
1

QoS-aware resource allocation and

load-balancing in enterprise Grids

using online simulation

Samuel Kounev (skounev@acm.org)

Joint work with

Ramon Nou (ramon.nou@bsc.es)

Ferran Julia (fjulia@ac.upc.edu)

Jordi Torres (torres@ac.upc.edu)

* Universität Karlsruhe (TH)

Technical University of Catalonia (UPC)

Barcelona Supercomputing Center (BSC)

mailto:skounev@acm.org

2 S. Kounev, R. Nou, F. Julia, J. Torres

Research Interests

• Platform benchmarking

• Application profiling

• Workload characterization

• System load testing

• Performance tuning and optimization

Performance
Measurement

• System architecture models

• Analysis-oriented performance models

• Performance prediction at design & deployment time

• System sizing and capacity planning

System Modeling &
Simulation

• Dynamic system models

• Online performance prediction

• Autonomic resource management

• Utility-based optimization

• Energy efficient computing

Run-time
Performance
Management

P
e
rf

o
rm

a
n
c
e
 E

n
g
in

e
e
ri
n

g

Technology Domains

• Enterprise Java

• Microsoft .NET

Distributed Component-based Systems

• Web Services

• Service-oriented Grids

Service-oriented Environments

• Message-oriented middleware

• Distributed publish/subscribe systems

• Sensor-based systems

• RFID applications

Event-based Systems

3 S. Kounev, R. Nou, F. Julia, J. Torres

4

MOTIVATION

QoS-aware Resource Management in Grid Computing

Motivation

 Grid computing gaining grounds in the enterprise domain

 Grid and SOA technologies converging

 Enterprise Grid environments highly dynamic

 Unpredictable workloads

 Non-dedicated resources

 QoS management a major challenge

 Off-line capacity planning no longer feasible

 Methods for on-the-fly performance prediction needed

 Can be used for QoS-aware resource management and

 Utility-based performance optimization

5 S. Kounev, R. Nou, F. Julia, J. Torres

6

QoS-AWARE RESOURCE

MANAGER ARCHITECTURE

Resource Manager Architecture

7 S. Kounev, R. Nou, F. Julia, J. Torres

8

Resource Manager Architecture (2)

Queueing Petri Nets

 Combine Queueing Networks and Petri Nets

 Allow integration of queues into places of PNs

 Ordinary vs. Queueing Places

 Queueing Place = Queue + Depository

 Advantages:

 Combine the modeling power and expressiveness of QNs and PNs.

 Easy to model synchronization, simultaneous resource possession, asynchronous

processing and software contention.

 Allow the integration of hardware and software aspects.

QUEUE DEPOSITORY

9 S. Kounev, R. Nou, F. Julia, J. Torres

QPME

 A performance modeling tool based on QPNs

 QPME = Queueing Petri net Modeling Environment

 QPN Editor (QPE) and Simulator (SimQPN)

 Based on Eclipse/GEF

 Provides a user-friendly graphical user interface

 http://sdq.ipd.uka.de/people/samuel_kounev/projects/QPME

10 S. Kounev, R. Nou, F. Julia, J. Torres

QPME (2)

 First version released in January 2007

 Distributed to more than 70 research organizations worldwide

 Areas of usage

 Online QoS control

 Software performance engineering

 Construction modeling and simulation area

 Satellite communications

 Dependability of safety-critical real time systems

 Computational biology, modeling biological interaction networks

 Logistics planning

 Models of information flows

11 S. Kounev, R. Nou, F. Julia, J. Torres

12

QPME Screenshot

QoS Predictor

13 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm

 New session request arrives

 Assign new session unlimited # threads on each server

 If required throughput cannot be sustained, reject request

 For each over-utilized server limit the number of threads

 If an SLA of an active session is broken, reject request

 Else if SLA of the new session broken, send counter offer

 Else accept request

14 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm

function allocation Thread }]{S[CT

constraintn utilizatio maximum (s)U

CPUs) # (e.g.capacity server P(s)

: SsFor

),,(c wheresessionsclient Active }c,...,c,{cC

server aby offered Services]2[

offered Services },...,,{

servers Grid },...,,{

0

il21

21

21

V

n

m

SF

V

sssS

15 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm (2)

ε}(s)AF(s)υS: {sI

c

c

TT),(

P(s) (s))U(s)U((s)A

also Define

(s))P:Ss((c)P(c)P:Cc

iff acceptable is Tion Configurat

(s)U(s) Uas Ssfor (s)P

][(c)R as C cfor (c)P

][(c)X as Ccfor (c)P

predicates following theDefine

TT

T
U

T
R

T
X

TT
U

TT
R

TT
X

16 S. Kounev, R. Nou, F. Julia, J. Torres

Resource Allocation Algorithm (3)

17 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Characterization On-The-Fly

 What if no service workload model is available?

