
Triggering Performance Counters 
for Energy Efficiency 
Measurements
Norbert Schmitt
Jóakim v. Kistowski
Samuel Kounev

Chair of Software Engineering
University of Würzburg
http://se.informatik.uni-wuerzburg.de/

Kiel, 08/11/2016



Motivation

2 N. Schmitt

0

20

40

60

80

100

120

140

2006 2013 2020

Total power consumption in billion kWh annually [6,7]

61

91

140

Event Triggers ApproximationApproachMotivation Conclusion

 Increasing server
energy consumption

 61 billion kWh in 2006

 An estimated 140 
billion kWh in 2020 
[6,7]



Motivation

3 N. Schmitt

 Simulation of large networks and / or high data 
traffic to put externally driven workloads under load 
Example: Load Balancer

 Which is the most efficient
machine for the workload?

 Huppler [8] defines criteria
for a good benchmark:
 Repeatable
 Economical
 …

SUT: Load Balancer

Measurement Controller

Measurement Control Traffic
Data Traffic

?

Load Generator

Event Triggers ApproximationApproachMotivation Conclusion



Motivation

4 N. Schmitt

 Efficiency is measured under 
different load levels

 Complicated to calibrate and 
maintain load levels with external 
load generators due to latency

Load Generator Receiver

SUT

Controller

Event Triggers ApproximationApproachMotivation Conclusion



Motivation

5 N. Schmitt

 Approximate externally driven workloads on the SUT 
without the need for extra hardware

 Use Performance Counters for approximation

 Develop a modularized Performance Event Trigger 
Framework (PET) to approximate workloads

Load Generator Receiver

SUT

Controller Module 1 Module 2 Module n

JNI Adapter Framework

Module Interface

Native Interface

C++Java

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Event Trigger

6 N. Schmitt

 Performance Counter [1,2]
 Occurrence Events

How often has an event been observed
 Duration Events

Accumulated clock cycles for which an event has been observed

 Event Trigger
 Stand-Alone implementation to cause i counted events

Event Trigger

[i iterations not executed] 

[i iterations executed] 

Counter State: n Counter State: n+i

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Side Effects

7 N. Schmitt

 Some Performance Counters cannot be modified 
without affecting other Counter Values

 They can be imposed either by hardware constraints or 
the implementation of an event trigger

L1d L1i

L2

L3

Main Memory

Example: Trigger event „Read byte from memory controller“ (Accessing main memory)

Events counted:

L1d miss event

L2 miss event

L3 miss event

Read byte event

Event Triggers ApproximationApproachMotivation Conclusion



 Different implementations to incorporate side effects
1. Naive: Neglect side effects
2. Accumulation: Sum over all side effects 𝒔𝒔𝑖𝑖 caused by 

triggering a number of events 𝑣𝑣𝑖𝑖

3. Simulated Annealing: A numerical solution between the 
imposed side effects and event triggers

Approach - Composition

8 N. Schmitt

𝒔𝒔𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �
𝑖𝑖=1

𝑛𝑛

𝒔𝒔𝑖𝑖 ∗ 𝑣𝑣𝑖𝑖

Event Triggers ApproximationApproachMotivation Conclusion



Approach – Evaluate Event Triggers

9 N. Schmitt

 Run the event trigger as a single process and in parallel 
as workloads can and do use multithreading
 Single process

→ If it does not work in single process, the implementation might 
be erroneous

 4/8 processes
→ Number of physical/logical CPUs to determine if the 

implementation does scale in a multithreaded environment

 Each event trigger is set a reference value, a target, it 
has to reach
 The lower the deviation from the target value the better is the 

implementation of the event trigger

Event Triggers ApproximationApproachMotivation Conclusion



 Use the different caching modes 
supported by the CPU to prohibit 
caching → Automatically miss L3

 Strong Uncachable (UC)
 Set by Memory Type Range Register 

(MTRR)
 Linux Kernel documentation 

discourages the use of MTRR [4]

 Uncachable Minus (UC-)
 Set by Page Attribute Table (PAT)
 Function in Linux Kernel available

Event Triggers – L3 miss

10 N. Schmitt

L1d L1i

L2

L3

Main Memory

Event Triggers ApproximationApproachMotivation Conclusion



 Uncachable memory can be mmap-ed to user space

 Target value of 8 ∗ 106
L3 misses for 8 processes
not reached

 Even worse for 1 and
4 processes

 No L3 misses are actually
triggered

Event Triggers – L3 miss

11 N. Schmitt

L3 cache misses for 8 processes
on uncachable memory

Event Triggers ApproximationApproachMotivation Conclusion



 Traverse a large array of at least twice the cache size

 Problem: Hardware prefetching loading data we do not 
want in cache [3]

