (70%)

2. QoS control with workload model available in advance

3. QoS control with workload char. on-the-fly (basic algorithm)

4. QoS control with workload char. on-the-fly (enhanced algorithm)

35 S. Kounev, R. Nou, F. Julia, J. Torres

36

Scenario 3 Results

38

Scenario 3: Summary of SLA Compliance

 Config 1: Basic overload control

 96% of sessions admitted, SLAs observed by only 22% of them

 Config 2: Workload characterization off-line

 54% of sessions accepted

 Config 3: Workload characterization on-the-fly (basic alg)

 26 % of sessions accepted

 Config 4: Workload characterization on-the-fly (enhanced alg)

 Rejects only 14 sessions (16%) more compared to config 2

Scenario 4: Servers Added on Demand

 Used experimental setup 2

 85 sessions run over 2 hours

 Repeated for four configurations

1. Overload control with all nine servers available from the beginning.

2. QoS control with all nine servers available from the beginning

3. Overload control with one server available in the beginning and servers

added on demand (when utilization exceeds 70%)

4. QoS control with one server available in the beginning and servers

added on demand

39 S. Kounev, R. Nou, F. Julia, J. Torres

40

Scenario 4: Servers Added on Demand

41

Scenario 4: Summary of SLA Compliance

 Config 1: Overload control with all servers available

 Config 2: QoS control with all servers available

 Config 3: Overload control with one server available in the beginning

and servers added on demand

 Config 4: QoS control with one server available in the beginning and

servers added on demand

41 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 5: Dynamic Reconfiguration

 Used experimental setup 2

 85 sessions run over 2 hours

 Up to five server failures emulated during the run

 Points of server failures chosen randomly during the 2 hours

 Sessions reconfigured after each server failure

42 S. Kounev, R. Nou, F. Julia, J. Torres

43

Scenario 5: Dynamic Reconfiguration

44

Scenario 5: Summary of SLA Compliance

44 S. Kounev, R. Nou, F. Julia, J. Torres

Architecture Pros & Cons

 PROS

 Service users decoupled from service providers

 Fine-grained load-balancing

 Possible to load-balance across heterogeneous servers

 Without platform-specific load-balancing mechanisms

 Dynamic reconfiguration possible

 CONS

 Extra level of indirection

 QoS manager overhead

45 S. Kounev, R. Nou, F. Julia, J. Torres

QoS Predictor Overhead

 Ran simulation for fixed amount of time

 In scenarios 3, 4 and 5, the average time to reach decision

was 15 sec with a max of 37 sec

 Several approaches to boost performance

 Speed up model analysis

 Parallelize simulation to utilize multi-core CPUs

 Use alternative model types and solution techniques

 Optimize resource allocation algorithm

 Allocate resources bottom up instead of top down

 Aggregate sessions of the same type

 Cache analyzed configurations

 Simulate proactively

46 S. Kounev, R. Nou, F. Julia, J. Torres

47

CONCLUSIONS & FUTURE

WORK

Conclusions & Future Work

 First to combine QoS Control with fine-grained load-

balancing

 Balancing accuracy and speed is a major challenge

 Approach can be used in SOA environments

 On-going and future work

 Optimize model analysis and resource allocation algorithm

 Exploit multiple model types and analysis techniques

 Integrate with design-oriented performance models (e.g., PCM)

 Enhance to support hard QoS requirements

 Integrate resource usage costs into the model

48 S. Kounev, R. Nou, F. Julia, J. Torres

Further Reading

 Ramon Nou, Samuel Kounev, Ferran Julia and Jordi Torres. Autonomic QoS control in enterprise

Grid environments using online simulation. To appear in Journal of Systems and Software, 2008.

 Samuel Kounev, Ramon Nou and Jordi Torres. Autonomic QoS-Aware Resource Management in

Grid Computing using Online Performance Models. In Proceedings of the Second International

Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS-2007),

Nantes, France, October 23-25, 2007.

 Ramon Nou, Samuel Kounev and Jordi Torres. Building Online Performance Models of Grid

Middleware with Fine-Grained Load-Balancing: A Globus Toolkit Case Study. In Formal Methods and

Stochastic Models for Performance Evaluation, Springer LNCS 4748/2007, Proceedings of the

4th European Performance Engineering Workshop (EPEW-2007), Berlin, Germany, September

27-28, 2007.

 Samuel Kounev. Performance Modeling and Evaluation of Distributed Component-Based Systems

using Queueing Petri Nets. IEEE Transactions on Software Engineering, Vol. 32, No. 7, pp. 486-502,

doi:10.1109/TSE.2006.69, July 2006.

49 S. Kounev, R. Nou, F. Julia, J. Torres

50

Thanks