 Assumptions

 Each service executes CPU-intensive business logic

 No internal parallelism

 Might call external third-party services

 Basic algorithm for estimating the CPU service times

 Monitor service response time on each server

 Iteratively, set estimate to lowest observed response time

 Enhanced algorithm

 Monitor CPU utilization

 Break down the measured response time into

 Time spent using the CPU

 Time spent waiting for external calls

18 S. Kounev, R. Nou, F. Julia, J. Torres

Dynamic Reconfiguration

 Increasing use of virtualized servers

 Servers often available for launching on demand

 If the QoS requested by a client cannot be provided

 Launch an additional server dynamically

 After a server failure

 Reconfigure all sessions that had threads on the failed server

 Some sessions might have to be canceled

 Extended resource allocation algorithm to support the above

 Algorithms can be easily enhanced to take into account

 Costs associated with launching new servers

 Revenue gained from new customer sessions

 Costs incurred when breaking customer SLAs

19 S. Kounev, R. Nou, F. Julia, J. Torres

20

CASE STUDY

Experimental Setup 1

21 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Used

 Assume three services available

 Each service

 executes CPU-intensive business logic

 might call external third-party services

 Service workload model

 Workload model stored in service registry

Service Service 1 Service 2 Service 3

CPU resource demand on 2-way server 6.89 4.79 5.84

CPU resource demand on 4-way server 7.72 5.68 6.49

External Service Provider Time 2.00 3.00 0.00

22 S. Kounev, R. Nou, F. Julia, J. Torres

Experimental Setup 2

8-way Pentium Xeon

2.60 GHz, 9 GB, 64 bit,

Xen hypervisor

4-way Pentium Xeon

3.16 GHz, 10 GB, 64 bit,

Xen hypervisor

23 S. Kounev, R. Nou, F. Julia, J. Torres

Workload Model

 One CPU on each server assigned to Domain-0

 Rest of the CPUs each assigned to one Grid server

 Service workload model

24 S. Kounev, R. Nou, F. Julia, J. Torres

Grid Server Model

26 S. Kounev, R. Nou, F. Julia, J. Torres

Model Validation & Calibration

 Model failed initial validation attempt

 Service execution trace (BSC-MF / Paraver)

 Calibrated model by adding the 1 sec delay

27 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 1

 Used experimental setup 1

 16 session requests

 Run until all sessions complete

 Each session has 20-120 service requests (avg. 65)

 SLAs between 16 and 30 sec

 90% maximum server utilization constraint

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced

 With QoS Control

 QoS-aware resource manager used

28 S. Kounev, R. Nou, F. Julia, J. Torres

CPU Utilization – Without QoS Control

29 S. Kounev, R. Nou, F. Julia, J. Torres

CPU Utilization – With QoS Control

30 S. Kounev, R. Nou, F. Julia, J. Torres

Average Session Response Times

SLAs

 SLAs

31 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 2

 Used experimental setup 1

 99 session requests executed over period of 2 hours

 Run until all sessions complete

 Average session duration 18 minutes (92 requests)

 90% maximum server utilization constraint

 Will compare two configurations

 Without QoS Control

 Incoming requests simply load-balanced

 Reject session requests when servers saturated

 With QoS Control

 QoS-aware admission control enforced

33 S. Kounev, R. Nou, F. Julia, J. Torres

34

Average Session Response Times

Scenario 3: Workload Characterization

On-The-Fly

 Used experimental setup 2

 85 sessions run over 2 hours

 Repeated for four configurations

1. Overload control: reject new session requests when server utilization

exceeds a specified threshold (70%)

2. QoS control with workload model available in advance

3. QoS control with workload char. on-the-fly (basic algorithm)

4. QoS control with workload char. on-the-fly (enhanced algorithm)

35 S. Kounev, R. Nou, F. Julia, J. Torres

36

Scenario 3 Results

38

Scenario 3: Summary of SLA Compliance

 Config 1: Basic overload control

 96% of sessions admitted, SLAs observed by only 22% of them

 Config 2: Workload characterization off-line

 54% of sessions accepted

 Config 3: Workload characterization on-the-fly (basic alg)