 Solution: Increase stride to 6 times the cache line size 
with a deviation of −2.4% when 8 processes are running

Event Triggers – L3 miss

12 N. Schmitt
L3 misses with stride 2 L3 misses with stride 6

Event Triggers ApproximationApproachMotivation Conclusion



 Constraints for triggering L2 misses hitting L3:
 Instead of traversing a large array, it must be small enough to fit 

inside L3 not to produce L3 misses on accident
 The array must also be large enough for long strides to not 

access data already prefetched and generating a L2 hit

 Try to “confuse” the prefetcher by adding a random 
factor 𝑟𝑟 after a stride 𝑠𝑠

𝑝𝑝𝑛𝑛 = 𝑝𝑝𝑛𝑛−1 + 𝑠𝑠 + 𝑟𝑟

Event Triggers – L2 miss / L3 hit

13 N. Schmitt Event Triggers ApproximationApproachMotivation Conclusion



 L2 miss / L3 hits scale well to four processes

 Generating L2 misses with virtual CPUs provides no 
benefits. Triggering L2 misses only scales to the 
number of physical CPUs 

Event Triggers – L2 miss / L3 hit

14 N. Schmitt

Processes Instruction Set Result (w/o random) Result (w/ random) Deviation

1 SIMD 165,031 923,975 −7.60%

Assembler 204,282 966,181 −3.38%

C 213,862 971,336 −2.87%

4 SIMD 443,037 3,391,786 −15.21%

Assembler 1,225,584 3,408,932 −14.78%

C 743,568 3,537,446 −11.56%

8 SIMD 2,284,193 5,253,885 −34.33%

Assembler 1,747,484 4,047,238 −50.59%

C 1,516,549 4,199,528 −47.51%

L2 misses / L3 hits generated; Targets: 1 ∗ 106, 4 ∗ 106 and 8 ∗ 106

Event Triggers ApproximationApproachMotivation Conclusion



 Read bytes implemented in the same way as L3 misses

 Overcounting by a large margin
Target for 1 process: 0.64 ∗ 108
Target for 8 processes: 0.512 ∗ 109

Event Triggers – Read byte from MC

15 N. Schmitt

Bytes read using 1 process and stride 6 Bytes read using 8 processes and stride 6

Event Triggers ApproximationApproachMotivation Conclusion



 Use the kernel module to circumvent the caches

 Read bytes from memory controller scales well to the 
number of physical CPUs for the SIMD and Assembler 
instruction sets 

Event Triggers – Read byte from MC

16 N. Schmitt

Processes Instruction Set Result Deviation

1 SIMD 64.003 ∗ 106 0,004%

Assembler 64.038 ∗ 106 0,060%

C 64.025 ∗ 106 0,039%

4 SIMD 242.41 ∗ 106 −5.31%

Assembler 255.98 ∗ 106 −0.01%

C 191.16 ∗ 106 −25.33%

8 SIMD 326.43 ∗ 106 −36.24%

Assembler 343.67 ∗ 106 −32.88%

C 347.82 ∗ 106 −32.07%
Bytes read with uncachable memory

Targets: 64 ∗ 106, 256 ∗ 106 and 512 ∗ 106

Event Triggers ApproximationApproachMotivation Conclusion



 Uncachable memory worked well for bytes read so 
intuitively it should work when writing bytes

 Underestimating bytes written for all instruction sets 
ranging from −47.58% to −73.51%

 Do not use uncachable
memory when 
triggering bytes written

 SIMD and ASM reach 
deviations of−0.03%
and −0.01%

Event Triggers – Write byte to MC

17 N. Schmitt

Bytes written for a single process and a stride of 6
Target: 6.4 ∗ 107

Event Triggers ApproximationApproachMotivation Conclusion



Event Triggers – Write byte to MC

18 N. Schmitt

 The event trigger is struggling to reach its target value
if multiple processes are used

Bytes written using 4 processes and stride 6
Target: 2.56 ∗ 108

Bytes written using 8 processes and stride 6
Target: 5.12 ∗ 108

Event Triggers ApproximationApproachMotivation Conclusion



 Create C++11 threads that can be joined instantly
 Intuitively, each thread should cause two switches

→ Half the amount of event triggers

 Introducing a linear factor of 0.5
 Unexpected major deviations
 Removing the factor results in large overcounting

