

Resource Demand Estimation in Distributed, Service-Oriented Applications using LibReDE

Simon Spinner

University of Würzburg - Chair of Software-Engineering

Symposium on Software Performance, Munich, Germany 05/11/2015

Service-oriented applications:

Integration of different applications (→ SOA)

Architecture of **one** complex application (→ Microservices)

Data Services Edge Services Business Services

facebook

What are resource demands?

Example SEFF in PCM:

A **resource demand** is the time a unit of work (e.g., request or internal action) spends obtaining service from a resource (e.g., CPU or hard disk) in a system.

Resource Demand Estimation

Direct Measurement

Requires specialized infrastructure to monitor low-level statistics.

Examples:

- TimerMeter + ByCounter
- PMWT
- Dynatrace

Statistical Estimation

Use of statistical techniques on high-level monitoring statistics.

Examples:

- Linear regression
- Kalman filtering
- Nonlinear optimization
- Etc.

Residence times may be missing or inaccurate

- → Use **end-to-end** response times instead?
- → Existing work limited to 3-tier applications

Approach Overview

1. DERIVE WORKLOAD DESCRIPTION

Workload Description

Assumptions

- Any parameter dependencies are solved
- Coarse-grained internal actions
 - Not more than one internal action per resource type in RDSEFF
 - Internal actions in top-level component internal behavior of RDSEFF
- Arbitrary control flow for external calls
 - Loops, branches, forks, etc.
- Product-form workload description

Mapping to DML (1/2)

- Component instance reference
 - Path of assembly contexts
 - Unique within system
- Service in workload description maps to
 - component service
 - of provided interface role
 - of a component instance reference

Mapping to DML (2/2)

- Further mappings
 - Internal action

 Resource demand
 - External call

 External call
 - Processing resource
 Resource
- Visit counts of external calls are derived from DML
 - Loops: average iteration count
 - Branches: weights based on branching probabilities
- Fork actions
 - Without synchronization → Ignore fork
 - With synchronization → Future work

2. DERIVE ESTIMATION PROBLEM

Estimation Problem

State model

- Definition of state variables (i.e., resource demands)
- Constraints on state variables
- Initial values of state variables

Observation model

- Analytical function $\vec{y} = h(\vec{x})$
- \vec{y} : vector of observations
- \vec{x} : vector of state variables

Estimation algorithm

- Mathematical solution algorithm
- E.g., non-linear constrained optimization

Strategies

- Resource level
 - Use only utilization and throughput measurements
- Tier level
 - Use residence times
- System level
 - Use end-to-end response times

3. ESTIMATION

Optimization

- Non-linear, constrained optimization
 - Interior-point solver (→ Ipopt library¹)
 - Integrated in LibReDE
- Minimize:
 - Relative difference between
 - Observed and calculated response times
 - Observed and calculated utilization
 - Constant delays
- Equal weights for all parts of the objective function

State Space

- Ipopt requires
 - Jacobi matrix
 - Hessian matrix for Lagrange multiplicators
- Use Rall's system for automatic differentiation
 - Automatic calculation of all partial derivatives
 - Memory and computational complexity may be limiting
 - See DerivativeStructure in Apache Commons Math

CASE STUDY

Experiment Setup

Results: Transaction Rate 60 (1/2)

Results: Transaction Rate 60 (2/2)

Results: Transaction Rate 100 (1/2)

Results: Transaction Rate 100 (2/2)

■ System-level

■ Resource-level

Summary

- Extended LibReDE to support service-oriented applications
 - Control flow awareness
 - Based on end-to-end response times
- Identified different strategies for resource demand estimation
 - Resource-level
 - Tier-level
 - System-level
- Experimental results show
 - System-level is a feasible alternative
 - Tier-level highly depends on accuracy of residence times

http://descartes.tools/librede

Eclipse Public License (EPL)