 26 % of sessions accepted

 Config 4: Workload characterization on-the-fly (enhanced alg)

 Rejects only 14 sessions (16%) more compared to config 2

Scenario 4: Servers Added on Demand

 Used experimental setup 2

 85 sessions run over 2 hours

 Repeated for four configurations

1. Overload control with all nine servers available from the beginning.

2. QoS control with all nine servers available from the beginning

3. Overload control with one server available in the beginning and servers

added on demand (when utilization exceeds 70%)

4. QoS control with one server available in the beginning and servers

added on demand

39 S. Kounev, R. Nou, F. Julia, J. Torres

40

Scenario 4: Servers Added on Demand

41

Scenario 4: Summary of SLA Compliance

 Config 1: Overload control with all servers available

 Config 2: QoS control with all servers available

 Config 3: Overload control with one server available in the beginning

and servers added on demand

 Config 4: QoS control with one server available in the beginning and

servers added on demand

41 S. Kounev, R. Nou, F. Julia, J. Torres

Scenario 5: Dynamic Reconfiguration

 Used experimental setup 2

 85 sessions run over 2 hours

 Up to five server failures emulated during the run

 Points of server failures chosen randomly during the 2 hours

 Sessions reconfigured after each server failure

42 S. Kounev, R. Nou, F. Julia, J. Torres

43

Scenario 5: Dynamic Reconfiguration

44

Scenario 5: Summary of SLA Compliance

44 S. Kounev, R. Nou, F. Julia, J. Torres

Architecture Pros & Cons

 PROS

 Service users decoupled from service providers

 Fine-grained load-balancing

 Possible to load-balance across heterogeneous servers

 Without platform-specific load-balancing mechanisms

 Dynamic reconfiguration possible

 CONS

 Extra level of indirection

 QoS manager overhead

45 S. Kounev, R. Nou, F. Julia, J. Torres

QoS Predictor Overhead

 Ran simulation for fixed amount of time

 In scenarios 3, 4 and 5, the average time to reach decision

was 15 sec with a max of 37 sec

 Several approaches to boost performance

 Speed up model analysis

 Parallelize simulation to utilize multi-core CPUs

 Use alternative model types and solution techniques

 Optimize resource allocation algorithm

 Allocate resources bottom up instead of top down

 Aggregate sessions of the same type

 Cache analyzed configurations

 Simulate proactively

46 S. Kounev, R. Nou, F. Julia, J. Torres

47

CONCLUSIONS & FUTURE

WORK

Conclusions & Future Work

 First to combine QoS Control with fine-grained load-

balancing

 Balancing accuracy and speed is a major challenge

 Approach can be used in SOA environments

 On-going and future work

 Optimize model analysis and resource allocation algorithm

 Exploit multiple model types and analysis techniques

 Integrate with design-oriented performance models (e.g., PCM)

 Enhance to support hard QoS requirements

 Integrate resource usage costs into the model

48 S. Kounev, R. Nou, F. Julia, J. Torres

Further Reading

 Ramon Nou, Samuel Kounev, Ferran Julia and Jordi Torres. Autonomic QoS control in enterprise

Grid environments using online simulation. To appear in Journal of Systems and Software, 2008.

 Samuel Kounev, Ramon Nou and Jordi Torres. Autonomic QoS-Aware Resource Management in

Grid Computing using Online Performance Models. In Proceedings of the Second International

Conference on Performance Evaluation Methodologies and Tools (VALUETOOLS-2007),

Nantes, France, October 23-25, 2007.

 Ramon Nou, Samuel Kounev and Jordi Torres. Building Online Performance Models of Grid

Middleware with Fine-Grained Load-Balancing: A Globus Toolkit Case Study. In Formal Methods and

Stochastic Models for Performance Evaluation, Springer LNCS 4748/2007, Proceedings of the

4th European Performance Engineering Workshop (EPEW-2007), Berlin, Germany, September

27-28, 2007.

 Samuel Kounev. Performance Modeling and Evaluation of Distributed Component-Based Systems

using Queueing Petri Nets. IEEE Transactions on Software Engineering, Vol. 32, No. 7, pp. 486-502,

doi:10.1109/TSE.2006.69, July 2006.

49 S. Kounev, R. Nou, F. Julia, J. Torres

50

Thanks