 But a linear factor can still improve the accuracy 

Event Triggers – Context switch

19 N. Schmitt

Factor 0.5 Factor 0.8 Factor 1.0

Processes Result Deviation Result Deviation Result Deviation

1 70,350 −29.7% 100,588 0.6% 120,641 20.6%

4 271,683 −32.1% 400,689 0.2% 481,324 20.3%

8 470,265 −41.2% 757,056 −5.4% 940,653 17.6%

Context switches triggered
Targets: 1 ∗ 105, 4 ∗ 105 and 8 ∗ 105

Event Triggers ApproximationApproachMotivation Conclusion



 Naive measurement 
with side effects has a 
low throughput due to 
long runtimes 

 Accumulation still 
overestimates power 
consumption despite 
removing side effects

Approximating Workloads

20 N. Schmitt

Workload Measurement Mean Max CV

SSJ Naive 12.35% 26.44% 19.37%

Accumulation 13.28% 27.61% 7.03%

Simulated Annealing −𝟓𝟓.𝟐𝟐𝟓𝟓𝟐 −𝟗𝟗.𝟑𝟑𝟓𝟓𝟐 𝟑𝟑.𝟔𝟔𝟔𝟔𝟐

Load Level [%]

Po
w

er
 [W

at
t]

ApproximationApproachMotivation ConclusionEvent Triggers



 Externally driven 
workloads can be 
approximated 

 Underestimation 
expected due to the 
NIC not stressed in 
the approximation

Approximating Workloads

21 N. Schmitt

Workload Measurement Mean Max CV

DPI Firewall Naive −𝟖𝟖.𝟖𝟖𝟖𝟖𝟐 −𝟏𝟏𝟔𝟔.𝟖𝟖𝟒𝟒𝟐 𝟓𝟓.𝟖𝟖𝟔𝟔𝟐

Accumulation −23.68% −40.23% 14.33%

Simulated Annealing −21.00% −36.19% 12.32%

Load Level [%]

Po
w

er
 [W

at
t]

ApproximationApproachMotivation ConclusionEvent Triggers



 Know your hardware to avoid unwanted effects on the 
events to trigger

 Simultaneous Multithreading (SMT) is in most cases 
not beneficial when triggering performance events on 
purpose

 Intuition can be misleading and counterproductive

 Externally driven workloads can be approximated with 
reasonable accuracy

 Complex testbed setups can be simplified for faster 
and easier deployment → The PET framework reaches 
an average accuracy from below 10% down to 1%

Conclusion

22 N. Schmitt ApproachMotivation ConclusionEvent Triggers Approximation



Thank You!

norbert.schmitt@uni-wuerzburg.de



1. AMD, AMD64 Architecture Programmer‘s Manual Volumen 2: System Programming, Advanced Micro 
Devices Inc., April 2016. http://support.amd.com/TechDocs/24593.pdf

2. Intel, Intel® 64 and IA-32 Architectures Software Developer‘s Manual, Intel Corporation, June 2016. 
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

3. Intel, Intel® 64 and IA-32 Architectures Optimization Reference Manual, Intel Corporation, June 2016.
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf 

4. R. Gooch and L. R. Rodriguez, „MTRR (memory type range register) control“, accessed: 2016-08-15.
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt

5. GNU, „GCC Common Function Attributes“, accessed: 2016-11-04 
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes

6. R. Brown et. al., „Report to congress on server and data center energy efficiency: Public law 109-431“, 
Lawrence Berkeley National Laboratory, Jun. 2008. http://eetd.lbl.gov/sites/all/les/pdf 4.pdf

7. J. Whitney and P. Delforge, “Data center efficiency assessment“, http://www.nrdc.org/energy/les/data-
center-eciency-assessment-IP.pdf, Aug. 2014.

8. K. Huppler, „The Art of Building a Good Benchmark“, IBM Corporation, 3605 Highway 52 North, 
Rochester, MN 55901, USA 2009.

References

24 N. Schmitt

http://support.amd.com/TechDocs/24593.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/tree/Documentation/x86/mtrr.txt
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
http://eetd.lbl.gov/sites/all/les/pdf%204.pdf
http://www.nrdc.org/energy/les/data-center-eciency-assessment-IP.pdf

	Triggering Performance Counters for Energy Efficiency Measurements
	Motivation
	Motivation
	Motivation
	Motivation
	Approach – Event Trigger
	Approach – Side Effects
	Approach - Composition
	Approach – Evaluate Event Triggers
	Event Triggers – L3 miss
	Event Triggers – L3 miss
	Event Triggers – L3 miss
	Event Triggers – L2 miss / L3 hit
	Event Triggers – L2 miss / L3 hit
	Event Triggers – Read byte from MC
	Event Triggers – Read byte from MC
	Event Triggers – Write byte to MC
	Event Triggers – Write byte to MC
	Event Triggers – Context switch
	Approximating Workloads
	Approximating Workloads
	Conclusion
	Thank You!
	References

