Smart Keys for Cyber-Cars: Secure Smartphone-based NFC-enabled Car Immobilizer

Christoph Busold¹, Alexandra Dmitrienko², Ahmad-Reza Sadeghi¹, Hervé Seudié³, Majid Sobhani³, Ahmed Taha³, Christian Wachsmann¹

¹ Intel CRI-SC, TU Darmstadt, Germany ² Fraunhofer SIT, Darmstadt, Germany ³ TU Darmstadt, Germany

Motivation
- Increasing integration of smartphones into modern automotive systems
- Customized access without physical key transponder possible: e.g., delegation of rights, location-based access
- Security of current available automotive smartphone-based solutions unclear since undisclosed from review

Requirements & Challenges
- Fast authentication for positive user experience
- Remote key management (issuing/revocation)
- Direct delegation of access rights (without the issuer)
- Context-aware access policies (e.g., time-limited)

General Architecture
- Token-based authentication system
- Enables secure deployment and storage of tokens
- Supports token delegation and revocation

Design
- **Platform Security Architecture**
 - Secure storage to protect sensitive data (e.g., crypto keys)
 - Isolated execution to protect sensitive code
 - Access control to security sensitive code and data

Secure Protocols
- Use well-established crypto primitives (AES, SHA-1, RSA)
- Formal tool-aided protocol verification (ProVerif)

Related Work
- Prototypes of Smartphone-based immobilizers available but their security is unclear since undisclosed
- Existing open specifications of security stacks are focusing exclusively on immobilizer part
- No automotive solution proposes delegation of access rights

Implementation
- **Platform**
 - NFC-enabled Galaxy S3 smartphone
 - Arduino board as proof-of-concept immobilizer platform
 - Secure microSD card as trusted execution environment

Performance
- Performance-critical parts use symmetric crypto
- Tokens optimized for small NFC bandwidth
- Authentication protocol runs in under 700 ms

Contacts:
- christoph.busold@trust.cased.de
- alexandra.dmitrienko@trust.cased.de
- herve.seudie@trust.cased.de